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Lecture – 28
Pure-dephasing and Dissipative Bloch Equations

Welcome to lecture 11 of module 2 and this is lecture 21 of the course. In this lecture we will

learn about the phenomenon of Pure-dephasing and we will see how Pure-dephasing can be

incorporated in the Linblad quantum master equation. Apart from that we will also discuss

about the dissipative block equation in the context of a qubit that means when the qubit is

there in the presence of various relaxation process including the dephasing. So, let us begin.
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In the last class we discussed the so-called quantum master equation. As I said in the last

class that the quantum master equation is the workhorse for dissipative quantum system

almost 90% of the problem in quantum dissipative system can be taken into account by this

equation and it is also known as the Linblad Markovian Quantum Master equation. It is

Markovian because this equation which takes into account how the density operator changes

with time rate of change of the density operator.

So, each point in time the time derivative is given by the present state. So, rho here refers to

the density operator corresponding to the present state only there is no memory and this is

why this master equation is more aptly termed as markovian, Linblad markovian quantum



master equation. And it has 2 parts one part takes coherent evolution part of the system takes

into account.

And another part refers to the dissipation here L is a operator and this operator operates on

another operator that is the density operator and L is this is known as the super operator

because it operates on an operator or also it known as the Linblad operator. And this

operation has a particular structure where this is the structure that we discussed. Here this

operator A is an arbitrary operator through which interaction between the system and the

environment takes place.

And in this equation this gamma refers to the relaxation decay rate of the relaxation process a

operator a there may be many many relaxation processes in a particular system quantum

system depending on the situation. So, here this sum it is all the processes has to be taken into

account that is why this sum is there. So, gamma j refers to the decay rate corresponding to

the relaxation process say discussed by or referred by the relaxation operator A j.
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Now this particular structure is extremely critical because this particular structure guarantees

that this density operator remains Hermitian regardless of how we switch the decay rate

gamma and the relaxation operator A and trace of rho is equal to 1. So, probability remains

conserved and rho remains semi-positive definite then we went on to discuss some examples.

First we discussed the 2-level system relaxing via the so-called spontaneous emission and we

were able to derive the rate equation appropriate equation for the probabilities rate of change



of the probabilities but in addition to that we also got to see that how the coherences decay

and coherences decay attended gamma by 2. And we also discussed the case of thermal

excitation of a 2 level system where the atom is going from the ground state to the excited

state due to the thermal excitation.

This also we discussed what it turns out that whether we have spontaneous decay or thermal

excitation the off diagonal elements still decay and it decay at a rate gamma by 2 and we

discussed the so-called damped harmonic oscillator at zero temperature and in this case only

one process is there that is the downward transition and we worked out how the probability of

finding n photons.

The rate of change of probability of finding n protons we worked out using the quantum

master equation and also we saw how the average number of photons changes with time. So,

and apart from that we found that the exp the expectation value of this annihilation operator

decays at the rate of gamma by 2.
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We discussed the harmonic oscillator at finite temperature and here 2 processes may be there

one is the downward process for downward process the operator a this relaxation operator can

be taken to be represented by the annihilation operator where the upward process is by the

creation operator. And here we found we saw that this decay rate downward decay rate is

basically modified by a factor of n thermal this is n th which is the average number of thermal

protons.



And this is given by this particular equation. On the other hand the upward transition rate is

given is modified by this n th gamma n th. In fact at zero temperature there will be no thermal

excitation. So, n th is zero there and. So, we will have only one process that is the downward

process downward decay process. And the expectation value of the average number of photon

the rate of change of expectation value the average number of photon is given by this

equation.

Here also we found that the expectation value of the annihilation operator it decays at the rate

of gamma by 2. And in fact this solution is represented by this particular diagram here and

you see that depending on where we start suppose the initially we have the average number of

photon is gathered in the thermal equilibrium value which is n th it is then it will decay and

approach the thermal equilibrium below.

