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Hello, welcome to lecture 11 of module 3, this is lecture number 32 of the course. In this lecture

we are going to discuss a phenomenon called normal mode splitting. This phenomenon is

extremely significant because this is the definite signature of coupling between the optical

oscillator and the mechanical oscillator. Then we will also discuss the physics or the principle

behind how an optomechanical system can act like a transducer. That means how it can transfer

information from one optical mode to the mechanical mode or vice versa, so let us begin.

(Refer Slide Time: 01:12)

In the last class we started our discussion by writing down the quantum Langevin equations for

optomechanical system.
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So, firstly we worked out the steady state solution for this quantum Langevin equation for

various variables. The position variable and the momentum variable for the mechanical system

and the optical mode of the cavity and steady state solution for the position variable is

represented by q bar momentum by p bar and optical mode by alpha bar.

(Refer Slide Time: 01:46)

Then we went on to linearize these equations around the steady state value. Here for example for

the optical mode we are writing it as alpha bar + delta a a bar and delta a cap. Here alpha bar is

actually the classical you can consider it to be the classical part and delta a is the deviation from

this classical one, that is the quantum fluctuation. Similarly delta q and delta p are the



corresponding quantum fluctuation for the position and the momentum variable of the

mechanical oscillator.

(Refer Slide Time: 02:20)

Putting them in the quantum Langevin equations.

(Refer Slide Time: 02:26)

We get the time evolution equations for the quantum fluctuation part and ignoring the nonlinear

parts thereby we write down the linearized version of the quantum Langevin equation for the

quantum fluctuations. And here this parameter g is known as the linearized optomechanical

coupling parameter.



(Refer Slide Time: 02:46)

In terms of creation and annihilation operator also we can do the linearization.

(Refer Slide Time: 02:50)

And that is exactly following the similar procedure.
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We exclusively write the time evaluation equations for the annihilation operator for the optical

mode and the annihilation operator for the mechanical mode. And this will result in a linearized

optomechanical Hamiltonian. Here when we have written down the linearized optomechanical

Hamiltonian, we have ignored the quantum noise and the damping. In literature or in many

places as it is customary to write delta a again as a, this is actually now the completely quantum

and b cap. So, the linearized Hamiltonian can be written in this particular form.

(Refer Slide Time: 03:39)

And in our treatment what we have taken is that? We have in the next rest of the treatment we

have taken this modified detuning parameter to be simply as the detuning parameter delta



because the deviation from this delta would be very small. And then this is also represented in a

schematic diagram which represents that we have 2 oscillators, one is due to the optical oscillator

and one is due to the mechanical oscillator.

Optical oscillator is oscillating at frequency minus delta as you can see from here and the

mechanical oscillator is oscillating at frequency omega m, they are coupled by this parameter g.

And optical cavity has this detuning kappa and the mechanical oscillator also has a damping that

is gamma m.

(Refer Slide Time: 04:39)

And we find that when delta is less than 0 which means the laser is red detuned we can achieve

the ground state cooling of the mechanical oscillator. Then we went on to study the quantum

limits for ground state cooling of the mechanical oscillator.
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And we confine our discussion to the 1 phonon's state and the 0 phonon state and we worked out

the damping for the downward transition when the mechanical oscillator goes from the 1 phonon

state to the ground state 0 phonon state.

(Refer Slide Time: 05:20)

Then the damping we have calculated using the Fermi golden principle. And similarly when the

system mechanical oscillator goes from the downward state that is the 0 phonon state to the 1

phonon state this damping rate is denoted by gamma up, we have calculated it in the similar way

using the Fermi golden rule.
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And all these things is plotted for delta less than 0, that is we are in the cooling regime when the

laser is red-detuned and it is evident from this plot as well. That in this case the rate of downward

transition is pretty high than that of the rate of upward transition, so this is going to lead us to the

cooling.

(Refer Slide Time: 06:03)

And to then we invoke the principle of detailed balance. Basically that says that in the steady

state the rate of downward flow must be balanced by the rate of upward flow. From this we get a

ratio between the upward transition and the downward transition in terms of the corresponding

occupation probabilities.



(Refer Slide Time: 06:26)

Which are again related to each other by the so-called Boltzmann distribution? So, invoking all

these things and knowing that the average phonon number is given by this expression. We can

work out a expression for the average phonon number with this relation. And next what we did

was to optimize it because we wanted to minimize the average phonon number. Because as we

are interested in cooling of the mechanical oscillator.

