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Lecture - 33
Cavity Optomechanics: Basic Physics I1.
Hello, welcome to lecture 24 of the courses, this is lecture number 3 of module 3. In this
lecture, we will continue our discussion on basic physics qualitatively then we will start
discussing the so-called fluctuation dissipation theorem, which will be very important for our
later classes. (Video Starts: 00:52) So, let us begin in the last class we discussed about the

quality factor Q of a Fabry Perot cavity.

And we show that quality factor and finesse of the cavity are related very closely. In fact,
they are actually the same only quality factor is expressed in a different frequency unit than
that of the fineness and quality factor and fineness both refers to the fact that for example say
Q = 10 to the power say 6 that means, that the photon will oscillate inside the cavity around 1

million times or 10 to the power 6 number of times.

Then we started discussing cavity optomechanical system and firstly based on logic we try to
guess the Hamiltonian of the cavity optomechanical system. The total Hamiltonian of the
cavity mechanical system will consist of primarily 5 parts one is due to the optical photon
inside the cavity and optical photon as we know that it is basically a harmonic oscillator, then
mechanical oscillator which is basically due to the movable mirror that is vibrating in the

range of gigahertz or kilohertz.

So, they are basically quanta of vibration they are components. So that is also again another
harmonic oscillator and then there is interaction between optical photon and phonon and that
is because of the fact that when the photon hits the movable mirror, it displaces the mirror by
an amount x and thereby, both photon and phonon get coupled by the parameter x, and this

laser cavity optomechanical system is driven by a laser.

Apart from that term there are other terms due to the dissipation because both the photon as
well as the phonon may decay. And then, because we know that the cavity photon is basically

a harmonic oscillator and now, this resonance frequency of the oscillator is dependent on the



displacement of the movable mirror. So, based on this if the displacement of the mirror is
very small then we got 2 different terms one is due to the cavity photon that is circulating

inside the cavity and another one is the optomechanical interaction term.

And we also saw how the radiation pressure force can be very easily worked out and this is
related to the number of force, number of photon inside the cavity as well as the optical
cavity resonance frequency and the optomechanical interaction Hamiltonian term can be
expressed in a very convenient form like this. So that is what we did in the last class and we

were able to write down the full Hamiltonian of the cavity optomechanical system.

However, we are not discussing how to write the expression for the dissipation term under
laser drive term, this is we will do it in a later class. After that we started discussing the basic
physics of a cavity optomechanical system in a qualitative way assuming that the photon that
is getting incident on this movable mirror reacts instantaneously to the position of the

mechanical mirror, this we can assume provided this mechanical mirror moves very slowly.

So, this is basically the static case and under this static case, we are discussing the so-called
optical spring effect what happened is that because this mechanical oscillator is basically a
spring, it is a harmonic oscillator. So, it has an intrinsic spring constant, but due to the
radiation pressure force, the spring constant of the mechanical oscillator can be modified and

that comes due to the radiation pressure force, this is also we discussed in the last class.

And we have taken another perspective where this whole thing could be understood using the
radiation potential because the radiation potential is a forces related because force is equal to
the negative of the derivative of the potential with respect to the position as you can see from
here and this will result in a staircase kind of a potential and this potential has to be added to
the harmonic oscillator potential which is the basically the intrinsic potential of the

mechanical oscillator then, the resultant potential will look like this blue curve here.

And based on this we saw that and we discussed that we obtained what is the phenomena
called multistability because, we can have a number of local minimum also we saw that the
restoring force and the radiation pressure force in a typical cavity optomechanical system,
they may balances at some points for example, here in this figure at point A, B and C the

radiation pressure force is exactly equal to the restoring force.



However, only the point A and C are stable and B is unstable, because here as you see in the
case of the point B the radiation pressure force is exceeding the restoring it is in the
increasing direction at the point B on the other hand at point A and C the restoring force is in
the increasing direction. So, therefore, point A and C that means, when the movable mirror is

at the location A or at the location C.

