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Hello, welcome to the 3rd module of the course. This is the first lecture in the Module 3.

And, it is overall the Lecture number 22 of the course. In this lecture, we will briefly discuss

about cavity optomechanics. This is going to be an introductory lecture. I will give you a

brief overview of what cavity optomechanics is. And, as the so called Fabry-Perot cavity kind

of devices or setup are at the backbone of cavity optomechanical system we are going to

discuss in some more details about Fabry-Perot cavity because that will help you to

appreciate the concepts later. So, let us begin.

(Refer Slide Time: 01:20)

In this lecture, I am going to give you a brief overview of the area of cavity optomechanics.

Cavity optomechanics is one of the most useful platforms for quantum technologies. In fact,

this platform is useful even in the classical regime. So, the question is what is cavity

optomechanics? As the name itself suggests, it is a topic relating interaction between light

and mechanics.

(Refer Slide Time: 01:52)



So, suppose this is a mechanical oscillator and they are interacting with each other. And, this

is mediated by a cavity. That is why it is called cavity optomechanics. So, if you have a

mirror here and another mirror, but the mirror is attached to a spring or say the mirror is

allowed to vibrate. As you know, you have a so called Fabry-Perot cavity where both the

mirrors are fixed, but here one of the mirrors is allowed to vibrate or oscillate.

So, this is the domain of cavity optomechanics. In fact, the main idea in cavity optomechanics

as put by Markus Aspelmeyer a pioneer researcher in the area. He says, let me write here, the

main idea of cavity optomechanics is to have light interact with a mechanical system in a

controlled way via the radiation pressure force. We will discuss about radiation pressure in

some more details later on.

So, this is essentially the idea. This way one can manipulate light actually both the state of

light and the state of the mechanical system. And since this mechanical system comes in all

shapes and sizes, cavity optomechanics gives us a new way to manipulate light and matter on

nano, micro or even macro scale. And, our discussion here will primarily rely on these review

articles.
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First review article is by Markus Aspelmeyer, Tobias J Kippenberg and Florian Marquardt.

This is the title of the review article is Cavity Optomechanics. This was published in Reviews

of Modern Physics. And, this is an extremely beautiful article.

(Refer Slide Time: 04:51)

And, another article is A Short of Walk Through Quantum Optomechanics by Pierre Meystre.

It was published in Annalen der Physik.

(Refer Slide Time: 05:04)



Now, so, cavity optomechanics is an emerging area in physics and science in general which

utilizes quantum optics tools in condensed matter system. And, you know that optomechanics

deals how light couples with mechanical system. And, in fact, there are mechanical systems

on micro or nano scale which can vibrate and typical examples are say cantilevers like this.

Then, beams and all these systems they vibrate with a frequency in the range kilohertz to

gigahertz.

Kilohertz means 10 to the power 3 hertz. On the other hand, gigahertz refers to 10 to the

power 9 hertz. And radiation pressure force is the one which responsible for coupling

between light and mechanical motion.
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In fact, radiation pressure was first predicted by Johannes Kepler in the year 1619. When he

observed that the dust tail as you can see from this plot here, he observed that the dust tail of

a comet always points away from the sun. In fact, way back in the early 1960s and 1970s

Vladimir Braginsky and his coworkers studied radiation pressure effects in the context of

gravitational wave interferometers.

Because, at that time, people were looking various ways to detect gravitational waves and

Braginsky and his coworkers came up with many proposals and eventually you know,

ultimately gravitational wave got detected. And, in a way, gravitational wave detectors or the

whole system is a kind of a huge cavity optomechanical system, of course, in the very large

scale or macro scale.

(Refer Slide Time: 07:16)



Now, today, there are a variety of optomechanical systems as is illustrated in this diagram in

this photograph here. And, the mass of this system ranges from gram to zeptogram.

