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Welcome to lecture 8 of module 3. This is lecture number 29 of the course. In this

lecture, we will see how quantum noise, quantum Langevin noise in particular, affects

the optical mode of a Fabry-Perot cavity. And this will lead us to the very famous

input-output relation. And this relation is going to be extremely useful for our

discussion on quantum cavity optomechanics. So let us begin.
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In the last class, we started discussing the quantum counterpart of the classical

Langevin noise. In this regard, we have assumed the bath to be a collection of N

independent quantum harmonic oscillator at some finite temperature T. As we have to

calculate the expectation value of various operators, we needed to know the

appropriate density operator as we know that the expectation value of any operator A

is given by trace of rho into the operator.

So we first wrote down the density operator in the so called number state basis where

this guy P n is the probability.
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And we calculated the average phonon number.

(Refer Slide Time: 01:59)

After that we worked out the position-position correlation function for an ensemble of

N-harmonic oscillator. And first we started by calculating the expectation value of

product of two position operators for i-th and the j-th oscillator.
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We have expressed the position coordinate in terms of the quantum annihilation and

creation operators.

(Refer Slide Time: 02:28)

And thereby, we have arrived at the expression for the expectation value of q i and q j.

And finally summing it over the all oscillators, we got the expression.
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And we expressed it in the in this particular form here.
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Then we wrote down the quantum mechanical Hamiltonian for the bath oscillator

system. Here the Hamiltonian has exactly the same form as that of the classical one.

Only thing is that this variable position and the momentum variable are the operators

and they has to satisfy the commutation relation as defined in this equation.
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So using Heisenberg equation of motion, we can get an equation analogous to the

classical Langevin equation where this classical Langevin noise is now represented by

this operator. And it has also exactly the same form in the limit when the bath

oscillator coupling is assumed to be weak.

(Refer Slide Time: 03:36)

We find that this is very easy to see that this Langevin noise opera quantum Langevin

noise operator is Hermitian and because of the fact that these are quantum operators,

so xi of t, xi of 0 is not equal to xi of 0 xi of t. That means the order, time order also

this depends. We calculated the expectation value of this product of this quantum

Langevin noise which is the auto correlator.
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And calculating it we got this particular expression which further can be expressed in

a little bit simpler form defining the as usual the bath spectral density. Using bath

spectral density we have written down the autocorrelation function auto correlator

here.
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And in considering the Ohmic damping, we got the expression for the autocorrelation

for the Langevin noise which is also known as the second moment of the Langevin

noise and as usual in the classical limit, it gives it should give the classical expression

which we obtained. We see that this autocorrelator depends only on the time

difference.
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So defining a parameter tau which is the time difference of this which basically

denotes the time difference. So using this parameter tau, we write down the

autocorrelation function in this particular form. After that, we calculated the quantum

spectral noise density. And to do that, we just have to work out the Fourier transform

of the correlator.
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And doing that we get the expression for the spectral, quantum spectral noise density

for omega greater than zero and we have worked it out for omega less than zero also.
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So we worked out the quantum spectral noise density at plus omega and at minus

omega.
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And it turns out that this function is not symmetric which is unlike the classical case.

In the classical case, we saw that this noise, spectral noise density is a symmetric

function.
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In the classical limit obviously, again we obtain the classical expression for the

spectral noise density.
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Finally, we started discussing the quantum noise effect on an optical mode in the

context of a Fabry-Perot cavity, because the Fabry-Perot cavity is at the backbone of

any cavity optomechanical system. Here we considered one of the mirror in the

Fabry-Perot cavity to be perfectly reflecting and the other mirror to be partially

transmittive. And vacuum fluctuation enters into the cavity from one side.

And if it is a cavity optomechanical system then it is usually always drive by a single

mode laser having frequency omega L.
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We wrote down the quantum mechanical Hamiltonian for a system N bath. Here the

first term refers to the energy of the cavity mode. The second term describes the

energy of the bath oscillator modelled as a collection of independent electromagnetic

oscillators with the constraint that this commutation relation has to be obeyed.

That is the commutation between say b i, b j dagger should be equal to delta ij. And

the third term describe the laser driving the cavity externally. The fourth and the final

term, this is the final term. It refers to the system bath coupling. The strength of the

coupling between the cavity mode and the bath operator is given by the parameter

omega i. This Hamiltonian is the basis of our analysis for the rest of this lecture.