Then it will have a stable position and in fact, the whole effect all these things have been
experimentally observed demonstrated way back in 1980s by a Herbert Wather group for the
first time. So, now because so far whatever we have discussed we assume that the light reacts
instantaneously to the position of the mechanical object that means, the force is always an

instantaneous function of position, but it is not actually the really.

Now, let us consider a cavity optomechanical system driven by laser light. If the laser light
satisfies the resonance condition of the cavity, then light will be able to enter into this cavity
and there will be circulating light inside the cavity, and this movable mirror say it displaces
by let me denote a variable by x as usual. Now, let us switch off the laser light then what

happens? At first instance the circulating light intensity is still the same as before.

However, as time goes on the light will leak away out of the cavity and slowly the circulating
power will decrease or diminish. So, circulating power would diminish with time because the
photon is leaking away from the cavity. And the rate at which the energy inside the cavity
decreases is called the cavity decay rate and it is denoted by this symbol kappa and this is
called the cavity decay rate kappa. Unless the mechanical motion is really slow, we have to
take this cavity decay rate into account.

(Video Ends: 09:34)

(Refer Slide Time: 09:46)



Let us consider the radiation pressure force against position plot again to understand this a
little bit more clearly. So, we have this usual plot radiation pressure versus position and we
already know that we are radiation pressure will be like this, we will just consider only one of
the peak only. And by the way, the same kind of plot we are going to get for the circulating

intensity inside the cavity as well.

Now, if we consider that the mirror is starting at some location say this location will be
denoted by A and this mirror here is moving very, very slowly then as the position of the
mirror is moved towards right then you can see that the force will increase as the mirror
moves towards right. On the other hand, if it moves towards left, the force will decrease. This
is easy to see. If the motion of the mirror is very slow, then there is no appreciable effect of
the finite cavity decay rate we did not have to bother about the cavity decay rate that this

stage.

Now let us consider the case where the motion is not that slow, that means this mirror is
moving with some finite velocity, it is very small velocity, it is not a static case, this is the
case for the dynamics. And in that case, this diagram would be a little bit modified. And this
is what I am going to explain what we are going to get is this, let me just plot it. So, we will
get this kind of plot if the mirror is moving with some finite velocity the movable mirror is

moving with finite velocity.

Let me explain what is going on here as the mirror is moving towards right the light intensity

for some time still remains low. So, suppose we are now here we are at this stage this is the



static case. So, let me draw it a little bit different so, this is the dynamic case now, the mirror
is moving towards right with some finite velocity. And therefore, the light intensity for some
time still remains low compared to the static case, because the cavity still has to fill up the

light corresponding to what would be expected for the new position.

So, we are slightly below the usual curve that is the static one of the force versus position
then, as we complete the cycle, that means if we go like this and go suppose now we reach
this position now, that means we are going moving back to the left, the light intensity for
some time here will remain higher compared to the usual static case this red one you see red
dot, the light intensity would be higher here, because the light has to leak out of the cavity,

and it takes some time so this is the reason we get such kind of an ellipse.

If we draw the force versus position plot, for such a situation we must take the finite cavity
decade rate into account. So, this has actually important consequences. For example, the walk
done by the radiation pressure force in the mechanical object would be given by this
expression. So, there would be this close integral, this is the radiation F dx force into
displacement. Now, if we look at the plot carefully here, then we will see that when we are
here at the lower point, both the radiation pressure force and dx displacement has the same
sign while moving towards the right. Of course, in that case the contribution is lower than the
usual one. On the other hand, this force and dx would have opposite sign when the mirror
moves towards left and has higher contribution than the usual one. So, overall what is
obtained is this, overall this integration would be less than 0, because the negative
contribution will be higher when we are at this location of the resonance curve that means the

resonance peak is at this location.

