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  Music  Hello, welcome to lecture number 4 of module 3. This is lecture number 10 of this 
course  and in this lecture we will continue discussing entanglement measures. So let us 
begin.  In the last class we discussed about two entanglement measures namely entropy of 
entanglement which  is also known as reduced von Neumann entropy and the so called 
Peres Horodeki criterion  more popularly known as PPT criterion or positive partial 
transpose and this criterion led to  an entanglement measure called negativity and we 
discussed several example related to  entropy of entanglement and negativity. 
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In fact the entropy of entanglement was defined  as so this was defined as entropy of 
entanglement which is one of the most important entanglement  measure is given by this S 
represents entropy it's a function of the reduced density matrix  that's why it is called 
reduced von Neumann entropy trace rho A logarithm of rho A with base 2  log is taken to 
be is taken over base 2 and it's for subsystem A similar formula we can write for  subsystem 
B as well and on the other hand the formula for the negativity we wrote as it was  
represented by the symbol italicized n it's a function of the density operator rho and it is  
given by the trace norm taken over the partially transpose taken partial transpose over the  
subsystem B and this is a trace norm rho TB is the partially transpose matrix and then you 
take  the transpose trace norm this is the formula and the subsystem B is said to be entangled 
with the  system A we should get negativity to be non-zero the similarly we can find out 
the negativity  with respect to the subsystem A as well okay. 
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Now negativity leads immediately to an another  convenient measure of entanglement 
called logarithmic negativity logarithmic  negativity and this is represented by the symbol 
E subscript n it's a function of the density  operator and it is defined as logarithm of the 
trace norm of the partially transpose  matrix density operator not density operator after you 
take the partial transpose over the  density operator rho representing the two composite 
system A and B and you take the  partial transpose over the system B or subsystem B right 
and to this is the formula and this is  very useful it's very easy to work out in fact let us do 
a quick example taken we considered this  particular state in the last class as well so let us 
just consider that once again suppose a  composite system is represented by this ket state 1 
by root 2 ket 0 0 plus ket  1 1 and we intend to  find out the logarithmic negativity with 
respect to say the subsystem B and we have worked this  out in the last class the density 
operator. 
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 We had we have worked out and then we worked out the  partially transposed matrix when 
we have taken the partial transpose over the system B subsystem  B and we found the 
partially transposed matrix to be of this form it would be here 1 0 0 0 0 0 1 0  0 1 0 0 0 0 0 
1 and this will give us the we worked it out the eigenvalues of this matrix  eigenvalues of 
rho T B we got them to be one half one half one half and minus one half  this led us to the 
fact that the negativity was turned out to be non-zero and this matrix rho  T B is not a valid 
density matrix because it is not a semi-positive definite and the trace norm  we can calculate 
rho T B that would be equal to trace of you know modulus of rho T B trace  norm if you 
take and this is basically equal to the sum of all the eigenvalues the magnitude of  the 
eigenvalues so in this case we will get it to be plus 2. 

(Refer Slide Time: 08:10) 

               

 

 Therefore logarithmic negativity is  would turn out to be in this case would be log of 2 
base 2 so this would be equal to 1  so you see the logarithmic negativity is a non-zero 
quantity here which indicates that the  subsystem A and B are entangled this is a trivial 
example but we can work out many many examples  and we already know that the state 
that we have taken is a build state and this is an entangled  state and yes the logarithmic 
negativity also shows that that also gives the correct measure  that indeed the system 
subsystem A and B are entangled but unlike negativity however there's  a difference 
logarithmic negativity can be zero so let me write it unlike negativity logarithmic  
negativity logarithmic negativity can be zero even if can be zero even if even if the state is  
entangled state is entangled so one have to be very careful one cannot just conclude that 
just  because you are getting logarithmic negativity to be zero that the state is not entangled  
but for sure if the logarithmic negativity is not zero the state is entangled but if you find it 
to  be zero sometime what may happen is that the system may be entangled actually and 
logarithmic  negativity another important property of logarithmic negativity is that or effect  