(Refer Slide Time: 06:57)

And that can be done if we work in the resolved sideband regime and also if we set the detuning

parameter at the negative optomechanical frequency. Then it turns out that the minimum number



of phonon one can achieve would be given by this expression kappa by 4 omega m whole square.

And this is you can consider it as a quantum limit and what it says is that to get into the ground

state if we want to make the average number of phonon to be nearly 0, so that we can attain the

ground state of the mechanical oscillator.

The cavity decay rate has to be very, very small and which in other words means that we need to

have a very high quality optical cavity. Please note that in our treatment we have not considered

the effect of coupling of the mechanical oscillator to the intrinsic mechanical damping and

external optical drive.

(Refer Slide Time: 08:02)

If these are taken into account that means taking intrinsic mechanical damping who is we denote

by the red gamma m. And the external optical drive, the expression for the average number of

phonon would get modified and it would be given by this expression that would be n bar =

gamma, I will define what this gamma is. And n minimum which already we derived say this one

let me put m b also here.

And this intrinsic mechanical damping gamma m and the thermal average number of thermal

phonons divided by this gamma and the mechanical damping rate. Here this gamma is equal to

the difference between the downward transition rate and the upward transition rate.

(Refer Slide Time: 09:28)



As ground state cooling of mechanical oscillator is of tremendous significance and importance

for realizing quantum mechanics in macroscopic objects. Numerous experimental groups around

the world have carried our various laser cooling experiments. As you can see from this particular

plot, here the initial and final phonon number versus the sideband resolution parameter omega m

by kappa which determines the minimum phonon number is plotted. And in our notation omega

m is represented by this symbol.

Here as you can see the blue curve shows the quantum limit for the minimum achievable phonon

number. And one group from MIT they have started initial phonon number around 10 to the

power 10 in the logarithmic scale and they were able to suppress it to this number. On the other

hand another group at Boulder at university of Colorado at boulder I am talking about the last

one. Here they have started with phonon number around 100, 10 square and in the logarithmic

scale and they suppress it to 1 in the log scale which is 10 in the linear scale.
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So, this is a landmark experiment and this was reported in this nature physics journal, actually it

is nature journal not physics one. So, I encourage all of you to go through it, so you will have an

idea about how the experiments were carried out in this laser cooling experiment and how they

were able to suppress the phonon number and nearly achieve the ground state of the mechanical

oscillator. One phenomenon well known in the context of 2 couple oscillator is the so-called

normal mode splitting.

(Refer Slide Time: 11:26)

And it is an important phenomena because it is a definite signature of coupling between 2

oscillators. So, normal mode splitting is a definite signature of coupling between 2 oscillators.



Now some of you may ask what is a normal mode? Well, you know that if we have a single

oscillator like this, let us consider a mass spring system. Suppose this mass m is attached to a

spring of spring constant K then it is natural frequency of this mass spring system is square root

of K by m, K is the spring constant.

And suppose we have another spring, same identical mass and here also this has the natural

frequency is given by square root of K by m. However, if we have 2 or more coupled oscillators

the system may have several natural or normal frequencies. And the general motion is a

combination of vibration at all different frequencies.

(Refer Slide Time: 13:00)

Now here if we couple this identical mass spring system by a, ok I will show you if I couple

them by a spring of spring constant K. In that case you know that the natural frequency or the

normal mod frequency would be 2 normal mode frequencies one can have. One is say omega 1 =

square root of K by m and another one would be square root of 3K by m, all right. Now as we are

having in cavity optomechanical system, 2 oscillators.

One is due to the optical oscillator and another one is the mechanical oscillator. So, we can

expect normal mode splitting phenomena here also. However, before I go on to discuss it in the

case of optomechanical system let me give you a general idea about what I mean by normal

mode splitting.



(Refer Slide Time: 14:11)

So, what is normal mode splitting? For simplicity let us consider 2 oscillator, oscillator a and

oscillator b and they are coupled by this coupling parameters as g. And the Hamiltonian of the

system let me say these 2 oscillators are identical, that means they have or degenerate at

frequencies. So, they have the frequency say omega a and oscillator a is a dagger a, oscillator b is

represented by b dagger b, these are the 2 harmonic oscillators.