So, we are at the left of the resonance peak, then this integration basically work done would
be less than 0. And what it physically means is that the radiation pressure in such a cycle
extracts energy from the mechanical motion. So, the radiation pressure force extract or rather
let me say light because the radiation pressure force is due to light. So, I can say that light
extract energy from the mechanical motion and if energy is extracted from the mechanical

motion.

So that will result in the so-called damping of the mechanical motion and this is known as

optomechanical damping. By the way this kind of calculations were done by the Russian



physicist Brazinsky and his co-workers, way back in 1970, this kind of analysis were done.
And this phenomenon is also called as I said optomechanical damping and such a mechanical
object is you know this kind of cantilever is usually coupled to fluctuating thermal

environment.

And because of this damping force, which is usually associated with little noise, it also cools
mechanical mirror. So, very simply as we have seen, because the light is extracting energy
from the mechanical mirror, so, as a result of mechanical mirror is getting cooled down. And
this phenomenon is extremely important and we will discuss it in great details later on also

quantitatively and this is called optomechanical cooling.

And by this process, we can actually, it is kind of a laser cooling in fact it is laser cooling. On
the other hand, if we go to the other side here and if we do the analysis here in this side, what
turns out that this work done work turn out to be greater than 0 and what does it mean? It
means that the radiation pressure force, work done due to the radiation pressure forces is
greater than 0 means the light is going to dump energy into the mechanical oscillator or the

mechanical mirror and this will result in anti-damping or heating.

And if it heats basically the more because already as I said, this mechanical oscillator is
coupled to thermal environment and further heating takes place this thermal excitation will
increase further and also if this effect is pronounced and it will also result in instability. Now,
we should be able to read out what is going on within the cavity in order to analyze the
phenomenon associated with the static and dynamic cases which we have already discussed.
This is easy because the cavity is simply an interferometer.

(Refer Slide Time: 19:09)
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So, this is going to lead us to a discussion on what is called displacement readout. If the back
mirror of this optomechanical system, so say this mirror is perfectly reflecting, then whatever
the light is getting incident on this cantilever, because this is perfectly reflecting it will be
completely reflected back and the reflected light will suffer a phase shift. Now, people or
experimentalists look at this phase shift as a function of the position a typical plot is plotted

here in the phase shift versus position.

As you can see from this diagram, initially when you are away from the resonance as you see
here, there is no phase shift. The phase shift is there is no changing in phase shift basically it
is constant, because whatever light is getting incident that is getting reflected back from the
prom mirror itself, because light would be able to enter into the cavity only if the resonance
condition is satisfied and when the resonance condition is satisfied light enters and it can be

reflected from the back mirror.

And then there will be phase change and what is reflected in this slope here? So, there is a
phase change and again as we move the mirror further than resonance condition would not be
satisfied and the light would get reflected back from the front mirror itself and the phase
change will again remain the same and there will be no phase shift actually. So, phase shift

would be given by actually can be worked out and if it is worked out.

Then it turns out that the phase shift is directly proportional to the displacement of the mirror
and inversely proportional to the cavity decay rate. So, if the cavity decay rate is very small

cavity decay rate kappa has to be a small k, means theta large so we will be able to have a



significant phase shift that we should be easy to measure and if kappa or cavity decay rate is
small that means that quality factor or the finesse of the cavity has to be large and what does

that mean?

That means that the number of oscillations the photon will make inside the cavity will be
large or in other words, it means that the photon will survive inside the cavity for longer
amount of time and this is the reason why in cavity optomechanical system, we need to have
a we require high Q cavity or high fineness cavity. So, you see from phase information as you
can see from this expression from phase information, we can have the information about the
displacement of the mirror and one can actually plot the displacement versus time curve for
the mechanical oscillator.