Now let us go over to the continuum limit because ultimately this bath oscillators are

infinite in numbers.
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So when we go over to the continuum limit, this summation sign is going to be

replaced by integral. In fact, this summation is over the discrete index i and it turns

into an integration over the bath oscillator frequency omega. And it has to be

diamensionless. So it is divided by say delta omega here. Delta omega is the mode

spacing and we take it in the limit say delta omega tends to 0.

And the bath operators undergoes this kind of transformation. So I had explained it.

So we have say b i the discrete variable. Now in the continuum limit, it will become

delta omega half, delta omega to the power half b of omega and b i dagger in the

discrete space it is going to be delta omega to the power half b dagger of omega in the

continuum.

Also please note that in continuum we have this relation delta omega minus omega

there is d omega that is equal to 1.
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On the other hand you know that in the discrete space we have this Kronecker delta.

Now in the continuum it will be replaced by delta omega minus omega dash delta

omega. So therefore, this commutation relation in the discrete space b i b j dagger is

equal to delta ij. In the continuum limit it would be replaced by b of omega b dagger

of omega dash  is equal to delta omega minus omega dash.

So these are very important relations. So utilizing all these now we can rewrite this

Hamiltonian. This Hamiltonian is in the discrete space. Now in the continuum space,

this Hamiltonian can be written as follows.

(Refer Slide Time: 10:33)

So we will write this Hamiltonian as h cross omega 0 a dagger a. So bath oscillators

are now going from the discrete to the continuum. So we have now integration d



omega h cross omega. Let me just show you. So this summation is now replaced by

integral. So d omega h cross omega b dagger omega and b of omega. And this

external laser drive would remain same because it just involve the optical mode only.

It does not involve the bath oscillator, so it will remain as it is. So you will have a

dagger e to the power minus i omega L t minus omega drive the complex conjugate a

e to the power i omega L t. And finally the bath and the mode coupling that would be

again this bath oscillators are involved.

So it would be replaced by integral h cross integration d omega, omega star omega a b

dagger omega plus omega, this capital omega omega and we have a dagger b of

omega. So this is going to be the key Hamiltonian now. And we can immediately

write couple of things from here. First of all, we can calculate the Heisenberg

equation or motion for the mode operator.

So that would be a dot is equal to time derivative of the mode operator would be 1 by

i h cross the commutation between a and H. So you can already we have done this

kind of stuff too many times in the course. So immediately you can write, it will be

minus i omega 0 a plus omega drive e to the power minus i omega L t. You can verify

it because commutation with a and a dagger a will give you simply a.

And then this bath oscillators are independent of the mode cavity mode. So therefore,

this term is not going to contribute. And then you have this particular term. From this

term you are having this term and what else you will be left is the last term because a

and a dagger is there. So a, a dagger is equal to 1. So we have to exploit a, a dagger is

equal to 1. So exploiting that you will have this particular term now.
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That would be minus i integration d omega capital omega of omega b of omega. So

this is for the optical mode, time derivative of the optical mode operator. Similarly, for

the bath mode we can calculate. That would be time derivative of b. That is 1 by ih

cross b of H.

(Refer Slide Time: 13:55)

So here let me show you the calculation. This is also easy. 1 by i h cross. Now I have

integration because a dagger a, this part is not going to contribute because these are

independent as I said. So we will have, from the next term we will have say this is d

omega dash h cross omega dash b of omega and here I have b dagger of omega dash b

of omega dash, okay. Let me show it here.



So I am now talking about this particular term, okay. And then we have h cross d

omega dash omega star of omega dash a. And we have b of omega b dagger of omega

dash. So this is what we will have now. And you can, okay let us evaluate it. You will

have minus i say integration d omega dash omega dash. And we now use the

commutation relation between this relation we are going to use, this one we are going

to use.

If we use it then you will have here delta of omega minus omega dash b of omega

dash.