Zeptogram means very small. That is 10 to the power minus 21 gram. And the systems like

these are all optomechanical systems. For example, we have these macroscopic mirrors,

microscopic mirrors, suspended pillars, trampoline resonator, membranes, microtoroids,

double-disk resonators, near-field resonators, freestanding waveguide, optical resonators,

even the superconducting circuits.

This is also a, kind of a, it is basically a mechanical oscillator. And, it can also be used in

optomechanical setup.

(Refer Slide Time: 08:23)

Then, you have this photonic crystals, photonic nanobeam, zipper cavity, cavity nanorods and

cold atom cavities.
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Interestingly, the mass of the system go from, vary from say gram to very small say

zeptogram. That is on the order of 10 to the power minus 21 grams. So, you see that we have

these 20 orders of magnitude in terms of masses. But striking an interesting fact is that the

same physics is there over these 20 orders of magnitude and is very interesting that all these

various looking optomechanical devices or system can be modeled by this simple setup

which you have a Fabry-Perot kind of a cavity.

(Refer Slide Time: 09:20)

With one mirror fixed and the other mirror is movable. And this model, as we will see its

potentiality later on. This model can theoretically explain a lot of the features that is

displayed by these various kinds of mechanical or optomechanical devices.
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And, goals of cavity optomechanics. Primarily, cavity optomechanics has 2 goals.

(Refer Slide Time: 09:53)

One is to probe fundamental physics. Another one is to exploit the platform optomechanical

platform for various technology and applications. In fact, its role in the so called 2nd

quantum revolution is expected to be pretty impactful. Optomechanics can be used to test

quantum mechanics in an entirely new domain. That is the domain of macroscopic objects.

Because, so far, we know that quantum mechanics is always mainly used to understand

lighter objects like atoms, molecules and so on.

In fact, as regards fundamental physics, one pressing issue is to know the boundary between

the classical world and quantum world. Nobody knows exactly when to stop using Newtonian

formalism and start using the so-called Schrodinger formalism. In fact, one of the goals is



that or question is that can we push the boundary higher? That means whether we can use

quantum mechanics for higher objects or heavier objects, I mean to say. The trouble is that as

we go to larger and larger objects, they coupled to the unavoidable fluctuations of noisy

environment resulting in the washing out of quantum features. But in principle, yes, we can

push the boundary higher, but because of this trouble, as I say it, which is actually also

known as the issue of decoherence. Lot of technological advancement is still to be made to

beat this decoherence issue.

(Refer Slide Time: 11:47)

One example, as we all of us know, is the so-called Schrodinger ket problem, which we

briefly discussed about in Lecture 1 of this course using actually mechanical systems. For

example, as shown here in this figure, using a mechanical oscillator a cantilever, we may

create a superposition states of the oscillator at 2 different location denoted by ket 0 and ket



1. Before making a measurement, we have no idea if the mechanical oscillator is in ket 0, or

in ket 1.

This is equivalent to this Schrodinger ket problem. And, it is termed as Schrodinger’s

mechanical cat. Also, it is known as the Schrodinger’s mirror problem. Fortunately, thanks to

optomechanics, we are today in a position to create such superposition states. And, they may

be tested in the laboratory. So, that is the reason why you know understanding quantum

mechanics in this new domain is getting lot of interest nowadays.

In fact, it is possible to and some experiments has already been done to show that it is

possible to produce non-classical states of heavy mechanical objects and test quantum

mechanics.
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One of the biggest advantages of mechanical solid-state system is its functionality. Say, if we

put a conductor on the top of a mechanical system, just like here, it gets coupled to a charge.

If we put something magnetic on the top, just like here, it gets coupled to spin. Or, if we put a

mirror, just like here, in the mechanical system, it gets coupled to photons and so on. So, the

mechanical system acts like a bus system.

This way, we have a mechanical transducer that allows us to make different quantum systems

interact, which otherwise would not have interacted.

(Refer Slide Time: 14:26)

Maybe we will come to this particular topic later on as well. Now, as regards other

applications, and there are many. In fact, optomechanical systems may be used for quantum

information processing. That is to store quantum information and transfer it. One can couple,



as an example, a superconducting qubit to a mechanical system and then couple it to an

optical system to process the information.