(Refer Slide Time: 22:31)

A{n‘/ = e fali e
[ o demprg ™ 7
mech. osall
\{lm:nll L |u...|n\l\l|“” |"|||”' I " iy "’?!""“"":"""
“ I||u|II|||HI|.||wI |I||”m| ffit “”hlli_‘ |||||I||'|lf = :.T;.Elw
oL nofr-_d’: foods ﬂ@
pecillalion
2
% 2
(0e) = £ -4
0

And a typical plot will look like this here this I have taken from the review paper cavity
optomechanics. Now, you see the mirror is oscillating with I am just considering here only 1
eigen or normal mode of vibration is considered one normal mode of say oscillation of the
mechanical oscillator is considered and here this gamma refers to the damping rate of the
mechanical oscillator damping rate of the mechanical oscillator somewhere we have taken

gamma m like this, but it is the same thing.

So, initially as you see from the plot the amplitude rises here because the thermal fluctuation
from outside heats up the motion and with time this fluctuation gets weakened, so, it becomes

weak and the amplitude also depletes, now, the question is how large the variance of this



fluctuation quantified by the variance of this harmonic oscillator or the mechanical oscillator.

So, you recall that variance is given by this expression.

So, delta x square = x square average - average of x square but for harmonic oscillator we
know already that the expectation of x is 0. So, therefore variance would be given by only
this quantity.

(Refer Slide Time: 24:33)

Now, how we can estimate it, this is easy, we can do that by using the so called equipartition
theorem we can estimate the variance. Let me show you it is very straightforward. So, we
know that the energy of the harmonic oscillator is half x square or m omega square or omega
is the oscillation frequency of the oscillator and then this is the variance and this has to be
equal to half K B T because we are consuming 1 mode of oscillation, so it implies that this

variance is x square = K B T/ m omega square.

So, it implies the amplitude of the fluctuations varies like square root of temperature this is
easy to see. However, in fact, this is what is shown here that this amplitude is directly
proportional to the square root of temperature. So, thereby, we can extract information about
the temperature just by measuring the amplitude of the fluctuation. However, it is important
to note that the displacement time plot that we have shown here is far more complicated in

reality.

Because here as I said, we are considering only a single normal mode of oscillation, but in

reality, there is an infinity of normal modes in the mechanical structure and the displacement



of the mechanical oscillator at the position of the laser spot here this displacement consists of
a superposition of all such normal modes of vibration and all these different normal modes of
vibration has different frequencies. So, it is better to Fourier decompose it and look at the
Fourier spectrum.

(Refer Slide Time: 27:01)
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The Fourier transform of the displacement x of the harmonic oscillator in a time interval from

say 0 to t. So, let us say the Fourier transformation of the displacement is denoted by x tilde
omega and it is Fourier transformation of the displacement x of t. So, e to the power i omega t
is the Fourier kernel then we are going to integrate in the time interval say 0 to tau and this is
the normalization factor here 1 / square root of tau. So, this is the Fourier transformation of

the displacement.

Now, this is obviously a complex quantity and average of this quantity is 0 because we know
that if we take the average of this x of t for harmonic oscillator this is equal to 0. So, better
take the mod of this quantity and square it and then plot x tilde, what I am saying is that you
better take the mod of this particular quantity x tilde of omega. Let me write it properly so

you have x tilde omega you take the mod and then you square it.

Now, let us plot x tilde omega mod square this quantity versus frequency omega and actually
a typical plot is already shown here. As you can see from this plot, this is actually called
noise spectrum, this plot is the so-called noise spectrum of the mechanical oscillator. As you
can see, we are obtaining a pretty fluctuating spectrum here. However, in laboratory will

make a series of measurements not just one measurement.



So, we need to take average of many such spectrum and it means that it is better to plot you
better take this x tilde of omega mod square and then you take the average and plot this
average quantity versus the frequency and when we plot it this plot is called average noise
spectrum of the mechanical oscillator a typical plot is now shown here.

(Refer Slide Time: 29:56)
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So, this is the averaged noise spectrum of the mechanical oscillator. One thing you can
quickly notice is that the spectrum is symmetric around omega = 0 and what here it means is
that x tilde of minus omega = x tilde of omega. So, this is what I mean by symmetry and this
is a typical characteristic of noise spectrum in the classical regime. Now, in fact, it can be

shown that this particular quantity x tilde of omega mod square.