(Refer Slide Time: 15:27)

And then next term would be d omega dash omega star of omega dash a delta omega

minus omega dash. Then we can utilize the property of the Dirac delta function and

this will give us the equation of motion for the bath or the mode and that would be b

dagger b dot is equal to minus i omega b of omega minus i omega star of omega into

a. So this is the equation we get. We can write a formal solution to this part equation.
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To do that, let us make a change of variables. Let me take b is equal to b tilde e to the

power minus i omega t. Then I will have b dot is equal to b tilde dot. I am taking the

time derivative e to the power minus i omega t minus i omega b tilde e to the power

minus i omega t. Then if I put it here in this equation, then I will get it as b tilde dot e

to the power minus i omega t minus i omega b tilde e to the power minus i omega t.

And on the right hand side I have minus i omega b tilde e to the power minus i omega

t minus i omega star omega a. Now as you can see from this equation that this

particular term and this term get cancelled out and we will have from here we will

have b tilde dot is equal to minus i omega star of omega a e to the power i omega t,

okay. So now integrating both sides from some initial time t 0.
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So let me integrate it on both sides from some say initial time t 0 to some time t and

accordingly here also I have minus omega star t 0 to t a of t dash e to the power i

omega t dash dt dash. So if I do the integration, this is going to give me b tilde of

omega t minus b tilde of omega t 0. That would be equal to minus i omega star. This

will remain the same.

It would be t 0 to t a of t dash e to the power i omega t dash dt dash. And from here I

can now rewrite actually this in the variable b of omega t. So b of omega t is equal to

b of omega t 0 e to the power minus i omega t minus t 0 minus i omega star omega

integration t 0 to t a of t dash e to the power minus i omega t minus t dash dt dash

okay. So this is what we get as our formal solution.

(Refer Slide Time: 19:24)

In fact, you see here the first term on the right hand side this particular term, this term

corresponds to the free evolution of the bath while the second term here it represents

waves radiated by the cavity into bath. So this particular term, this second term

represents, it represents waves, waves radiated by the cavity into the bath.

And on the other hand this particular term represents as I said it is free evolution of

the bath, okay. Now we can substitute this particular solution, this bath solution into

the equation for the optical mode here. So we can put b of omega into this equation.

So then what we will obtain this. Let me write that here. Okay let me first bring the

solution to the address or let me first write it then I will put it.
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So I have to put my bath solution in this equation a dot is equal to minus i omega not

a plus omega drive e to the power minus i omega L t. And I have here minus i

integration d omega, omega here. And then this whole thing I have to put. So because

I have two terms I will get two terms. So let me just write it one by one. The first term

I will have is this.

I will have b of omega t 0 e to the power minus i omega t minus t 0. And the second

one is going to give me d omega mod of capital omega of omega whole square

integration t 0 to t a of t dash e to the power minus i omega t minus t dash dt dash.

This is coming because you see that this complex conjugate is there here and okay. So

because of that and in the, here we have this omega, okay.

And because in the second term we have that complex conjugate that is why this mod

of capital omega, omega square term is coming.
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Now assume, let us assume that which we will justify it later for this particular

identification that we are going to make now. Assume that the coupling, the coupling

omega, omega is the coupling between the bath and the optical mode. The coupling

omega is constant for all frequencies, for all bath frequencies omega.

And let us write it as this omega capital omega, omega mod square is equal to kappa

by 2 pi where kappa is related to the cavity bandwidth. Kappa is related to the cavity

bandwidth. So I mean to say the bandwidth would be something like this. Delta nu is

equal to say omega plus minus omega minus divided by 2 pi and omega plus minus

omega minus.

That is the width is say kappa divided by 2 pi. So this is what we have. Now with this,

we can write the equation for the optical mode as follows.

(Refer Slide Time: 24:04)



So we will have a dot t is equal to minus i omega 0 a plus omega drive e to the power

minus i omega L t minus i square root of kappa by 2 pi integration minus infinity to

plus infinity d omega b of omega, okay. So b of omega at t 0 e to the power minus i

omega t minus t 0 minus kappa by 2 pi. I am basically replacing omega by square root

of kappa by 2 pi and mod omega square capital omega square is equal to kappa by 2

pi.

So I am rewriting it only, nothing new I am doing here, t 0 to t dt dash a of t dash

integration minus infinity to plus infinity d omega e to the power minus i omega t

minus t dash. Now you may recognize that this particular term is nothing but the

Dirac delta function. So it is 2 pi into, this is the delta function, delta t minus t dash.