Now, it is important to note that to study quantum states of such systems, we need to cool

these mechanical systems because they are why I am saying that because you know that these

mechanical systems are basically harmonic oscillators and they are equally spaced say

spacing is h cross omega. And, if the thermal energy is greater than h cross omega, then the

system will go from the ground state to the excited state.

And then actually, you will not be able to study the whole thing as a discretized system. This

discrete energy levels will not be exploit. So, the cavity this thermal energy should be much

smaller than h cross omega. So, as you can see, to have this condition, the temperature should

be below than h cross omega by K B we can just make a rough estimate. And, it turns out that

because these mechanical oscillators are oscillating in the frequency range of kilohertz to

gigahertz, which amounts to temperature far below 20 millikelvin or so.

So, we need to actually look for some clever methods to cool this mechanical system. In fact,

this is going to be one of the topics in this course when we were discussing optomechanics.

How to cool a mechanical oscillator to its ground state? And, there are other applications. For

example, one can have ultra-sensitive detection of tiny forces. As you actually know that you

know, if a mechanical oscillator is there, then this Hooke’s law you know force is equal to say

minus k x.

From here, you can find out the spring constant. That would be say this is the force gradient

rather than actually tiny forces. We should better say force gradient to be precise and if we

apply a force gradient to the mechanical oscillator, it adds some effect to the spring constant

of the oscillator and because the spring constant is associated with the frequency of the

oscillator.

So, it shifts the frequency and this shift is very easy to measure. So, that is how we can make

ultra-sensitive detection of very tiny forces.
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On the other hand, there is we can in the similar way we can have ultra-sensitive detection of

masses because again if on the oscillator because it is this the cantilever if some mass is

added to the oscillator, then its spring constant gets changed and because of that, there is a

shift in frequency which can further be detected. And, this way ultra-sensitive detection of

masses is also possible.

In fact, this is already, for that you need not have to cool the mechanical oscillator to the

ground state. This kind of applications are already in place in chemical diagnostic. And,

ultra-sensitive detection of displacement is also another very important application and, so,

what I want to say now is that the primary advantages of optomechanical platforms over that

of the others are due to the small size high quality factor and because it has high quality

factor.

So, information can be stored for very long amount of time. And, it is integrability to various

other system as I explained earlier that we can integrate this system to various other system.

And the best thing is that everything can be as I have put it here, everything can be integrated

on a chip and nano-fabrication of these devices are very much possible.

(Refer Slide Time: 19:28)



Now, let us briefly discuss about mechanical effects of light a bit qualitatively. Mechanical

effects of light, in particular, the so-called radiation pressure force is at the root of all

optomechanical phenomena. In fact, radiation pressure force is behind the most well-known

optical tools called optical tweezer. Frequently used by biologist. Arthur Ashkin of Bell Labs

contributed significantly towards understanding of the radiation pressure force and for which

he eventually got the Nobel Prize also.

Now, to understand the radiation pressure force, let us consider a typical setup like this. We

have a mirror. And, on this mirror, a photon is getting incident. Say, the photon has

momentum h cross k. It is getting incident on this perfectly reflecting mirror. And as a result

of, as it is perfectly reflecting the reflected photon has momentum minus h cross k. So,

therefore, as you see that the total change in momentum would be twice h cross k.



And, thus, it is going to experience an overall momentum change given by this particular

equation where let me explain, we have twice h cross k and which we can write it as twice h

cross k is equal to omega by c and h cross omega is the energy of a photon. So, that is why E

is the energy of the photon, c is the speed of light. Now, if we have an, you know a steady

stream of photons, suppose N number of photons are getting incident, then the total force

would be we know that the rate of change of momentum is the force.

And, total momentum would be number of photons into the momentum change due to 1

photon divided by the time. This is going to give us the force. And this, we can write it as 2P

by c because energy in fact this I can also write it is from here this is total energy. Here, E,

this curly E is equal to E into N number of N photons. And then, we have twice E divided by

c. And then, we have also time is also there from here.