And if we take the average and this is also denoted by this symbol S xx of omega this is
actually known as noise spectrum, this quantity is referred to as noise spectrum, it can be
shown, because we know the what is x tilde of omega.

(Refer Slide Time: 31:26)
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So, it is very easy to show that this is equal to or let me just write here that I can write x
omega, this noise spectrum = 1 / tau 0 to tau dt 1 dt 2 e to the power i omega t 1 -t 2 and we
have x of t 1, x of t 2, it is very easy. If you find it difficult, do not worry, we will actually
address it in our problem-solving session. This is what I have and this particular quantity you

see average of x t 1 and x t 2 this is called correlator.

So, let me write here this is an important quantity displacement at 2 different times, this is
known as the correlator or the correlation function and it basically gives us the information of
the displacement of the oscillator at 2 different times. Now, in the steady state no point in
time is special because it is the steady state and the correlator will depend only on the time
difference. So, it can be shown just by changing variables that I can express in the steady
state, S xx of omega which is the noise spectrum and this is x tilde omega mod square and the
average. So, it can be shown that it is minus infinity to plus infinity because all times are
equivalent. So, therefore this correlator I can just say the time variable and I can write it like
this.

(Refer Slide Time: 33:25)
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This is also sometimes it is symbolically represented by this xx of omega and clearly either
this quantity or this or this is the same quantity this means that or rather let us say this
quantity is simply the Fourier transform of the correlator or the correlation function. So, what
you see basically is that the noise spectrum is nothing but the Fourier transform in the
correlation function. And this is known as, and it is referred to as Wiener Khinchin theorem,
so Wiener Khinchin theorem states that the noise spectrum is nothing but it is simply the
Fourier transform of the correlation function or the correlator.

(Refer Slide Time: 34:51)
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Now, one can very easily calculate the area under the noise spectrum. So, what I mean by that
is you just have to by conventionally, we will put 2 omega this will be divided by 2 pi and
this is the quantity we can calculate. And you know that this would be d of dt because we

know what is this noise spectrum is then I have here this is from minus infinity to plus



infinity d omega / 2 pi e to the power 1 omega t and then I have x of t x of 0 and this is very

easy to calculate because you know this is nothing but the delta function.

So, this will lead us to x 0 square here and because all times are equivalent in steady state, so,
I can simply write it at x square. So, what you see that the area under the spectrum give us the
variance of x. So, area under the spectrum gives us the variance of x and we know that the
variance of x is directly related to the temperature of the harmonic oscillator in thermal
equilibrium. Now, let us find out the relationship between the noise spectrum and linear
response of the mechanical system.

(Refer Slide Time: 37:05)
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Now, this linear response-of the system is characterized by quantity called susceptibility of
the mechanical oscillator. So, linear response is characterized, I will explain it, by a quantity
called mechanical susceptibility and it is denoted by chi of omega at a particular frequency
and these are relation between the noise spectrum and the linear response of the system. In

statistical physics, it is known as the fluctuation dissipation theorem or it is called FDT.

Now we will actually not discuss it in details, only the theorem is needed for us and that is
what I am now going to state. The fluctuation dissipation theory or FDT in sort could be
stated as follows.

(Refer Slide Time: 38:21)
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The noise spectrum S xx omega or also it is denoted by this quantity by this xx of omega is
related to the imaginary part of the susceptibility via the following relation, this relation is
given in the classical limit. Now, let me explain it and first let me explain about the
susceptibility because you already know what is this noise spectrum term, you are already
may be clear about it. So, regarding susceptibility you know that we have encountered this
term called susceptibility in many places in physics and other areas of science.

