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In this problem-solving session two, we are going to solve problems on two level atoms and

the Heisenberg representation. As the first problem let us calculate the position and

momentum operator X and P in the Heisenberg picture for a one-dimensional harmonic

oscillator and in the second part, find the Heisenberg equation of motion for the operator X

and momentum P. So, let us do it. But before I do it, let me remind you about the Heisenberg

representation.

We know that the expectation value of an operator A with respect to a normalized state vector

or wave function psi of t I can write it in this way. So, here psi of t is normalized. So, this is

the expectation value that we calculate using the so-called Schrodinger picture. In the

Schrodinger picture or representation, the wave function or the state vector is time dependent

on the other operator has no time dependency.

This I can write because I know how this wave function evolves under this time evolution

operator, that is e to the power minus i by h cross this is the Hamiltonian of the concerned

System and this is your psi of 0, A and here you have e to the power minus i by h cross, H of



t, psi of 0. This I can write as psi of 0 and I can have here e to the power plus i by h cross H

of t A e to the power minus i by h cross H of t psi of 0.

Now you see if I define this as my new operator, where time dependency is now coming into

the operator and the state vector or the wave function is now time independent right, now this

is the so-called Heisenberg representation of operators. So, A H the operator in the

Heisenberg picture is simply e to the power i by h cross H is the Hamiltonian here this H

actually stands for Heisenberg.

This is for Heisenberg and you have here A, this is the Schrodinger operator which is or I can

simply write it as A and here I have e to the power minus i by h cross H of t. So, with this

background or recalling now we can do this solve this problem in this given problem the

System is a one-dimensional harmonic oscillator.
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So, the Hamiltonian for that one-dimensional harmonic oscillator we know is p square by

twice m that is the kinetic energy plus the potential energy half m omega square x square m is

the mass of the harmonic oscillator and omega is its angular frequency. So, this is the

harmonic oscillator Hamiltonian one dimensional harmonic oscillator Hamiltonian. So, we

have to find out what is the position operator in the Heisenberg picture that would be e to the

power i by h cross H of t x e to the power minus i by h cross H of t.

Now to simplify this expression we can use the well-known formula Baker-Hausdorff

formula e to the power lambda A B e to the power minus lambda A this you know that this



would be B plus lambda commutation between A and B, lambda square by 2- factorial. Let

me write it this side here, I have here lambda square by 2-factorial A commutation with the

commutator A B plus lambda cube by 3-factorial will have A commutation with A, A B and

you will have higher order terms in the similar fashion.

So, we have this Heisenberg operator for position would be then, we will have first term

would be x then here I will have it as lambda is i t by h cross. I am just taking the

Hamiltonian just you have to put the Hamiltonian there and e to the power i by h cross t let

me take it as lambda. So, that is what I have here and this is the Hamiltonian H x

commutation between H and x then the second term would be 1 by 2 factorial which is

simply half, i t by h cross that is your lambda square and here you will have term like H

commutation with H x here and so on.

So, let us first of all work out this term and then this term and so on. So, if I work out this

commutation H x we will get let me write it the Hamiltonian is p square by twice m plus half

m omega square x square and here I have x operator, this will give me 1 by 2 m p square x.

Now because x square commutes with x. So, this term the commutation relation for the other

one will give me simply 0.

Now this one I can write as 1 by 2 m I can write here it is p, p x plus commutation p x p and

we know that p x is equal to minus i h cross, so we will have here 1 by 2 m, from here I will

have minus i h cross p, similarly from the other I will have minus i h cross p this is going to

give me minus i h cross. So, therefore I will have here it as minus i h cross by m p.
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Now what about the other one, this one also let me quickly work it out H, H of x, this would

be equal to Hamiltonian is p square by twice m plus half m omega square x square and this

already we know this is minus i h cross by m p, again here you see this p square and this term

and this term will commute. So, we have to take the commutation between these terms only.