And, energy per unit time is nothing but power. So, therefore, we can write it in this by this

equation also. So, the force is equal to twice that of the power divided by speed of light. This

is a useful formula and we can apply it. For example, the radiation pressure force due to

sunlight is nearly on the order of 10 to the power minus 5 Newtons which is a very tiny force.

It is very tiny force.

Let us analyze the, this radiation pressure force a little bit more, because we will see this

analysis is going to help us in understanding in the optomechanical system.

(Refer Slide Time: 23:13)



So, as I already said that when a photon is getting incident on this mirror suppose this now

mirror is movable, it is a mechanical oscillator. And, this is perfectly reflecting mirrors. So,

the momentum change as I explained would be twice h cross k which I can write it as 2h by

lambda because twice, let me do this things here. Let me do the calculations here.

(Refer Slide Time: 23:57)

Del p is equal to when 1 photon is getting incident that would be twice h cross k. And, this I

can write it as k is equal to or h cross is equal to h by 2 pi and k is equal to 2 pi by lambda.

So, therefore, I can simply write it as 2h by lambda. So, this is what is written here. Now, this

as a result, when the photon is getting incident, the mirror is say getting displaced by an

amount delta x.



So, this mass of potential energy is getting stored in the mirror which is coming due to the

kinetic energy of the photon here. So, due to energy conservation, I can write this equation

and from this equation, we can get this particular equation. Let me explain it again. So, what

we have here is that the potential energy is half k x square or is I have half m omega m

square. And so, delta x square is the displacement of the mirror.

And, this is equal to the kinetic energy of the photon. That is getting incident delta P square

by twice m. So, this omega m is the oscillation frequency of the mirror. So, from here, I can

write delta x square is equal to I have here m square if I take it that side and I have here del P

square and I also have omega m square.

(Refer Slide Time: 26:06)

So, this will give me the displacement of the mirror delta x is equal to del P divided by m

omega m and del P is equal to h by 2h by, let me use this formula 2h by lambda. So, this is 2h

by lambda m omega m. Now, you know that the so called zero-point fluctuations which we

discussed. When we discussed about mechanical harmonic oscillator, the, this zero-point

fluctuation is h cross divided by twice m omega m square root.

Or, I can write it as x square zero-point fluctuation is equal to h cross divided by twice m

omega m. Or, I can write it as h divided by 4 pi m omega m. So, this equation this one I can

utilize it here. So, I can write delta x is equal to I can write it as 2 by lambda. This part I can

replace by h cross. This one I can replace by 4 pi x zero-point fluctuations square here. Or, I

can write the ratio delta x divided by which is the displacement with respect to the zero-point

fluctuation.



That would be equal to 2 by lambda. In fact, better I can write it as 8 pi by lambda x

zero-point fluctuation. So, this is the formula we get when we have this setup. Now, if this

mechanical mirror, this movable mirror has mass, 1 nanogram that means 10 to the power

minus 9 gram. This is or we can consider the cantilever also. This cantilever is 10 to the

power minus 9 gram as its mass and the wavelength of the radiation is say 1 micrometer.

That is 10 to the power minus 6 meter. Then, the zero-point fluctuation and the displacement

due to the zero-point fluctuation would be on the order of 10 to the power minus 12. And, if

we put all these things, then you see the ratio would turn out to be only 10 to the power minus

6 which is actually not detectable. What does it mean physically? It means that when a

photon is getting incident on a movable mirror, a free photon is incident on a movable mirror.

Effectively there is no change in the mechanics. There is hardly any displacement that is we

can detect. So, to have a sizable impact on the displacement of the mirror, or, in order to

study useful physics, the displacement of the mirror must have to be greater than the

zero-point fluctuations. And in order to do that, what we have to, what we can try? We can try

by putting another mirror here. And then, we will see what happens if we put another mirror

there.