And they are coupling and the coupling is such that the quantized accents between the 2

oscillators if the quanta a is created that is at the cost of the quanta in b and so on, and we have

this process.
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This Hamiltonian can be diagonalized if we take the transformation say if I write A = a + b root

over 2, all these are operators and B let me write it as a - b by square root of 2. Then you can

show that A, A dagger = B, B dagger that would be equal to 1. On the other hand A and B are

independent oscillators, so they will not commute. And if we apply this transformation the

Hamiltonian that we are going to have would be h cross omega a + g A dagger A + h cross

omega a - g B dagger B.

So, what you see that now we are getting 2 independent harmonic oscillators with different

frequencies and the more frequencies are here omega a +- g as you can see. These are the normal

mode frequencies one is omega a + g and another one is omega a - g.
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So, the frequency splitting would be observable if the splitting g is, if splitting g is bigger than

the typical damping of the mode then the frequency splitting would be observable. I think this

will be more clearer because now I am going to discuss the phenomena of normal mode splitting

in cavity optomechanics.

(Refer Slide Time: 17:40)

Let us consider the linearized optomechanical Hamiltonian without noise and damping. So, the

Hamiltonian is let me write it as h cross delta, delta is the detuning parameter that I am going to

define again, a dagger a this is the optical oscillator. Then we have h cross omega m b dagger b,



that is the mechanical oscillator and they are coupled by this coupling parameter g and we have

these terms a + a dagger into b + b dagger.

Here I define delta as omega o - omega L omega 0 or omega o is the resonance frequency of the

optical cavity and omega L is the laser frequency. And we are going to consider that omega 0 is

greater than omega L that means the laser is red detuned. Now let us use a transformation, I want

to write the Hamiltonian in a convenient form, so that we can diagonalize it.

(Refer Slide Time: 19:08)

So, let us follow the procedure, let us do it this way. So, let me write the annihilation operator of

the optical cavity in terms of the quadratures. So, all these are operators X a + i Y a divided by

square root of 2. And for the mechanical oscillator part we have X b + i Y b divided by root 2.

Then let me find out a degree a, b dagger b first. So, a dagger a if you do the straight forward

calculation, so it will be half X a - i Y a, that is the a dagger part and then we have a is X a + i Y

a.

Because these are operators, so this will lead us to will get X a square + Y a square - i Y a X a + i

X a Y a. Similarly we can get b dagger b = half into X b square + Y b square - i Y b X b + i X b

Y b.
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And a + a dagger would be square root of 2 into X a and b + b dagger would be square root of 2

X b. Now as you can see this relation or this one, this is commutation. So, if I use the relation say

X a, this commutation relation between X a, Y a and similarly between X b, Y b. So, that the

commutation relation between X a and Y a would be equal to i and similarly X b Y b = i. So, if

we utilize this then the Hamiltonian can be rewritten and this would be h cross delta by 2 X a

square + Y a square + h cross omega m by 2 X b square + Y b square - twice h cross g X a X b.

While I have written it I am assuming that delta the detuning parameter is almost equal to omega

m that is the resonance frequency of the mechanical oscillator. This should remind you about the

degenerate case that I discussed while explaining what we mean by normal mode splitting. Now

if you look at this Hamiltonian this should remind you about the another case that we have

discussed in an earlier class about coupled harmonic oscillator, where we have written the

Hamiltonian as this.

Suppose we have 2 oscillators a and b then the Hamiltonian for the first oscillator has this kind of

a part, this is for the oscillator a. And for the oscillator b this is the kinetic energy and this is the

potential energy omega m square q b square. And if you remember then the coupling between

them was considered as g into q a, q b, this particular issue I want to point out that here the

coupling is of the position-position type.



And similarly if you look at it this structure is similar to this one because here also the coupling

is a position-position type. Because X a corresponds to the position and Y a corresponds to the

momentum of the optical oscillator similarly for the mechanical oscillator. So, the coupling is a

position-position type coupling.

(Refer Slide Time: 23:40)

Now we can diagonalize this Hamiltonian.

(Refer Slide Time: 23:50)

To diagonalize this Hamiltonian let me write or rescale. Let us to rescale certain parameters,

rescale the operators actually what I am going to do is the diagonalization. So, I take X a to be



equal to X a tilde, so I am not going to disturb the optical oscillator, it would be remain the same.