So, if I do that, I will have let me take minus i h cross by m from here this side and half m

omega square also let me take it out.

So, I will have here x square p and if I do this you will get it as h cross square omega square

x. I hope it is very simple or should I do it let me do it quickly. So, what you will have is

minus i h cross by 2 omega square mm get cancelled again here I have x, x p plus

commutation x p x and x p is equal to i h cross commutation of x p is i h cross. So, therefore I

will have here minus i h cross omega square by 2 i h cross twice i h cross x cap and therefore

I will have simply h cross square omega square x cap.

So, therefore I have this if I put all the terms here x H of t Heisenberg operator x would be x

cap plus 1 by m p t, I think because i t by h cross is there and H of x is equal to this guy. So,

therefore you will get the second term as this one and then you will have terms like 1 by 2

factorial t square omega square x and then you will have term like if you do it you will get

omega t cube by 3 factorial 1 by m omega p cap.

And if you go further you will get omega t to the power 4 by 4 factorial x cap and so on and

therefore, I can now write x cap if I take it common then I have 1 minus omega t square by 2

factorial plus omega t to the power 4 by 4 factorial and I will get a series like this and for if I



take p by m omega common then I will get omega t minus omega t cube by 3 factorial plus

omega t to the power 5 by 5 factorial and so on.

I think maybe you will get here a minus sign. So, you will get basically a series and you can

recognize that the first term here this series is nothing but your cosine series. So, you can

write it as x cap cos omega t and the other one you can write it as 1 by m omega p this one is

sine series sine omega t all right. So, therefore the Heisenberg representation of the position

operator is simply this one.

Similarly, exactly following the way I have done it. So, you can work out Heisenberg

representation for the momentum operator and you will get it as p cos omega t, please do

verify it yourself, minus m omega x cap sine omega t right. So, this is the Heisenberg

representation for the momentum operator.
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Now let me go to the second part of the problem, here you are asked to find out the

Heisenberg equation for the position operator and the momentum operator, that means you

have to just work out dx H of dt and you know the Heisenberg equation of motion that would

be one by i h cross x H and Hamiltonian here. Now this Hamiltonian is in the Schrodinger

picture actually and therefore let me write x is the expression that just now we got, that would

be 1 by i h cross here.

And here x H, this one we worked it as x cos omega t, there are other ways also to do this but

let me do it this way. I have here p by m omega sine omega t and this commutes with,



commutation we have to work out with this one, Hamiltonian is p square by twice m half m

omega square x square, we have to just work out this commutation relation. So, this is going

to lead us to let us do it you will get.

So, I have first term if I take let me take cos omega t out and here, I have x and p square by

twice m I just have to take the cross term because I know x and x here this term commutes

and p and p commutes. So, I have to deal with the cross term only and the other term that I

have to deal is 1 by i h cross here, 1 by m omega sine omega t and you will have here p, half,

I could have taken that also out but anyway, m omega square x square.

So, anyway if you do the mathematics very straight forward you can do it you will finally get

it as 1 by m, please do the steps yourself you will get it as p cos omega t minus m omega x

cap sine omega t, this is what you are going to get. So, by the way this is not let me put it in

this way bracket. So, this is what and what this guy is this already we know that is nothing

but the momentum operator in the Heisenberg picture.

So, therefore you have 1 by m p H. So, this is the Heisenberg equation of motion for position

operator. And similarly, you can show that d p H of dt, Heisenberg equation for the

momentum operator would be minus m omega square x H of t.
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Let us now work out this problem, the Hamiltonian due to the interaction of a particle of mass

m charge q and spin S with a magnetic field pointing along the z axis is, H is equal to minus q

B by m c into S z, S z is the z component of the spin vector S. Write the Heisenberg equation



of motion for the time dependent spin operators S x, S y and S z. Let us do it, before we do

this problem let me remind you some facts about the spin operator S.