So let us look at this particular term this last term, this last term let us look at

specifically.
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We have kappa by 2 pi integration t 0 to t dt dash a of t dash, and here I have 2 pi

delta t minus t dash. Then setting t 0, this setting t 0 at 0 and this upper limit t at

infinity, we will have it as kappa 0 to infinity dt dash a of t dash delta t minus t dash.

(Refer Slide Time: 26:38)

But without loss of generality, rather than setting t 0 at 0, we can set it as minus

infinity and then we will have it as, because we are setting at minus infinity we have

to divide it by half. And then we will have dt dash a of t dash delta t minus t dash.

This will give me, now applying the property of the Dirac delta function I will have it

as kappa by 2 a. So in the again the last term as you see it is get simplified

significantly.



We are having only this kappa by 2 a from the last term. On the other hand in this

third term, if we define a parameter say defined as this say a in is equal to i divided by

square root of 2 pi integration minus infinity to plus infinity d omega b of omega t 0 e

to the power minus i omega t minus t 0, okay. Then we can rewrite this equation for,

time evolution equation for the optical mode in a very simplified form.

And that would be a dot t is equal to minus i omega 0 a plus omega drive e to the

power minus i omega L t. Now the last term the fourth term here that is kappa by 2 let

me put it first here, minus kappa by 2 a. And the third term we will have here root

over kappa a in. So this is a very important equation that now we have obtained.

(Refer Slide Time: 28:33)

Clearly from this equation as you can see that the damping of the optical mode

damping of the optical mode occurs at the rate kappa by 2 or in other words the

corresponding energy loss occurs at the rate kappa and which is expected behavior of

cavity oscillator and this is one of the reason why we have identified this particular

term as this, alright.

And this particular term the last term now here, this term is very important. And you

can recognize that this is nothing but the Langevin noise operator. This is Langevin

noise operator. This is Langevin noise operator. Since a in has a vanishing mean

value, we can show that it has a vanishing mean value and the autocorrelation is a

delta function. So autocorrelation a in of t and in of t dash would turn out to be delta

function.



So and you know that this is these are the properties of quantum Langevin noise also.

And then hence we can identify this last term as the nothing but the Langevin noise.

So let us actually prove it.

(Refer Slide Time: 30:10)

If we assume that the bath is a thermal state, then we can write the expectation value

of a in is equal to i by square root of 2 pi integration minus infinity to plus infinity d

omega the expectation value of this annihilation operator with e to the power minus i

omega t minus t 0. Now it is very clear and it is actually obvious that since the

annihilation and creation operator have no diagonal elements, so this is going to give

us simply 0. So this expectation value of this Langevin noise is 0 here.
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We can now calculate the autocorrelation. To do that let us work out. a in dagger t a in

at some different times say t dash. Let us first calculate it. Let us put the expression of

a in from here. So if we put it here, I have 1 by 2 pi. So there are two a in. So square

root of 2 pi is there from one term and for another square root of 2 pi. And in one case

we are taking a in dagger.

So it will be minus i. So minus i into i will give us plus 1. So therefore, it will be 1 by

2 pi. And we will have integration minus infinity to plus infinity d of d omega b

dagger omega t 0 e to the power i omega t minus t 0. And from the other a in I have to

take the expectation value.

So from the other one I have minus infinity to plus infinity d omega dash b omega

dash t 0 e to the power minus i omega dash t minus t 0. So let me close the bracket.
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And then I have 1 by 2 pi integration minus infinity to plus infinity d omega

integration minus infinity to plus infinity d omega dash expectation value of b dagger

omega t zero b of omega dash t 0 and I have e to the power i omega t minus t 0. And

here I have e to the power minus i omega dash t minus t 0. Now you see this particular

term this is the expectation value of the number operator for phonons.

So this is going to give us, it would become phonon number n of omega, let us say n

of omega dash. And then this would be delta function, delta omega minus omega



dash. So using this we can immediately write here as n of average number of phonons

assuming that the bath occupation number peaks at this cavity frequency omega 0.

So then I can take this out and I have n bar omega zero divided by 2 pi integration

minus infinity to plus infinity B omega e to the power i omega t minus t dash. And

you know this is nothing but the delta function so along with 1 by 2 pi.
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So this would be n bar of omega 0 delta t minus t dash. So in fact, what I should have

written here earlier as I said we are now going to prove it. So let me write here it is a

dagger here and here let me put n bar of omega 0. So this is the correct one. So as you

see the autocorrelation function is a delta function. Similarly, you can show that, now

here we have worked out a dagger a in.