associated logarithmic negativity that logarithmic negativity  is an upper bound is an upper 
bound to the distillable entanglement to the distillable  entanglement now we have not 
talked about distillable distillable entanglement as yet  so we are going to discuss that. 
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 But before i discuss it let me once again clarify the  idea of quantification of entanglement 
in the context of LOCC or local quantum operational  classical communication you see we 
want to know given two subsystem A and B at a far away distance  what is the degree of 
entanglement between them and to know that some experiment  which mathematically 
speaking unitary operation needs to be made on subsystem A or B locally  however this 
local operation should not increase the entanglement between A and B for example the  
system A and system B suppose their composite system is represented by the density 
operator  rho A plus B and if the system are say to spin half system and you rotate the spin 
system A  as a part of some measurement process this operation should not increase the 
entanglement  between A and B hope you get the idea so that means that local 
measurements or local unitary  operations local measurement measurement process must 
not this is extremely critical for us must  must not increase entanglement between 
entanglement between A and B because ultimately when we say  entanglement measure 
that means we have to carry out some measurement or unitary operations  and because 
these are measurement and this local measurement should not increase the entanglement  
between A and B entanglement may decrease actually but it should not increase 
entanglement between  them. 
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 Okay this is very important entanglement may decrease as a result of this process but  it 
should not or it must not if it has to be a proper entanglement measure it must not increase  
entanglement entanglement between the two subsystem between them okay you can do 
local  operation plus classical communication that means locc you can do but this locc 
should not increase  entanglement this is the general rule for entanglement which we 
discussed in an earlier  class on the properties of entanglement. 
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 To give you an example let us say we have two qubits  two qubits belonging to A and 
other one qubit belonging to A and other qubit belonging to  B here you can consider A 
and B to be Elise and Bob and they share a  Bell state this here a Bell state let us say phi 
plus so A and B Elise and Bob share a Bell  state phi plus and you know that phi plus is is 



one by root two ket zero zero plus ket two one one or  if it is a spin system I can write it as 
one by root two so spin up up and spin down down  right so this is what we mean by phi 
plus Bell state you already know that this is maximally  entangled these bales all Bell states 
are maximally entangled states this is maximally  entangled all right. 
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 This maximally entangled state in what sense this is maximally entangled  state in the 
sense maximally entangled in the this is important to understand in the sense that  from it 
from it we can create we can create any other any other qubit state qubit state  using locc 
or some clever you know local operations and classical communication  protocols or 
process if we using locc from this we can create for example let us say we we are  starting 
with phi plus which is one by root two in the case of spin half system I can write it as  say 
up up and down down state and by using locc what I can get by some unitary operations I 
can  end up in the state one by root two I just flip the spin of say Bob and then I get 
accordingly  I get some local operations I get this particular state and this is also this is 
nothing but in our  zero one notation it is one by root two ket zero one plus ket one zero 
which is another  Bell state we have we are basically getting another Bell state starting with 
phi plus  sometimes we may get this is from here we are getting a maximally entangled 
state from a  maximally entangled state but sometime we get an entangled state which may 
not be maximally  entangled state this idea of getting other state from a given state through 
locc means that  we can compare the states to find which one is having more entanglement. 
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 Let me write it  this is very critical for us this idea of getting other states other states from 
a given state  from a given state I am talking about entangled state here through locc  means 
that means that we can we can compare  we can compare the states to find which one is 
more entangled which one is having more entanglement. So this is basically the essence of 
entanglement measure so suppose you go from state one  to state two you have started with 
a state one and you get another state via locc local operation  quantum operation and 
classical communication or you get state one from state two via locc  right. 
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Then the question we can ask is that what about the entanglement whether entanglement  
associate with state one is more than that of the entanglement in state two or vice versa that  
means entanglement state two is more than that of entanglement in state one this kind of 
question  we can ask now but sometimes however there are situations where states are 