And we know that we can write this spin operator or the spin vector S as in terms of the Pauli

vector sigma h cross by 2 into sigma, sigma is the Pauli vector and component wise we have

S x is equal to x component of the spin vector would be equal to h cross by 2 sigma x, sigma

x is the Pauli matrix, x component of the Pauli matrix and you may recall that sigma x is

equal to 0 1 1 0.

Similarly, you have S y is equal to h cross by 2 sigma y and sigma y is equal to 0 minus i i 0

and S z is equal to h cross by 2 sigma z and sigma z is equal to 1 0 0 -1. Also, you know the

commutation relation between these matrices say sigma x sigma y, you will get 2i sigma z,

sigma y sigma z will give you 2i sigma x and we will have, say sigma z sigma x will get 2i

sigma y right.

So, using this you can immediately see that the commutation between S x and S y will give

me i h cross S z commutation between S y and S z is going to give us i h cross S x. So, you

can notice the cyclic order here and we have S z S x is equal to i h cross S y. Let me now

come back to the problem because we are asked to find out time dependent of this operator S

x of t that means we basically what is asked is the Heisenberg representation of the spin

component of the vector S x.

Similarly for the other components, so this would be equal to e to the power i by h cross H of

t S x e to the power minus i by h cross H of t, here this Hamiltonian is given as minus q B by

m c S z. What I can do, I can write e to the power i by h cross H of t is equal to e to the power

minus i by h cross q B by m c S z t, for simplicity purposes let me write it as e to the power

lambda S z, where I am taking my lambda is equal to minus i by h cross q B by m c into t.

So therefore, exactly like the previous problem I can have S x of t is equal to e to the power

lambda S z S x e to the power minus lambda S z. Now applying the formula that we utilized

in the previous problem Baker-Hausdorff formula. We have S x plus lambda commutation

between S x and I think it would be S z rather S z S x, then we'll have lambda square by 2

factorial S z commutation of S z and S x and so on.



If, we do it you will get S x plus S z S x commutation will give me i h cross lambda S y and

here you will get it as minus i h cross lambda square by 2 factorial you will get it as S x and

so on.
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In fact, it is very easy to show that I can write if I take lambda dash is equal to is i h cross

lambda then I can write S x of t is equal to S x if I take it common then I have 1 minus

lambda dash square by 2 factorial plus lambda dash to the power 4 by 4 factorial and we will

have S y would be lambda dash minus lambda dash cube by 3 factorial plus lambda dash to

the power 5 by 5 factorial and so on.

So, this series is now well known to you this would be this one is your cos lambda dash and

the other one would be sine lambda dash but lambda dash is equal to i h cross lambda which

is i h cross lambda is equal to we wrote it as minus i by h cross q B t by m c so this is going

to give me q B by m c into t, all right. So, but if I define my frequency omega as minus q B

by m c, if I define it as angular frequency omega then we will have we can write S x of t is

equal to S x cos omega t plus S y, I think you will have S y sine omega t.

So, this is what we are going to have hopefully I am doing it correctly please verify it

yourself, there should not be any missing, let me take it plus then this is cos lambda I will get

it like this. I think, yes, I think it is correct, no as per, okay let me define it as minus then I

will have it as minus. This is what I am going to have.
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Now what about the equation of motion. So, ds x of dt would be equal to the first term is

going to give us S x omega sine omega t with minus sign and here I will get S y omega cos

omega t. Therefore, I have minus omega S x sine omega t plus S y cos omega t and it will

turn out that we can actually verify it later on. You can similarly work out what is S y, you

will find out that you will this is nothing but your S y.

So, this is what we are going to get. Of course, you have to, to get this you have to similarly

work out S y then only you can see that this is nothing but S y. But let me show you another

method which may be more straightforward to work it out. We know the Heisenberg equation

of motion for this operator. So, we have 1 by i h cross S x of t the commutation between the

operator and the Hamiltonian I have here 1 by i h cross this S x of t I can write it as e to the

power i by h cross H of t, S x of 0, e to the power minus i by h cross H of t and this

Hamiltonian.