But for a mechanical oscillator I take X b = X b tilde square root of omega m by delta and Y b =

Y b tilde square root of delta by omega m. So, now if I put this in this expression in this

Hamiltonian here and then what I am going to get?

(Refer Slide Time: 24:55)

This is simple algebra, so let me write it. So, we will have h cross delta by 2 X a tilde square + Y

a tilde square + h cross omega m by 2. Here I will have omega m by delta X b tilde square +

delta by omega m Y b tilde square - twice h cross g X a tilde into X b tilde square root of omega

m by delta. So, now this Hamiltonian as you can see is a Hermitian Hamiltonian and it can be

diagonalized using a unitary transformation.

So, we are going to apply a unitary transformation to diagonalize it, unitary transformation let

me say that unitary transformation operator is say alpha beta, - beta alpha where alpha beta are

considered to be real quantity with the conditions that alpha square + beta square = 1.
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Because this will going to ends your unitarity. And what I mean by transformation is that I am

going from the variable say X a tilde, X b tilde and that would be equal to I apply the unitary

transformation i and I get the variable X + and X -. Similarly I have Y a tilde, Y b tilde, I apply

the unitary transformation to get Y + and Y - + Y + and Y -, so sorry this would be Y -. Now

putting this transformation into the Hamiltonian, so actually I will encourage you to do these

calculations yourself.

(Refer Slide Time: 27:33)

And then you can write for example let me just write X a tilde and X b tilde, then you have to put

it X a tilde if I apply the unitary transformation I will get it as alpha X + plus beta X - and X b



tilde = - beta X+ plus alpha X -. Similarly you will get Y a tilde = alpha Y + plus beta Y - and Y

b tilde = - beta Y + plus alpha Y - and if I put all these variables into this particular Hamiltonian

simple algebra you have to do, it may appear to be tedious but actually this is very

straightforward.

(Refer Slide Time: 28:38)

And then you will get the Hamiltonian in this forms, it has h cross delta by 2, so you will have

alpha X + let me just put it in and I will explain X - whole square + alpha Y + beta Y - whole

square. Then I will have h cross delta, I encourage you to do these things yourself because this is

very simple, I am just putting up the terms only here. And I will get if I take h cross delta s

common then I will get next expression would be omega m square by delta square - beta X +

plus alpha X - whole square + - beta X, actually it would be Y + now.

We will have Y + plus alpha Y - whole square and then I have - twice h cross g square root of

omega m by delta and I have this alpha X + beta X - into - beta X + plus alpha X -. Now this

Hamiltonian would become diagonal. If the coefficients of all the cross term X + and X - should

vanish. Let me write, if coefficient of the cross term X + X - vanishes then it is would become

diagonalized.



That means it will not have any off diagonal elements in the Hamiltonian. I am not talking about

Y + Y - because if you do the calculations because of the fact that alpha square + beta square =

1. The coefficients of that particular cross term is anyway going to vanish.

(Refer Slide Time: 31:24)

So, now because of these conditions we have to set the coefficient of X + X - to 0, this is going

to give us a condition because of which the Hamiltonian would become diagonalized. And if I do

it and if you just look at this, you have to open it up and then it is very easy to see the conditions

that you are going to get is this.

You will get alpha beta into delta 1 - omega m square by delta square - 2g square root of omega

m by delta alpha square - beta square = 0. So, this is the coefficient which I am making it to be 0.

And to make my life little bit simpler let me write it in this form. Let me write A alpha beta = B

into alpha square - beta square.

(Refer Slide Time: 32:34)



Where A = 1 - omega m square by delta square into delta and B = 2g square root of omega m by

delta. So, we have now 2 equation, one equation is alpha square - beta square = A by B alpha

beta which I am getting from this. And another one is alpha square + beta square = 1, these 2

equation can be solved to get the value of alpha and beta.

(Refer Slide Time: 33:21)

If we do it a little algebra will lead us to this equation that is alpha to the power 4 - alpha square

+ B square divided by A square into 4B square = 0. And from here we get alpha square = 1 +-

square root of A square divided by A square + 4B square. Now if I take C = A divided by A

square + 4B square, square root.