incomparable and we  cannot go from a state say rho to another state say rho prime via locc 
it is not possible or we  cannot go from the state rho prime to the state rho via locc so this 
is also a possibility and  in that case we can't tell which one is having more entanglement 
we cannot do an ordering in  this case that means we cannot say that entanglement of state 
one is more than that  of entanglement in state two or we cannot say that e2 is you know 
entanglement of state state two  is more or less that of entanglement in state one this kind 
of ordering would not be possible if we  cannot create one state from another state right 
you i hope you get the idea. 
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 Now the question is  that is there a way out in this situations yes there is there is a way 
instead of simply working  on only two qubit states let us deal with a huge number of say 
thousands thousands of copies of  this qubit state for example suppose we have this Bell 
state phi plus let us make a thousand copies  or whatever number of copies you want you 
make a huge number of identical copies basically ensembles  you you create and you have 
suppose this much of copies suppose thousand copies let us say you have  thousand copies 
of phi plus and then you can ask questions such as with this thousand copies of  our two 
qubit states are we able to produce say 50,000 copies or so of another two qubit suppose  
via locc can i create some other state some arbitrary state say psi ket psi some copies 
suppose  you have started with thousand maybe you can create thousand or ten thousand 
or fifty thousand  whatever number of copies is it possible to do that let us say we have 
started with thousand  let us say you get another fifty five thousand copies of another 
arbitrary state ket psi starting  with one particular Bell state okay this this particular 
approach turns out to be quite helpful  say we take n copies of rho suppose we have n 
number of copies of rho that means we have  rho direct product rho direct product rho like 