We can show the other one also that is a in a in dagger at some different time t dash.

This autocorrelation function in the similar way you can work out and you can show

that this would be n bar of omega 0 assuming that again that the bath occupation

number peaks at this cavity frequency. Then you will have this particular expression

delta t minus t dash, okay.

Now one thing has to be kept in mind that this is a thermal oscillation, thermal

oscillator. So generally these are in microwave frequency and so on.

(Refer Slide Time: 36:01)



But at optical frequency if I talk about at, optical frequencies where omega 0 is on the

order of 10 to the power 15 hertz, and if we will consider room temperature that is

around 300 Kelvin, in that case this h cross omega 0 by K B T is much less than 1.

That means K B T is much higher than h cross omega 0. And this implies that this

phonon number or optical photons, that would be, average number would be nearly 0.

And in that case at optical frequencies we will have a in dagger t a in t dash this

autocorrelation will give us 0. On the other hand, the other one a in t a in dagger t

dash that would be this delta function, delta t minus t dash, okay. This we have done

for the, in the time domain.
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So we can work out in the frequency domain as well this correlation in the frequency

domain and that is very straightforward to calculate. So I mean to say let us calculate

a in of omega and a in dagger of say omega dash. So this is in the frequency domain.

So you can calculate. First let me do it, let me write the Fourier transform of it that is

minus infinity to plus infinity dt a in of t e to the power i omega t.

And here it is minus infinity to plus infinity for the second term, for this term. I have

here say dt dash a in dagger d dash e to the power i omega dash t dash. Let me close

the bracket. Then I have minus infinity to plus infinity, minus infinity to plus infinity

dt dt dash. The expectation value of a in t a in dagger t dash. And I have here e to the

power i omega dash t dash plus omega t.
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Now I know the result for this one and utilizing that minus infinity to plus infinity,

minus infinity to plus infinity dt dt dash. And this guy gives me delta t minus t dash

this one and I have e to the power i. Actually I can write it, all right let me do it i

omega, t minus t dash is I can consider it as tau. Then I will have here e to the power i

omega dash t dash and t minus t dash if I replace t by tau plus t dash then I will have a

term omega tau plus t dash, okay.

So this is what I will have. And using this one I can then next I can write minus

infinity to plus infinity dt dash e to the power i omega dash plus omega t dash

integration minus infinity to plus infinity d tau delta tau e to the power i omega tau,

okay. And then this is the delta function, so apply the property of the delta function.



So we will get from here, very simply we will have a in omega a in dagger of omega

dash.

That would be equal to 2 pi. And this is going to give us 1, okay. So I will have this is

the Dirac delta function again. That would be 2 pi delta into delta of omega plus

omega dash.
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Now in contrast to the bath mode solution, we can write another solution in terms of

a final time t 1, rather than the initial time t 0. While we have written this particular

solution, we went from the initial time t 0 to some given time t, some instant of time t.

We can have another solution where we can go from the say final time t 1 to this time

t. That means we are now we can go in the backward direction in time.

If we do that, then we will get a solution of this type. That would be b of omega t.

That would be equal to b of omega t 1, e to the power minus i omega t minus t 1. Here

instead of this minus sign, and that is going to matter a lot, we will get a plus i omega

star of omega integration from t to t 1 dt dash a of t dash e to the power minus i

omega t minus t dash. This can be worked out very easily. Let me just quickly show

you how to do that.
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We can again begin from the change of variable for the bath and if we take the change

of variable that is we introduced this quantity b tilde. So b tilde dot is equal to minus i

omega star a e to the power i omega t. Let me quickly take you back to the way we

have done it earlier. So while we have done it, as you see. Yes, this is where our

original bath mode equation, time evolution equation for the bath mode.

Then going over to this new variable b tilde, we got rid of this particular term and we

have then this particular equation. So here also in the similar way, I am starting with

this particular equation. So integrating both sides, integrating both sides from this

final time t 1 to some time t we can immediately write b tilde omega t minus b tilde

omega t 1. That will be equal to minus i omega star integration t 1 to t dt dash a of t

dash e to the power i omega t dash.