(Refer Slide Time: 34:22)

Then I can write alpha square = 1 +- C by 2 and clearly from here I can write beta square = 1 - C

-+, so this is what I will get. And also from here I can have alpha beta = +- BC divided by A and

without loss of generality let us take alpha beta = +BC by A. And actually this implies that I am

taking alpha square is greater than beta square.

(Refer Slide Time: 35:29)

So, using this I can rewrite my Hamiltonian, it is very straightforward I can put the value of

alpha beta and everything. I will finally get my Hamiltonian in this form that would be h cross

delta by 2 alpha square + omega m square by delta square. It would be beta square as well here +



4g alpha beta divided by delta square root of omega m by delta. Then I have here term X +

square and I have h cross delta by 2 beta square + omega m square by delta square alpha square

+ 4g alpha beta.

Let me write it as 4g alpha beta divided by delta square root of omega m by delta X - whole

square and I have h cross delta by 2, Y + square + Y - square. Now what I can do is that, you see

I can simplify this expression further because I know the value of alpha beta now, alpha square

beta square. So, let me simplify this, this one let me write it as alpha square + omega m square

by delta square beta square + 4 alpha beta g divided by delta square root of omega m by delta.

(Refer Slide Time: 37:33)

And if I put the value of alpha beta then I have 1 by delta square, these are algebra and you can

do it and verify it whether I am doing it correctly. You have delta square + omega m square +-

square root of delta square - omega m square whole square + 16g square omega m delta. So, this

is what we will get.

And using this, this Hamiltonian I can rewrite in this form and that would be h cross delta by 2, 1

by delta square omega + whole square I will write what is omega + square later. Let me first

write it, I will have another term 1 by delta square omega - square X - square. And I will have

you see I do not have any cross term. So, these are the terms I have.
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Where this omega+ as well as this omega - square is defined as a half of delta square + omega m

square +- square root of delta square - omega m square whole square + 16g square omega m

delta, so this is what I will have. Now if I rescale further, rescaling we will get let me rescale by

taking h cross by delta square root X + as X + tilde and square root of h cross delta X - as X tilde

-. And h cross delta square root Y + let me take it as Y + delta and h cross delta square root Y- as

Y- tilde.

(Refer Slide Time: 39:59)

Then if I do it, then we can write the Hamiltonian in a simplified form and that would be half of

omega+ square X tilde square + Y tilde square, this is one term I have. And another term I will



have is omega - square X tilde - square + Y tilde square; this is what I will have. So, it is clear

that the linearized optomechanical interaction; let me write here. The linearized optomechanical

interaction leads to 2 normal modes which are both mixtures of optical and mechanical modes.

It is clear because you see this frequency omega +- square, now we have this optical frequency

related to the optical delta is related to the optical oscillator and omega m is related to the

mechanical oscillator, so it is a mixtures of both optical and mechanical modes and normal mode

frequency, let me write it once again.

(Refer Slide Time: 41:42)

With normal mode frequencies omega +- square = half of delta square + omega m square +-

square root of delta - omega m whole square plus, ok, I think this is delta square omega m square

+ 16g square omega m delta, so this is what I have. These normal modes which are combinations

of optical and mechanical mode are frequently referred to as polaritons. We can plot the mode

frequencies as a function of the detuning parameter delta for some fixed mechanical frequency

omega m and the linearized optomechanical coupling parameter g.
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For example we can have a plot like this, if I plot say delta in the x axis and the mod frequencies

omega +- in the y axis then I will have a typical plot for say omega m = 1, it may be 1 megahertz

and g as 0.1. Then we will get a typical plot of this type, we will have say plot like this, here the

upper branch referred to as omega + and the lower one corresponds to omega -.

Now as you can see from this plot that = near delta = 1 which is equal to omega m. We can

observe avoided crossing. And the splitting at crossing the frequency splitting is proportional to

the coupling parameter. In fact this is the reason why one can observe normal mode splitting only

in the strong coupling regime.
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But recently even in the weak coupling regime, normal mode splitting is observed in a cavity

optomechanical system.