(Refer Slide Time: 39:17)
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For example, if you recall so called the polarization say the polarization P that you
encountered in electromagnetism, which is the electric dipole moment per unit volume in a
dielectric arises due to the application of an electric field and this polarization P is directly
proportional to the external electric field that is applied and it is actually expressed in this
form. So, P = epsilon 0 chi of E and here chi is the electric susceptibility it is the

proportionality constant and this is what we call electric susceptibility.



So, what happens is that this polarization sometimes it is very strong at a particular frequency
of the electric field and hence, it is also written in this form that this polarization is a very
strong at this particular frequency corresponding to the application of the electric field at that
particular frequency and this proportionality constant would be this way chi of omega now
chi as I said this is electric susceptibility and this is actually called linear electric
susceptibility, it is linear because you see the polarization is the linearly dependent on the

electric field.

However, there is if the electric field strength is very large, then only their terms are also has
to be incorporated but we will not go into those domain, here we will assume that the electric
field that is applied to the dielectric is not very strong. So, in that case the polarization in
electric field they share a linear relationship between them and that is the bridge between

these relations are actually given by the so-called linear susceptibility.

Now, in the similar way, the average displacement say delta x of the movable mirror in an
optomechanical system is directly proportional to the radiation pressure force that is imparted
on the mechanical mirror, so this is in optomechanics, we can have the similar thing. So,
obviously, hopefully we are now guessing it where this linear susceptibility term will come.
Now, again here also the response of the mirror to this radiation pressure force is strong at a
particular frequency say omega and this is represented in this form.

(Refer Slide Time: 42:14)



So, this displacement of the movable mirror it is a very strong responses at frequency omega
or I can simply write it as the displacement and frequency omega. And this is equal to the
radiation pressure force at the frequency omega and the proportionality constant here is given
by this term and this is your susceptibility term here this is called mechanical susceptibility,
because we are now dealing with mechanics. So, this is mechanical susceptibility of the

movable mirror or the optomechanical system susceptibility.

And by the way here as you see there are 2 x I am putting the first x is related to the response
that we are looking because we are looking at the response, this one, that is the displacement
and the second x here this second x is related to the direction along which the force is
applied. So, here this second x that means, the force is applied along the x direction and the
response is also measured in the x direction that is what it means. So, susceptibility is a

complex quantity and because, it is a complex quantity.

So, let me write here that this mechanical susceptibility is a complex quantity and that means
that it has a real part and the imaginary part and the imaginary part of the susceptibility is
related to the dissipation of the system. Let me explain this actually dissipation of the system
to make you understand it.

(Refer Slide Time: 44:25)

Let me go back to the case of electric susceptibility where we had this say polarization is
directly proportional to the electric field. Now, all of you must have learned the
electromagnetic theory, and in electromagnetic theory you know that the so called

displacement vector you know that is related to the polarization by this expression you know



epsilon 0 E plus the polarization which actually is related to this, epsilon 0 is the electric
permittivity in free space and epsilon is the electric permittivity in the medium and from here

as we have P is equal to this.

So, immediately we can write let me write here this means that I have epsilon E = epsilon 0 E
+ epsilon 0 chi into E and what it means that I have epsilon = epsilon 0 into 1 + chi that is the
electric susceptibility and this quantity epsilon / epsilon 0 = 1 + chi. Now if you recall that
refractive index just I am giving it a very you know, it is not exactly the way we should, but

just to recall we should do but just tentatively let us understand it this way.

That speed of light is square root of epsilon 0 mu 0 and v is the velocity of or the speed of
light in the medium that is again 1 / square root of epsilon and mu, if the medium is
nonmagnetic, then mu = mu 0. So, let us we have that kind of a medium. So, you have n =
epsilon / epsilon 0 square root. So, therefore, this quantity is simply equal to 1 + chi is
nothing but refractive index n square.