Now because this Hamiltonian commutes with this evolution operator or either way it would

be minus i by h cross H of t H, it is very easy to see that this commutes and because of that I

can write d S x of dt is equal to 1 by i h cross just look at this expression here I can write it as

e to the power i by h cross H of t, S x of 0, this is the Schrodinger representation of the

operator of spin component of, x component of the spin operator.

And here I have the Hamiltonian as minus q B by mc, it is S z, S z of 0, e to the power minus

i by h cross H of t this I can write. Now, I have 1 by i h cross, let me take this out. So, I have

minus q B by m c, e to the power i by h cross H of t, S x of 0, S z of 0, e to the power minus i



by h cross H of t. Now commutation between S x and S z is, minus i h cross S y right. So,

therefore I will have, let me write it properly, I have 1 by i h cross q B by m c, i h cross and I

will have here e to the power i by h cross H of t, S y of 0, e to the power minus i by h cross H

of t.

And what this is, this is nothing but the Heisenberg representation of the spin operator y

component of the spin operator S y of t. So, I have here q B by m c S y of t. Now if I define

my frequency omega as minus q B by m c, I will get it as minus omega S y of t. So, this is

what I have d S x of d t is equal to this. So, I think this is more straightforward let me see

what we got earlier yes this is what we got.

Similarly, please show we can obtain the Heisenberg equation of motion for y component of

the same spin operator and if you do it you will you should get it as omega S x of t, on the

other hand if you take for z component of the spin operator it will be 0. So, it will it is not

going to evolve in time.
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Let us now work out this simple problem, a two-level atom has a Hamiltonian H. So, it is

given in terms of a 2 by 2 matrix which has the component H 11, H 12, H 21 and H 22. Find

the appropriate expansion coefficients to write this completely in terms of the three Pauli spin

matrices plus the unit matrix. Let us do it, so we can write this Hamiltonian H 11, H 12, H 21,

H 22 in terms of the Pauli matrices sigma x, sigma y, sigma z and identity matrix it would be

2 by 2 matrix here.



So, coefficients are, say A B C and D. So, this is what we have. Now if I know what is sigma

x sigma y sigma z and sigma I. So, let me write it the first term would be sigma x is 0 1 1 0.

So, I will have 0 A, A 0, sigma y I know 0, minus i, i, 0. So, here I have 0 I will have minus i

B, i B, 0 and the third term would be c 0 0 -c and the last term would be because sigma is this

identity matrix.

So, here I will have D 0 0 D. So, if I add all of them then I will get C + D, A – i B, A + i B

and I will get -C +D. So, now if I compare it term by term then you will have H 11 would be

equal to C + D, H 22 would be equal to -C+ D, H 12 would be equal to A – i B and H 21

would be equal to A + i B and from these two terms immediately you see that I will get D is

equal to H 11 + H 22 divided by 2, I just have to add these two terms and then you will

immediately get it.

Similarly, you will get C is equal to if you subtract them you will get H 11 - H 22 divided by

2, again from here you will get A is equal to if you sum them up you will get H 12 + H 21

divided by 2 and B you will get it as H 21 minus H 12 by 2i or I can also write it as minus i

by 2, if I take it up there or if I take plus inside I will have H 12 – H 21. So, this is what I will

get now if I put everything.

So, I will get H is equal to a half of if I take half out then I will get H 12 + H 21 sigma x + i H

12 - H 21 sigma y and I will have H 11 - H 22 sigma z and H 11 + H 22 sigma I that is

identity matrix or if you are not comfortable with sigma you can simply write identity matrix

I. So, this is the solution.
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Let us now work out this problem, you have to prove this relation, in fact this relation we

have obtained and we discussed in the context of dress state in lecture 5 and I asked you to

show it, but here let me do it and explain the things little bit more clearly compared to the

lecture. In the lecture if you recall we got this relation tan theta, theta is the Stueckelberg

angle, tan theta is equal to omega that is the Rabi frequency divided by the omega tilde minus

delta, omega tilde is the generalized Rabi frequency which is equal to square root of omega

square plus delta square, delta is the detuning parameter.