(Refer Slide Time: 29:53)



So, this will become basically a cavity. Now, when a cavity, it becomes a cavity, the photon

will oscillate between these 2 mirrors back and forth depending on the quality factor of the

mirror or the so-called finesse of the mirror. Finesse of the mirror gives the number of round

trips of the photon inside the cavity before the photon eventually leaks away from the cavity.

So, what it happens is addition of the another mirror basically increases the change in

momentum.

Del p, F into del p, where F is the, as I said, it is called the finesse of the cavity. Now, if the

cavity because the finesse you know, it depends on the cavity decay time also the whole

thing. So, if the cavity lifetime is smaller than the mechanical oscillation period then it can be

shown that this ratio would be given by this particular formula. And, it turns out that this

displacement of the mirror.



The movable mirror would be greater than the zero-point fluctuation provided the finesse is

greater than or equal to lambda by 2 into twice of the zero-point fluctuation displacement due

to the zero point fluctuation. So, in that case, depending on the cavity, if we put a cavity then

we can always construct such a cavity with appropriate finesse and then we can have a

displacement greater than the zero-point fluctuation.

Displacement due to zero-point fluctuation and which is the reason of the popularity of cavity

optomechanics because, now, we can actually study quantum effects using such kind of a

setup.

(Refer Slide Time: 31:53)

So, now, the generic model of an optomechanical system is shown here. It is a system with 2

mirrors with one fixed and other movable. Movable mirror is characterized by mass m,

oscillation period omega m and a phonon decay rate gamma M. As you know, quantum of

vibrate this mirror is movable that means, it is vibrating and you know the quantum vibration

is called phonon.

The cavity is characterized by the cavity resonance frequency say omega c and, it’s a cavity

decayed kappa or k. On the other hand, incident laser light is characterized by its wavelength

lambda its frequency omega L and the power P. The purpose of the cavity is to boost the light

field effects. And, one of the mirrors is fully reflecting this one say and while the other one is

partially reflecting so that light can enter into the cavity.



Now, there is a basically certain condition has to be satisfied for that light can enter into the

cavity and that, to understand that we need to revisit the Fabry-Perot cavity. As you can see

from this diagram that the system is primarily a kind of a Fabry-Perot cavity and it may be

now useful to digress a bit and discuss about Fabry-Perot cavity in some details.

(Refer Slide Time: 33:40)

So, let us discuss Fabry-Perot cavity now. We will start with the simplest case of a planar

cavity of length say L.

(Refer Slide Time: 33:48)

So, planar cavity means we have 2 plane mirrors separated by a length L. And, let us assume

that these 2 mirrors are perfect reflectors. And, in order for a plane wave to exist in the cavity,

it must return exactly the same phase after 1 round trip through the cavity. So, that has to be



the condition. And, in this case, it will constructively interfere with itself. Otherwise, the

phase will precess on each successive round trip.

And eventually, it is going to lead to destructive interference. So, the round trip accumulated

phase must be some integral multiple of 2 pi. Now, because in 1 round trip the total length

covered would be 2L. And therefore, the phase would be 2L into k, k is the wave vector and

that has to be integral multiple of 2 pi. So, m is an integer, say m is equal to 0, 1, 2. So, it is

an integer. This is the condition. This is called cavity resonance condition.

In fact, because you know that k the wave vector is associated with the angular frequency of

the wave omega by this relation k is equal to omega by c. Again, you know that omega is

equal to 2 pi c by lambda wavelength of the radiation. So, using this, we can write various

resonance conditions.

(Refer Slide Time: 35:48)

For example, cavity allowed wave number from this relation would be say k m is equal to it

would be as you can see this would be simply pi by L into m. And then, using either omega

or lambda, we can have cavity allowed wavelengths as lambda m is equal to 2L divided by

m. And frequency, in terms of frequency also, we can write because you know that omega is

related to frequency 2 pi as omega is equal to 2 pi nu.