(Refer Slide Time: 44:59)

Here, for example in this plot one can observe avoided crossing phenomena that we have just

discussed. And here this plot a refers to the experimental one and the plot b is the one given by

theoretical calculations. And you can see the excellent agreement between theory and experiment

and this is really amazing.
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Now this plot depicts the displacement spectral noise, the blue trace here refers to the uncoupled

mechanical mode. So, this one refers to the mechanical mode, in their experiment they have used

a membrane, a vibrating membrane which gives the mechanical mode. And this one, the red one

refers to the optical mode when they are not coupled. And when these 2 oscillators the optical

one and the mechanical oscillators are coupled they get the green trace.

The solid line refers to this solid one line refers to the theoretical and the other traces refers to the

experimental. And this particular as you can see from here there are appearances of 2 normal

modes and this is what is the so-called normal mode splitting.
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Now finally to look into the linearized system dynamics in the absence of noise and damping, let

us transform the linearized optomechanical Hamiltonian which we wrote as h cross delta a

dagger a + h cross omega m b dagger b - h cross g a + a dagger into b + b dagger, where we have

taken delta = omega 0 - omega L. And now this Hamiltonian we can transform by using this

unitary transformation which I take as e to the power i delta a dagger a t e to the power i omega

m b dagger b t.
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As you know under united transformation the Hamiltonian will transform to a new Hamiltonian

which we derived earlier, this relation we have worked out earlier. Now if I put my unitary



transformation to this relation then we can obtain our Hamiltonian as this. I am not writing h

tilde, so what I am going to write is the transform Hamiltonian.

That would be - h cross g a dagger b e to the power i delta - omega m t + ab dagger e to the

power - i delta - omega m t. And we will have terms ab e to the power - i delta + omega m t and

a dagger b dagger e to the power i delta + omega m t.

(Refer Slide Time: 48:34)

Now let us choosing red-detuning that means the laser frequency is less than the optical

frequency delta is greater than 0 which implies omega L is less than omega 0, omega 0 is the

cavity resonance frequency. And if we set the detuning parameter delta = omega m, then you will

see that this term will get cancelled, it would give you 1 and this is also going to give 1 but this

term will oscillate at double the frequency of omega m and similarly this term.

So, all these highly oscillating terms can be neglected, so neglecting highly oscillating terms I

get the Hamiltonian in this form that would be - h cross g a dagger b + ab dagger and this is an

important Hamiltonian. And these Hamiltonian describe the quantum beam splitter and the

corresponding Heisenberg equation of motion for a and b can be very easily worked out.
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And that would be a dot = igb and b dot = iga and from this couple equation you can

immediately get this differential equation for a double dot + g square a = 0. And you know the

general solution of this differential equation a of t would be equal to a cos of gt + b sine of g into

t. Now with the condition and obviously you will see that at time t = 0, we will get A. And a dot

time derivative of a at time t = 0 will give me i into gb of 0, you can check it from here, from the

second equation, from this equation.

In fact you will get it from the first equation, you will get it from this equation that a dot at t = 0

would be ig into b of 0. And from this equation immediately you can see that this will result in g

into B.
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So, therefore the solution I can write as a of t = a of 0 cos of gt + i into b of 0 sine of gt. And

similarly I can get the solutions for b and b of t would be equal to b of 0 cos of gt + i a of 0 sine

of gt, please verify that yourself. Now clearly at any arbitrary time the modes a and b are the

mixtures of their initial values which is very clear from these expressions.

For example this is going to be an important case at a special time say T BS, t = T BS = pi by 2g,

you will see at that time T BS it is equal to i b of 0. On the other hand at that time b, the value of

b would be i of a 0. So, this show something very interesting, what it shows is that the modes

have exchanged their values.
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And this feature implies that the optical information because a contains the optical information, b

contains the information from the mechanics. So, what it says is that optical information can be

‘WRITTEN INTO’ and ‘READ FROM’ a mechanical mode. So, optomechanical system

therefore can act like a transducer and this is or state can be transferred from one mode to the

another mode.

And in fact this is the principle behind information storage and retrieval in optomechanical

system. And this theoretical prediction that we got from this calculation is experimentally

verified.
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And realized experimentally in this very interesting work, where they have used silica

optomechanical resonator as their cavity optomechanical system. And they have stored optical

information as mechanical excitation. Let me stop here for today, in this lecture we discussed the

phenomena of normal mode splitting in some more details. We also learned the principle or

physics behind how an cavity optomechanical system act like a transducer.

In the next lecture we are going to discuss the phenomena of squeezing and also we will

conclude this module, so see you in the next lecture, thank you.