(Refer Slide Time: 46:27)

And this if I can also if say, chi is a small quantity, then I can write n = 1 + half of chi and
refractive index is a complex quantity. So, it has a real part and an imaginary part, then I have
this 1 + half susceptibility has also a real part and an imaginary part. So, let me write it this
way 1 into chi of phi. So, the real part of the refractive index is equal to 1 + half of chi of R
and the imaginary part of the refractive index is related to the imaginary part of the

susceptibility like this.



Now, you know that if a plane electromagnetic wave passes through a medium, its electric
field at a distance says z is given by this E of z, you may be aware of Lambert Beer law, so I
am going to that here. So, say electric field initial is amplitude is E 0 and as it passes to a
distance z so you have this phase vector here and also you know that this k is the propagation

vector k = omega / ¢ into the refractive index.

So, therefore I can write because refractive index is a complex quantity, so, I can write it as E
0 e to the power - omega / ¢ the imaginary part of the refractive index then I have this
propagation part of the electric field that is i into omega / ¢ real part of the refractive index -
omega t. So, this part represents the propagating part and this represents the amplitude. Now,

what you see here also z is there, here also z is there. So, what you see?

That the amplitude is as the electric field is propagating through the medium amplitude is
decreasing and dissipation of the amplitude is related to the imaginary part of the refractive
index and who is in turn is related to the imaginary part of the susceptibility. Now, you see
that this imaginary part of the susceptibility is generally related to the dissipation. So, hope
you are getting now convinced. So in the similar way, we can say that, even in the mechanical
case the imaginary part of the mechanical susceptibility is related to the dissipation of the

mechanical system.

Now, you if we go back to the fluctuation dissipation theorem here as you see this particular
quantity the susceptibility is independent of temperature, it only depends on the spring
constant the damping rate mass etcetera, but you know the fluctuations do depend on
temperature and hence in the fluctuation dissipation theorem, the temperature T is also
appeared in the expression here.

(Refer Slide Time: 49:48)
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Now, if we go into the quantum limit, which we will discuss in a tutorial problem, in the

quantum limit the FDT the fluctuation dissipation theorem is actually given by this
expression that is noise spectrum is equal to twice of h cross divided by 1 - e to the power - h
cross omega / K B T. And this is related to again imaginary part of the mechanical
susceptibility. At high temperature the quantum version coincides with the classical version,
and we will discuss about it in the problem-solving session. To appreciate fluctuation
dissipation theorem. Let us consider a classical damped harmonic oscillator.

(Refer Slide Time: 50:47)
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So, you know the equation of motion for a classical damped harmonic oscillator is given by
this expression. Here this small m is the mass of the harmonic oscillator, this capital omega is
the resonance frequency of the harmonic oscillator, this gamma is the damping coefficient

and this F is the external force and F thermal you know even if there is no external force, in



thermal equilibrium we are and also you can get the heat from this presence of this damping

term that.

Even if there is no external force, there is always some kind of a thermal environment and
this thermal environment is quantified by this term F thermal. Now, the idea in defining
susceptibility is to look at the average response of the harmonic oscillator. And because this F
thermal is a fluctuating term so, while we average it then we will be able to get rid of the
thermal force and we are now going to average it to obtain this one.
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So, if we average it we will get m x double dot, this is average m omega square average of x
+ m gamma average of x dot and F thermal average would go to 0 so, we will just left out
with this external force only. By the way, you let me just clarify that when I say x dot I mean
to say the time derivative of x this is what I mean. Now, it is always better to work in the

frequency domain.

So, if we work in the frequency domain by that [ mean say if we take x is equal to say x tilde
e to the power 1 omega t, and F is equal to say F of omega e to the power i omega t, then if I
take x dot then I will get x tilde e to the power i omega t into i omega and which is simply i
omega X so, as you can see, I can always replace delta t or dt here I can replace these dt / i
omega so that is the prescription when we go over to the frequency domain so taking up this

prescription.