this n times we are having n copies of rho  so we are having n copies of rho and via locc 
we want us we can get another state having say  another state say rho prime having m 
number of copies we have started with n number of copies  now we are going over to 
creating m number of copies using locc okay. 
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 And the question here we  can ask is if we allow the number of copies of rho number of 
copies of rho to go towards infinity say  n tends to infinity this one if we allow it to go 
towards infinity and m also here this m also  tends to infinity then what is the best possible 
ratio the question is what is the what is the  best possible best possible ratio ratio of m by 
n okay that means what is the best possible ratio  of m by n this is the question we can ask 
that means what we can achieve this has been the basis  of various entanglement measure 
and it will be clear if i discuss some entanglement measure  based on this particular idea 
we always want to compare states with regard to entanglement  but what will you compare 
against now the question is well we know that Bell states are maximally  entangled so we 
can compare against such Bell states okay. 
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 So given some say arbitrary state  given some arbitrary state given some arbitrary state 
how many Bell state how many Bell states  because Bell states are maximally entangled 
state how many Bell states we would need we would need  to produce to produce these 
arbitrary states produce these arbitrary states  okay starting with a Bell state or we can ask 
the opposite question given some arbitrary state  given some arbitrary state if we apply we 
apply some clever some clever unitary operation unitary  operation  okay on many such 
copies on many such copies of this arbitrary state copies of state  how many Bell states 
opposite thing we are doing how many Bell states we can produce  how many Bell states  
can we obtain can we obtain so this is the essence of some entanglement measures that now 
i am going  to discuss. 
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  So i hope you are getting the idea let me again say again state this once again  suppose 
you have n number of suppose you have n number of copies copies of a Bell state  Bell 
state there are four Bell states suppose you pick up any Bell state and you take n number 
of  copies of the Bell state and by locc operation local quantum operation and classical 
communication  you get m number of copies of arbitrary state arbitrary state rho right and 
we are doing it  we are doing it because as i said keep Bell state has is maximally entangled 
and we would like to  compare our greatest state with a maximally entangled state or this 
is one thing or we have  say n number of arbitrary state m number of copies of arbitrary 
arbitrary state rho and via locc  local operations and classical communication we want to 
create m number of copies m number  of copies of Bell state so this particular idea is at the 
root of many entanglement measures and  we are now going to discuss some of them. 
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 The first entanglement measure based on these ideas  i want to discuss is a so-called 
entanglement cost entanglement cost and this is denoted by  the symbol e suffix c c refers 
to cost and it's a function of the density operator and here rho  rho represents the density 
operator representing the arbitrary state the concept behind this  measure is simple say we 
have one of the maximally entangled Bell state say phi plus  the density operator 
corresponding to this Bell state would be ket phi plus bra phi plus  and let us say we have 
r into n number of copies of this Bell state and we hope to using local  operation and 
classical communication we hope to create an arbitrary state rho and we want  to create n 
number of copies of this arbitrary state and here we the goal is to find out the  smallest r 
for which this is possible then tells us about what is the cost of producing the  entangled 
state. 
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 So entanglement cost boils down to basically finding out find smallest r find smallest  r 
with you will start with i am repeating myself here you will start with say the particular  
maximally or any maximally entangled state and from here you create via locc local 
operation  and classical communication you create n number of arbitrary states and there 
is a actually another  measure related to this this is called distillable entanglement let me 
discuss that also and in fact  i have already mentioned about it a while back distillable 
entanglement this is similar to  entanglement cost and that's the reason it is called dual to 
entanglement cost and it is  denoted by the symbol e suffix d rho. 
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 And here we you just go to other direction to that of  the entanglement cost you take n 
number of arbitrary states you take n number of arbitrary  state and from this arbitrary state 
you produced maximally entangled state say phi plus you produce  r number of r number 
of maximally entangled state and here the idea is to have you know  maximum number 
maximum r that means find largest r so entanglement of distillation or distillable  
entanglement boils down to find largest r largest r with you are going from an arbitrary n 
number  of copies of the arbitrary state with maximum number of bale state you want to 
generate starting  with some number of copies of an arbitrary state and which is opposite 
to that of the entanglement  cost as you can see. 
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 And this should also be clear to you intuitively that entanglement of  distillation or 
distillable entanglement should be less than the cost of entanglement cost because  if it is 
not then you see one can obtain or create entanglement by means of locc by converting 
bale  state to a state not satisfying this particular relation this condition and converting them 
back  again right for pure state things are quite easy for pure state for pure state you have  
rho is equal to ket psi bra psi and here it turns out that cost of entanglement is exactly equal 
to  entanglement distillable entanglement and which turns out to be equal to entropy of 
entanglement  okay and this is easy for pure state but for mixed state finding cost of 
entanglement or distillable  entanglement is a difficult task it's in fact pretty difficult. 
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 But whatever be the entanglement  measure it is expected that you should get entanglement 
for a non-separable system to be  should be greater than zero and it has to be equal to zero 
rho a plus b if it is this is a  separable state or that means it is not entangled obviously you 
should get it to be zero rho  a plus b is separable separable and locc local operation and 
classical communication  does not does not increase entanglement measure e rho on the 
average okay this is  it has to be any entanglement measure must has to satisfy this if all 
these three are satisfied  then then e rho the entanglement measure actually e rho this 
quantity is known as i think i have  discussed about it in a previous class e rho is known as 
entanglement monotone entanglement  monotone. 
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 But if there is an other property a desirable property that for pure state  if you have e rho 
is equal to entropy of entanglement entropy of entanglement  whatever be the measure if 
boils down to entropy of entanglement for pure states this is desirable  and if these four 
properties in fact if all these properties are satisfied then e rho is turned  is called 
entanglement measure then e rho is qualified to be called entanglement measure  
entanglement measure so i just want to re-emphasize it that's why because i have  already 
discussed it in a previous class. 
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 Let us now briefly discuss about the entanglement measure  called entanglement of 
formation historically this is the first entanglement measure that  appeared in literature it 
is also occasionally called entanglement of creation i mentioned  that one desirable property 
of entanglement measure is that it should be equal to entropy  of entanglement for pure 
states now the entanglement of formation is a straightforward  generalization of entropy of 
entanglement for mixed state entanglement of formation is denoted  by the symbol e suffix 
f and it's a function of the density operator rho now before i talk about  the proper definition 
of entanglement of formation let me discuss briefly about the definition of  entropy of 
entanglement in the context of a an ensemble of pure state suppose i have an  ensemble of 
pure state e which is a collection of pure state psi i with corresponding probability  pi. 
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 Then the entropy of entanglement or entanglement of formation is defined as the  avarice 
of the entropy of entanglement for the states in the ensemble and it is given by this  formula 
e f of e keep it italicized e which refers to this ensemble it is equal to sum over pi  and e of 
psi i where e is the this is the entropy of entanglement for the pure state psi i  it is entropy 
of entanglement entanglement for pure state if i write it in the density operator  then it 
would be rho i is equal to ket psi i bra psi i so this is the definition for entanglement of  
formation for an ensemble. 
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  Now coming to mixed state you know a mixed state can be realized by  multitude of pure 
state and symbols with different entanglement of formation suppose i have a  you know 