So, therefore, nu m, this is the allowed frequency that would be m into c divided by 2L. Or,

we can also write it as omega m is equal to m into pi c by L. So, these are the same conditions



written in different form. And, all these forms are useful depending on the situations either of

these forms can be used. And, we will use that.

(Refer Slide Time: 37:15)

Now, the corresponding spectrum if I plot intensity inside the cavity versus the frequency,

then only those frequencies or wavelengths would be allowed to enter into the cavity which is

going to satisfy the resonance condition. So, therefore, for example, if it satisfy this

conditions nu m, then you will have a sharp peak inside the cavity or if it satisfy say your m

is equal to a nu m + 1 then also you will have a peak.

Otherwise, in between here, will not have any radiation because their resonance condition is

not going to be satisfied there and here it will be say we will have, this would be nu m minus

1 and so on. You will get lot of peaks in between. Now, there is a very important quantity the

frequency spacing between these peaks. This is a very important quantity. This frequency

spacing is called free spectral range or also called FSR.

This quantity is of immense significance. And, this is simply the frequency spacing. So,

therefore, nu m + 1 minus nu m. If you, from this relation, you can easily see that this would

be simply c divided by 2L.
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And, this is an important quantity. And, it is worth remembering FSR. Now, you know the

real cavities involve some loss of light on each round trip. And, this loss then actually damps

the amplitude of the cavity. So, let us consider again this cavity. If let us say suppose, light is

circulating inside the cavity and after some round trip suppose its electric field amplitude is

say E n and reflectivity of say this mirror is r.

Let us have both the mirrors has the same reflectivity for simplicity purposes. Then, the

amplitude of the wave is going to reduce by a factor of r on each a round trip. So, after n + 1

at a round trip its amplitude would be reduced by a factor of r. Like this, the amplitude will

reduce, r is less than 1. So, we are just writing about amplitude here. So, this is what is going

to happen.

Now, here, E n is basically the electric field amplitude of the plane wave on the nth round

trip, as I said, through the cavity. And, the loss due to r could be some transmission of the

mirrors. Or, losses around the edges of the finite size of the mirror scattering from some

suppose some gas is there inside the cavity or objects inside the cavity and so on. On 1 round

trip, the face of the plane wave is going to change.

And, it is going to change by say phi delta phi. And, of course, the face would be in1 round

trip, as we know, this would be 2k into L and which I also can write it as 4 pi k is equal to 2

pi by lambda. So, it would be 4 pi by lambda into L.
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And therefore, the electric field after n + 1th round trip it would be now here I have written

the magnitude. So, if I take phase also into account then it would be r. You will have e to the

power phase is i 2kL. And, this would be E n. So, this is what we are going to get. Now, let us

assume that this r this quantity is real and then the total wave if I consider all the round trips

that total electric field say initially we had electric field is E 0.

Then, after 1 round trip, we have E 1 and then E 2, E 3 and so on. And, this is related to this

quantity by means of this relation. So, immediately, you can see that I can write it as E 0 1 +

E 1 would be E 0 E 2 r e to the power i2kL. Then, the second one, so, you can easily make it

out. This would be r e to the power i2kL whole square and so on. So, you will get a geometric

series. And, this is very simple to work out.

And, you will get this relation that would be E 0 divided by 1 minus r e to the power twice

ikL. So, using this relation now, I can easily get the intensity inside the cavity just to remind

you that intensity is related to the electric field by this expression. If I consider that the inside

the cavity the refractive index is 1, then it would be intensity is half epsilon 0 c E square. So,

this we know.

So, utilizing this relation in I can write the intensity inside the resonator would be equal to if

you take the mod square you will get you can easily get this expression. It would be I 0

divided by 1 minus r whole square plus 4r sine square kL. So, this relation can be worked out

very easily. So, this is the intensity we are going to obtain inside the cavity.
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A typical intensity versus frequency for a Fabry-Perot cavity would look like this. Let us say

we have in the y axis this intensity and the x axis frequency. Let me plot it. Let us say this is I

maximum. I will explain these terms little bit later. Then, this is a I minimum. Intensity will

oscillate between minimum and maximum. And, it will be like this. We will have several

peaks like this and so on.