So, d 2, dt 2 would become minus omega square. Taking this prescription going over the
frequency domain let me write here and going over to frequency domain I can write it as
minus m omega square + m capital omega square - i m omega gamma and here [ have this x
let me just write average of this but it is in the frequency domain and this is equal to F of
omega.
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Because this displacement is very small so, I can simply to emphasize that I can write it as
delta x of omega so, | have delta x of omega = 1 / m capital omega square - omega square so,
here I have omega square - i m omega gamma into F of omega. Now, you recall that this is
the response of the harmonic oscillator and it is directly proportional to the force that is
applied external force and this proportionality constant as you know this is given by the

so-called susceptibility of the mechanical oscillator.

So, we can easily read out the expression for the susceptibility for this classical damped
harmonic oscillator and that is equal to 1 / m capital omega square - omega square - i m
omega gamma. This expression can be simplified, but before that as you can see this
susceptibility is a complex quantity and it has a real part and the imaginary part
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And imaginary part of the susceptibility is very straightforward to get and you can easily get
it and if you do the algebra, then the imaginary part of the susceptibility will turn out to be m
small omega gamma / m capital omega square omega square then whole thing whole square
here plus m omega gamma whole square. So, this is what we have as the imaginary part.
Now, you see, imaginary part of the susceptibility is associated with the noise spectrum as per

our fluctuation dissipation theorem.

So, this noise spectrum which is actually the same as this term and this is equal to twice K B
T by omega and imaginary part of the susceptibility. So, therefore, the expression for the
noise spectrum this particular term is equal to if I put the terms from the susceptibility I have
twice K B T m gamma / m capital omega square - omega square this whole square + m
omega gamma whole square.
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This expression can be further simplified if say if gamma is small, dissipation is small enough
and you will have say gamma is far smaller than the frequencies, gamma is far smaller than
frequency omega, then we can expand around omega = capital omega, then this expression
for the noise spectrum, these expression can be further simplified. And you can do it very
easily. So, I am leaving it to you to do it, otherwise, we will do it in a problem-solving

session.

So, we will have K B T divided by twice m omega square divided into gamma / omega -
capital omega whole square plus gamma / 2 whole square. So, this is the expression we will
have now you see, this expression is has a Lagrangian form and the typical plot would look
like this.
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So, let me just plot it. So, we will have here the noise spectrum, let me put it here in the y axis
and omega in the x axis then we will have a plot something like this. So, you will see that this
is symmetric around omega = 0 and the full width at half maximum here you can easily find
it out full width and half maximum would be gamma here and what are the other things that
we can find out? We will find that a peak is situated at capital omega resonance frequency in

both cases here or both maybe I am not drawing it properly.

But you take it as a completely symmetric around omega = 0 and what are the other things
that you can find out from this simple diagram? A couple of things, one is you can see, you
can find out the resonance frequency of the harmonic oscillator omega can be readout from
this plot and also what you can do? You can find out the damping rate. We can read out
gamma the damping rate just by measuring the full width at half maximum of the spectrum
and also what we can find out? We can find out the temperature of the harmonic oscillator by
working out the area and this is very straightforward because already I explained it I think
earlier.
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So, what I have to find out? I have to find out this integral d omega / 2 pi and this is the noise
spectrum this area you can work it out it has to be twice because I have 2 peaks then I have 1
/2 pi I have 2 K B T by twice m omega square from this expression here. So, I will have say
minus infinity to plus infinity d omega gamma / omega - capital omega square plus gamma /
2 whole square. If you do the calculations and it is very straightforward please do that you

will get twice K B T/ m omega.



So, this would be capital omega this would be m omega square and this is nothing but the
variance. So, that is how you will be able to find out the temperature also just by finding out
the area. Let me stop here for today, in this lecture, we have completed our discussion on
basic physics qualitatively and also, we discuss the so-called fluctuation dissipation theorem,
which basically prepares us for discussion of cavity quantum optomechanics quantitatively
from the next class onwards and in the next class we are going to discuss the classical regime

of cavity quantum optomechanics. So, see you in the next class thank you..