This I can now write as going back to the original variable that is b of omega t e to the

power i omega t minus b of omega t 1 e to the power plus i omega t 1 and this is equal

to, now let me just reverse the integration. So here I now go from t to t 1. So I will

have a plus i omega star dt dash a of t dash e to the upper i omega t dash, okay.
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So from here I get b of omega t is equal to b of omega t 1 e to the power minus i

omega t minus t 1 plus i omega star of omega integration t to t 1 dt dash a of t dash e

to the power minus i omega t minus t dash. Now we can put this solution into the

equation for the cavity mode, the equation that we obtained.

That is a dot is equal to minus i omega 0 a plus omega drive e to the power minus i

omega L t minus i integration d omega capital omega of omega b omega t. So let me

put it here, this particular solution if I put it here.
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And in the similar fashion, we will be able to get the equation, time evolution

equation for the optical mode in this form and when we go into the backward

direction in time now I have a dot is equal to minus i omega 0 a plus omega drive e to



the power minus i omega L t plus now here we have plus kappa by 2 a and minus root

over kappa. Here I will define a new variable a out.

Earlier we had a in. So here I am defining a variable a out which is defined as a out is

equal to, this is also Langevin noise. It is i by square root of 2 pi integration minus

infinity to plus infinity d omega b of omega t 1 e to the power minus i omega t minus

t 1. This one actually represents, this represents waves traveling out from the cavity,

traveling out from the cavity into the bath.

And intuitively you can see that this is this makes really sense because now we are

going in the final time to the some instant of time t.
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So therefore, we get two equations for the bath optical mode, when we go in the

forward direction in time and that equation that we got is this. It is a dot is equal to

minus i omega 0 a plus omega drive e to the power minus i omega L t minus kappa by

2 a minus square root of kappa a in and let me say this is my equation 1. And another

equation I got when I go in the backward in the time direction.

That is minus i omega 0 a plus omega drive e to the power minus i omega L t. And I

will have here plus kappa by 2 a minus square root of kappa a out. So let me term it as

equation number 2. Now if we subtract equation 2 from equation 1 then we will

obtain this minus kappa a is minus square root of kappa, you can easily see this, a in

plus square root of kappa a out, that is equal to 0.



And from here I get an equation for the output mode of the cavity mode, output

optical field. That is a out is equal to a in plus square root of kappa a. This relation is

known as the input-output relation. And it is a very useful relation because, if we can

solve for the dynamics of the cavity mode a, then we can predict the observables in

the cavity output. In fact, we can represent it in by diagram here.
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So we have this Fabry-Perot cavity where one of the mirror is perfectly reflecting and

its other mirror is partially transmittive. So input is incident here and then output is

the reflected part inside the cavity. And inside the cavity there is a cavity mode is

there. Then this is circulating mode is there and it decays at the rate kappa. Now if

kappa is equal to 0 that means cavity decay rate is 0.

Then you immediately see that whatever is getting incident that is going to get

reflected. On the other hand, if kappa is not equal to 0, then the as you can see that the

output is the sum of the incident field reflected at the cavity entrance and a

contribution emanating from the cavity mode is given by this part. Please note that

here this cavity mode, the A is a function of a in as is evident from this equation here.
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Finally, let us derive an expression for the drive coupling parameter omega drive

which is the amplitude for the laser drive. When we are driving the Fabry-Perot cavity

externally, we can use input output relation to work out an expression for omega

drive. To do that, let us begin with this equation for the optical mode, cavity mode.

That is a dot is equal to minus i omega 0 a minus kappa by 2 a plus omega drive e to

the power minus i omega L t minus square root of kappa a in. This equation we can

write in a little bit different form, let me write it. Minus i omega 0 a minus kappa by 2

a. And let me write square root of kappa a in minus omega drive divided by square

root of kappa e to the power minus i omega L t.

Let me define this parameter as the new input noise operator a in tilde and it includes

the classical laser drive.
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And with this equation, so let me rewrite again. We have a dot is equal to minus i

omega 0 a minus kappa by 2 a minus square root of kappa a tilde in. Now if I go over

to the frequency domain, that means if I take the Fourier transformation, immediately

I can get this equation, minus i omega a of omega. These are all operators. Let me do

not write the hat term all the time.