mixed state rho given by a collection of bell states suppose i have this pure states  are there 
phi plus phi plus this is with 50 probability then i have another collection so let  me take 
half common there so this means that this is a mixed state you know which is formed by 
the  pure state phi plus and phi minus and what we can get that this particular mixed state 
rho  can also be achieved by having a mixer of ket 0 0 a pure state a mixer of pure state ket 
0 0 and  ket 1 1 right so this way there are many ways you can get the same rho by various 
mixers now as  any of those ensemble realize a mixed state the natural definition for the 
entanglement of  formation for a mixed state is the entanglement formation for the most 
economic ensemble that is  the ensemble causing least cost of entanglement. 

(Refer Slide Time: 36:38) 

            

 

 So entanglement formation for a mixed state is  defined as e f of rho is equal to infimum 
summation sum over i p i e of psi i where this is the  entropy of entanglement this is entropy 
of entanglement okay now you see this infimum is  taken over all the ensemble it is taken 
over all the ensemble p i psi i or if i again take this  example here entanglement formation 
means that out of these two possibilities suppose i have  only these two mixers two possible 
mixers are there by which i can get this mixed state rho  and out of these mixers when i am 
taking the infimum i will consider only one of these two  for who is the entropy of 
entanglement is going to be minimum so i hope you get it by infimum i  means that i am 
taking this collection of sets i will take the take that one for which i get the  minimum 
entropy of entanglement now as you can see that entanglement of formation basically me  
quantifies how much entanglement is necessary on the average to prepare a state so 
entanglement  formation entanglement formation quantifies  quantifies how much 
entanglement is needed  entanglement is needed to prepare a state  okay. 
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 Now it turns out that for very large n for very large n  the entanglement of formation for n 
number of say copies of a state  rho represented by rho entanglement of formation for a 
large number of copies of a state rho  if we divide it by the number of copies and in the 
limit n tends to infinity that means very large  n then this quantity approaches or converses 
the cost of entanglement or entanglement cost  okay this is an important point to consider  
this is an important point to remember. 
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 Now there is a useful entanglement measure called  concurrence and this is generally 
defined in the context of two qubits and also associated with  or related with entanglement 



of formation and this is we are not going to discuss that in great  detail but i will just very 
simply discussed it for a system of two qubits and for first of all  i will discuss it for pure 
state and suppose for a pure state we have a state kth state  which represents a two qubit 
state this represents a pair of pair of qubits  and concurrence for this state pure set phi is 
defined as the modulus of the scalar product of  phi and phi tilde where this tilde let me 
write here where tilde represents  the spin flip operation spin flip operation. 
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  Let me elaborate this phi tilde ket phi tilde is is equal to the direct product or the tensor  
product of this Pauli operator sigma y over this operation is this is the spin flip operation 
done  on the state phi star ket where phi star is this ket phi star is the complex conjugate 
this is  complex conjugate of conjugate of phi in fact let me explain it by using an example  
just remember that that sigma y the Pauli matrix is given as 0 minus i i 0 suppose i have a 
state  ket phi in the computational two qubit basis where the basis is ket 0 0 ket 0 1 ket  1 
0 and ket  1 1  in this basis state i can write a two qubit state a general two qubit state maybe 
say superposition  of this basis state a ket 0 0 plus b ket 0 1 plus c ket 1 0 plus d ket  1 1. 
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 And this i can write in a column  matrix of this form that would be a b c d right and phi 
star ket phi star would be the complex  conjugate of this so that would be a star b star c star 
d star all right. 
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 Therefore phi tilde  let us work it out it's very simple you just have to work out what is the 
tensor product of  sigma y sigma y and this operates on phi star ket phi star and sigma y 
tensor product sigma y if you  work it out then you will get this matrix 0 0 0 minus 1 0 0 1 