And, these peaks would be there provided the resonance condition is getting satisfied. For

example, when the frequency is integral multiple of c by 2L, in fact c by 2L already you

know this is nothing but the free spectral range, FSR. So, rather let me write it as m into FSR.

And, this would be m + 1 into FSR. And, you know that distance between these two is

basically free spectral range.

And, this would be m minus 1 FSR and so on. We will get lot of peaks like this. And, all this

resonance peak would have width. That is, this generally this width is the full width half

maximum. It will have full width half maximum. And, we will show that this full width at

half maximum or this resonance width is would be actually it is the ratio between the free

spectral range and the finesse of the cavity.

So, finesse of the cavity is a very important quantity. And, this is defined as the ratio between

free spectral range divided by the bandwidth. In fact, this bandwidth is nothing but the full

width at half maximum, delta nu FWHM. And, free spectral range let me denote it by delta

nu.
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Now, from the expression that we obtained a little while back that is I is equal to I 0 divided

by 1 minus r square plus 4r sine square kL. From this, we can work out the maximum

intensity and the minimum intensity. Maximum intensity, we will get at resonance. You know

this sine kL would tend to 0 because at resonance as you know the resonance condition this

would be kL is equal to integral multiple of pi.

So, therefore, this term will vanish. So, you will have the maximum intensity. That is, I max

is equal to I 0 divided by 1 minus r whole square.

(Refer Slide Time: 48:24)

On the other hand, far off resonance will have sine kL will tend to 1. So, therefore, we will

have as you can see from here when it would become maximum we will get minimum

intensity. That is, I minimum would be equal to I 0. If it becomes equal to 1 then you



immediately see that this would be I 0 divided by 1 + r whole square. Now, let us calculate

the FWHM or width of the resonance delta nu.

Let me write, do the calculation of delta nu full width at half maximum. This is pretty easy,

because you know that at full width at half maximum let us say k is taking the value k plus

minus.

(Refer Slide Time: 49:34)

Then, the intensity because it is maximum half maximum, so, you have half I max. That is

the half of the maximum. So, if I now put the expression of I from here, this one. And, k is

equal to k plus minus. Then, I have I 0 divided by 1 minus r whole square plus 4r sine square

k plus minus L. And, that would be equal to half I 0 1 minus r whole square. From here, you

can immediately get sine square k plus minus L is equal to 1 minus r whole square divided by

4r.
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Now, you see you have omega angular frequency plus minus I can write it as c into k plus

minus. So, therefore, I have from here sine square omega plus minus, in fact, here, L into

omega plus minus by c. This is equal to 1 minus r whole square divided by 4r. And from here,

you can get omega plus minus is equal to, with some factor is there, but this is what you will

get it would be c by L sine inverse 1 minus r divided by 2 into square root of r.

Now, under small angle approximation because this r reflectivity is usually 96 to 99%, 98%,

so, for sine function, we can make the small angle approximation. So, under small angle

approximation, I can, we can write omega plus minus. That would be nearly equal to plus

minus C by L. And, we will just keep this term, 1 minus r 2 into square root of r.
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Now, if I define this full width at half maximum that is basically delta nu FWHM. That is

omega plus minus omega minus divided by 2 pi. And, if you work it out from here, you will

get it as c by 2L 1 minus r pi into root r. And, c by 2L is nothing but the full free spectral

range. That is, we are denoting it by delta nu. And, this is 1 minus r pi into root r. And, we

know that the finesse is delta nu free spectral range divided by the full width at half

maximum.

So, from here, we immediately get an expression for the finesse for this planar cavity, when

both the mirrors have reflectivity r. So, this is an important quantity.
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Now, in terms of finesse, we can rewrite the intensity expression. That is the expression that

we had earlier was I am repeating it again. I is equal to I 0 1 minus r whole square plus 4r

sine square kL. This, we can rewrite in the standard form. And, that would be I is equal to I

max you can please verify. It would be 1 plus twice into finesse by pi whole square sine

square kL.