So you understand that these are anyway quantum operators. We have minus i omega

0 a of omega minus kappa by 2 a of omega minus square root of kappa a tilde in of

omega. From here you can immediately get the expression for a omega. That would

be square root of kappa a tilde in of omega i omega minus omega 0 minus kappa by 2.
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So if we now rewrite this input-output relation, let me rewrite input output relation for

the new variable. We have this input output relation a out is equal to a in plus square

root of kappa a. This we can write for our new variable says a tilde out is equal to a

tilde in plus square root of kappa a. And where this a out is defined in a similar way

that of a tilde in and a tilde out is equal to a out minus omega drive divided by square

root of kappa e to the power minus i omega L t.
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If I take the Fourier transform of this relation, so I will get it in the frequency domain

is a tilde out omega is equal to a tilde in omega plus square root of kappa a of omega.

Now we know the expression for a of omega from here and if I put it in this

expression, so I will be able to write a tilde out of omega is equal to a tilde in of

omega into 1 plus kappa divided by i omega minus omega 0 minus kappa by 2.

Let me evaluate this a tilde out at the laser frequency omega L and a tilde at omega L

would be equal to a tilde in evaluated at omega L 1 plus kappa divided by i. Omega L

minus omega 0 let me define it as the detuning parameter i delta minus kappa by 2,

where I have defined the detuning parameter as omega L minus omega 0.
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And again what I can do, we can write this a tilde in omega L in terms of a of omega,

because we have this expression. From here I can write it in terms of a of omega and

if I put it there, so I will get, so this is a tilde out, I will get an expression for a tilde

out. It is very simple to work it out, just a few step and if you do it, you will get it as a

of omega L divided by square root of kappa i delta plus kappa by 2, okay.

So this expression now we are going to utilize because this allows us to express the

conservation of energy by equating the input power to the outgoing power.
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So input power P in has to be equal to the outgoing power that is equal to h cross

omega L a dagger out plus a out and evaluated of course at the frequency of the laser

that is omega L. Both these quantities a dagger as well as a, that is evaluated at omega



L. And because we have this expression for a tilde out, so from here I have h cross

omega L. You can see that I will get del square plus kappa square by 4.

And we will have a dagger evaluated at omega L a of omega L. This is what I get.

Now to go further, let me first do one thing. Let me take the equation for the cavity

mode once again. So I have a dot is equal to minus i omega 0 a plus omega drive e to

the power minus i omega L t minus kappa by 2 a minus square root of kappa a in.
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To get rid of this parameter explicit time dependence, so I apply the usual trick. I go

to the change of variable. a I take it as I take a is equal to A tilde e to the power minus

i omega L t and a in I take it as a in tilde e to the power minus i omega L t. So if I do

that I will be able to get an equation for a in terms of a tilde.

So a tilde dot is equal to i delta a tilde plus omega drive minus kappa by 2 a tilde

minus square root of kappa a tilde in. And from here in the steady state I can get the

steady state value of a tilde. In the steady state I will have a tilde, average value of a

tilde would be equal to minus omega drive divided by i delta minus kappa by 2.
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And therefore, as you can see if I take the mod square of a tilde square that is exactly

equal to mod of average of a square and that is equal to omega drive mod square

divided by delta square plus kappa square by 4. So therefore, what we have here is

this that a dagger of omega L a of omega L is equal to average of this quantity and

this is equal to simply the one that let me again right here. It is this.

So this is what I have. So therefore, we will obtain P in is equal to h cross omega L.

Okay, let me show you the expression here once again. So we have this. We now got

this expression. So it will be h cross omega L divided by kappa omega drive mod

square because this particular term is getting cancelled because of this term and we

have this expression for input power.
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And from here we can write an expression for the drive amplitude, laser drive

amplitude. That would be mod of omega drive is equal to square root of kappa P in

divided by h cross omega L. This is an expression which is worth remembering and it

will be useful for our discussion on cavity optomechanics in the next class. Let me

stop here for today. In this lecture, we discussed how quantum Langevin noise affects

the optical mode of a Fabry-Perot cavity.

This led us to the discussion of input-output relation. We applied this input output

relation to derive an approximate expression for the laser drive amplitude. So we are

now well equipped with all the tools to discuss quantum cavity optomechanics in the

next class. So see you in the next class. Thank you.