0 0 1 0 0 minus 1 0 0 0 this is sigma  y tensor product sigma y and phi tilde ket phi tilde 
star is a no phi star only ket phi star  would be a star b star c star d star. 
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 And if you do the operation then it's easy to see that you  are going to get minus d star c 
star b star minus a star so the inner product therefore we will get  inner product of phi and 
phi tilde star no actually phi tilde only right this is what our  phi tilde this is phi tilde so this 
would be equal to bra phi is the rho matrix a rho vector a b c d  and phi tilde is minus d star 
c star b star minus a star so if you do the operation  matrix multiplication if you do you will 
get minus a d star plus b c star plus c b star minus d a  star all right . 
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So as per the definition of concurrence for this pure state phi it is  you have to take the 
modulus of this scalar product phi phi tilde so this is will give you  you are taking the 
modulus so you will get twice of b c minus a d okay so this is the concurrence  for a general 
state that we have got now you see that if in fact we know this result from our  from our a 
very early class of this course suppose you have this general state phi is  equal to a 0 0 plus 
b 0 1 plus c 1 0 plus d 1 1 get 1 1 and this state you can show it very easily  is separable 
and in fact we have done it earlier it is separable if this condition is  satisfied if ad is equal 
to bc. 
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 Okay what does that mean in that case you will see from here  the concurrence would turn 
out to be 0 now let me give a one example suppose a is equal to 1 by root  2 and say b is 
also equal to 1 by root 2 c is also equal to 1 by root 2 and d is equal to 1 by root 2  for this 
simple example in that case we will have this ad is equal to bc if that is so  that's 
straightforward to show that phi is equal to half and you will have ket 0 0 plus ket 0 1 plus  
ket 2 1 0 plus ket 2 1 1 and this you can express as a product state it would be 1 by root 2 
ket 0 plus ket  2 1 tensor product or direct product to it 1 by root 2 ket 0 plus ket 1 right 
this means that  when ad is equal to bc that this general state is separable or in the language 
of concurrence  this means that if concurrence is equal to 0 that means the qubits the qubit 
qubit state the  two qubit state is separable. 

 

 

 



(Refer Slide Time: 45:48) 

           

 

 On the other hand if this concurrence c phi for the  pure state if it is not equal to 0 this 
means the qubits the qubits are entangled okay so this is a  very simple measure. 
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 Please note that the splint flip operation phi tilde  is equal to sigma y tensor product sigma 
y  phi star ket phi star can be easily expressed in terms of density corresponding density  
operator as well and in terms of density operator you can easily get that this can  be written 
in this form rho tilde is equal to sigma y tensor product sigma y rho star  sigma y tensor 
product sigma y. 
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 Now the concurrence can be defined in the context of a mixed state of  two qubits as well 
so let me discuss concurrence for mixed state for mixed state of two qubits  i will discuss 
it very briefly and it is defined as in the context of mixed state it is defined as  the average 
concurrence  of an ensemble of an ensemble of pure states  representing the state rho  
minimized over all minimized over all decomposition of rho all decompositions  of rho. 
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 Mathematically i can write it as c rho is equal to infimum which is in other words  taking 
minimum of this set of you know collection or set of this  pure states over which i am 



calculating the concurrence so this is what the  formula or the definition and this is 
concurrence of pure state  phi j okay. 
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 Now this concurrence 0 lies between 0 and 1 and 0 is equal to 0 you can easily guess  that 
0 is equal to 0 means that the qubits are not entangled qubits are separable and qubits are  
not entangled and 0 is equal to 1 means that the qubits are maximally entangled  are 
maximally entangled okay. 
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 Now there is a formula to calculate concurrence for a  mixed state of two qubits and it is 
given by i am not going to discuss how this formula has come  it's a little bit involved but 
this formula just let me mention it is going to be maximum  maximum of this see lambda 
square root of lambda 1 minus square root of lambda 2 minus square root  of lambda 3 
minus square root of lambda 4 0 where lambda 1 is greater than or equal to lambda 2  
lambda 2 is greater than or equal to lambda 3 and lambda 3 is greater than or equal to  
lambda 4 and these are actually eigenvalues these are eigenvalues of rho tilde  which we 
have defined earlier let me stop here our discussion on quantum entanglement measures  
with regard to discrete quantum system in problem solving session number four we'll 
discuss some  problems related to quantum entanglement measures and other issues in the 
next class we'll start  discussing some applications of quantum entanglement and also i will 
very briefly  touch upon the topic of quantum entanglement measure in the context of 
continuous variable  system so see you in the next class thank you. 