Then I asked you to use this trigonometric relation to prove this relation here and tan 2 theta

is equal to 2 tan theta divided by 1 minus tan square theta. Let me first work out what is 1

minus tan square theta. 1 minus tan square theta is equal to 1 minus tan theta is omega

divided by omega tilde minus delta whole square, let me simplify it. I will have in the

denominator omega tilde minus delta whole square.

Here I will have omega tilde minus delta whole square if I open it up, I will get omega tilde

square plus delta square minus twice omega tilde delta minus omega square and I know that

omega tilde square is omega square plus delta square then I have here delta square minus

twice omega tilde delta minus omega square divided by omega tilde minus delta whole

square.

So, from here I get 2 delta square minus twice delta omega tilde divided by omega tilde

minus delta whole square and if I take 2 delta common I will get delta minus omega tilde

divided by omega tilde minus delta whole square and from here you see that I will get



because this is square I will get 2 delta divided by delta minus omega tilde. So, this is my 1

minus tan square theta.

Now let me work out what is tan 2 theta. Tan 2 theta is equal to 2 tan theta and tan theta is

omega divided by omega tilde minus delta and 1 minus tan square theta already we worked

out and that is 2 delta divided by delta minus omega tilde which I can write as twice omega

divided by omega tilde minus delta and here I will have delta minus omega tilde divided by 2

delta.

So, this will lead me to minus omega by delta. So, I have proved it but let me make this limit

of the angle that is this theta has to lie between 0 and pi by 2. Let me explain it little bit one

minute. So, I will have it as this let me explain this limit what about this limit.
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First of all recall that in terms of the Stueckelberg angle I can write my dress state ket plus as

sine theta ket g plus cos theta ket e and minus ket as this plus ket plus and plus ket and minus

ket are the dress states and here I will have here cos theta ket g minus sine theta ket e and also

we have tan two theta already we know that is omega tilde omega by delta or tan theta is

equal to we have it as omega by omega tilde by delta either of this expression is going to be

useful when I am analyzing it.

Let me consider one case where this detuning parameter is much smaller than say minus

omega, omega is the Rabi frequency and we assume that the Rabi frequency is positive say

omega is greater than 0 by convention then let us see what we will get? We will get what



about the angle if this is the case if delta the tuning parameter is much less than minus of

omega.

Now tan theta is equal to already I wrote omega divided by omega tilde minus delta and

because omega tilde is equal to omega square plus delta square. So, because I have your delta

is much smaller than omega. So, I therefore can write that omega tilde is nearly equal to

omega. So, I have here omega divided by omega minus delta which I can actually write as 1

divided by 1 minus or plus minus delta by omega now from here you can see that I have

minus delta by omega is much greater than 1.

So, therefore because of the fact as minus delta by omega is much greater than one. So, I can

consider that tan theta is approaching 0 that means that angle theta is nearly equal to 0. So,

this is one of the limits of the angle that we have that it is, it is one bound. And another one,

let me consider the other extreme in the second case, let us say I have this detuning parameter

is much larger than the Rabi frequency.

So, these actually imply that omega divided by delta is much less than 1. We will see what it

leads us to ten theta is equal to now I have omega now let me write omega tilde minus delta.

So, omega tilde is equal to omega square plus delta square and because of this I can write

omega tilde would be nearly equal to delta, right because it is much smaller than omega Rabi

frequency is much smaller than the detuning parameter.

So, I have here omega divided by delta minus delta. So, it tends to infinity it means. So, this

implies that my theta approaches the angle pi by 2. So, hence we have the angle is lying

between 0 and pi by 2. So, this is the meaning of these bounds.