So, this is the standard form for the expression for the intensity of a Fabry-Perot cavity. Now,

let us discuss about photon lifetime inside the cavity.
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You know that losses in cavity can come from a number of sources, the mirrors can lead to

intensity loss due to partial transmission and absorption of light in the reflective coating.

There are coatings are there. So, because of that also light can be lost or photon can get lost,

then scattering due to the surface roughness and so on. Let us say Ps is the survival

probability of a photon inside the cavity after 1 round trip.

Actually, if the both the mirrors have reflectance or reflectivity r, then P s is equal to r square.

Otherwise, if one mirror has reflectivity say r 1 the other one is r 2 then P s would be equal to

r 1 into r 2. Anyway, we are assuming that both the mirrors are having the same reflectivity.

Now, in terms of using this expression, we can rewrite the expression for finesse in terms of

this survival probability because we have this expression for a finesse.
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So, finesse in terms of survival probability would be pi into P s to the power 1 by 4 divided

by 1 minus square root of P s. So, the probability, this is we are going to use. Now, the

probability that the photon gets lost with probability actually rather let me write it as the

probability that the photon gets lost after 1 round trip. So, it is clearly 1 minus P s because P s

is this survival probability of the photon after 1 round trip.
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So, on the average, what would be the number of round trips would be, round trips on the

average? Rather, let me write number of round trips on the average for the photon would be 1

divided by 1 minus P s. Now, the round trip time is easy to calculate because we know that

the cavity has length 2L. So, the photon has to cover a distance of 2L and speed of the photon

inside the cavity is c. Let us say.

Then, round trip time would be 2L by c which we can actually rather than t let me write is tau

tr. And, in terms of free spectral range, we can write it simply as 1 divided by free spectral

range because c by 2L is the free spectral range. So, this is an important quantity. This is the

round trip time of the photon. So, lifetime of the photon inside the cavity let me denote the

lifetime of the photon as tau P. This is the lifetime of photon inside the cavity.
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So, that is clearly it should be equal to the round trip time into the average number of round

trips inside the cavity. So, using the expression that we derived here that would be photon

lifetime. We will have as 1 divided by free spectral range into 1 minus P s. Now, actually for

good resonator or for good cavity, this survival probability is nearly 1. So, therefore, we can

guess, we can nearly assume that square root of P s is equal to 1.

Or, we can write P s to the power 1 by 4 to be nearly you can set it as 1. And, we can write 1

minus P s is equal to 1 minus square root of P s into 1 plus square root of P s. This I can write

because of this approximation. I can write it as 2 into from here I will get 2 into 1 minus

square root of P s.
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So, using this, I can write down the expression for the finesse. I can simplify it as for a good

resonator or a good cavity. It would be pi divided by 1 minus square root of P s. And,

ultimately, what I can do? I can express the photon lifetime in terms of finesse. As this that

would be 1 divided by 2 into free spectral range. And, this would be 1 minus square root of P

s. And, this I can further write as finesse divided by 2 pi into free spectral range.

So, because I already know that free spectral range and finesse associated with the full width

at half maximum. So, therefore, I can write it as 1 by 2 pi. And, this is nothing but full width

at half maximum delta nu full width at half maximum. Or, I get a very interesting relation.

That is photon lifetime into the width of the resonance peak. That is delta nu at full width half

maximum is equal to 1 by 2 pi.

And, this is known as cavity uncertainty relation. Let me stop here for today. In this lecture

after giving a brief introduction to cavity optomechanical systems, we discussed about

Fabry-Perot cavity. In the next lecture, after completing our discussion on Fabry-Perot cavity,

we will see how to guess the optomechanical Hamiltonian. And also, we will try to

understand the basic physics based on this Hamiltonian. So, see you in the next class, thank

you..