On the other hand if the average number of photon is zero initially at time t is equal to zero

then the as time goes on it will approach the equilibrium value.
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So, now let us go back to the case of transmon or the qubit system in the context of circuit

QED and I want now to discuss and very important decoherence phenomena and that is

called Pure-dephasing. So, this is what we are now going to discuss Pure-dephasing is a

process where we do not jump between energy levels say we have this 2 level system this is

our ground state and this is our excited state and let us say the energy difference between

these 2 level is h cross omega atom.



Let us say this one has energy h cross atom by 2 while the ground state has energy say h

square minus h cross omega atom by 2 and this is what energy. And we in Pure-dephasing we

are not having upward transition that means say going from ground state energy to the

excited state energy or from the excited energy state to the ground state energy we do not

have such kind of transitions.

Rather what happens is that we it turns out that that even though there is no such kind of

transitions the off diagonal elements in the density matrix for example this term or say this

term which are known as the coherence terms in the density matrix which we already know

these terms actually decay. And this is what this decay of coherences is basically known as

dephasing or Pure-dephasing.

Because you know that this off diagonal elements in the density matrix gives the phase

relation between the amplitudes of the amplitude coefficient of the ground state and the

excited energy state. Let us explain it further let us understand it properly let us say one of the

energy levels let us say this upper energy level is fluctuating in it time. So, this is a

fluctuating with time that means we are not having a very sharp energy level sharp width

rather it is fluctuating with so with time.

And the ground state is of course it is intact let us say the question is now what happens. The

question is what happens if or what happens to the state vector or the wave function wave

function of the system when we say start from when we start from a superposition state why

superposition state. Because as our discussion it is important for us to have this kind of state

because we are interested in the phase relation between these amplitude coefficients ground

state amplitude coefficient and the excited energy state amplitude coefficient C e t this one as

well as this one.

So, we want to know what is actually going on if one of the energy level is fluctuating with

time if the energy levels remain eigen levels that is if they are still remaining as the eigen

state of the Hamiltonian all the time then the wave function at any arbitrary time we can write

it as say C g this is ground state and it would have say e to the power i omega atom t by 2

because you see this plus I am getting because minus of minus okay that is why I am getting

plus.



You remember that you have e to the power minus i by h cross e this is what we have this

coefficient varies like this. So, actually this is what we are you know writing here for the first

term and in the second term I have C e e and I have e to the power. Now I will have a term

minus i omega atom t by 2 and in addition to it I will have a i phi of t where phi is the phase

and in fact that is the energy level excited energy level which is fluctuating with time. So, phi

of t is 1 by h cross.

So, because this is fluctuating with time so, this is basically integral over the fluctuations. So,

this is the energy fluctuation term. So, this is the phase term.
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However as we know that to get a more appropriate picture of the situation because in real

experiment many many repeated measurements are going to be made we need to look at the

density matrix. So, to get a real picture; so we have to basically look for the density matrix,

so density matrix would be psi of t like this but which has to be average over all the

fluctuation.

Now in fact what we will get if we do it this straightforward calculation starting with this

wave function you should be able to show that this coherence term say e g rho e this matrix

element you can show that this would be simply C g C e star e to the power i omega a t and

then we have this e to the power i phi of t and this is e averaged over the fluctuation. Clearly

we do not have transition between the energy levels that means when we are not having

transition between the energy levels.



However the off diagonal elements has a free time evolution that is given by e to the power i

omega a t and in addition to that we have a fluctuating phase factor. So, this is our fluctuating

phase factor and in fact this represents free evolution. We know that if we take the average of

a complex quantity we obtain a result that has a magnitude less than 1. So, this implies that

the magnitude of the off diagonal elements.

So, if you take the magnitude of this term e to the power i omega a t this is what we have this

one and apart from that okay this is what I have here. So, if I take the modulus of magnitude.

So, what it turns out that this would be less than this guy would be actually less than 1 and so

therefore you will find that this is overall less than this quantity C g C e star. So, what it

means that instead of having a pure state because the density matrix this is actually now

getting decayed overall it is less than 1 because of this is less than this quantity.

So, we will have a mixed state this implies that we will have a have a mixed state rather than

a pure state because the we are losing information about the initial phase because as you see

that because of the energy fluctuation we are having this particular term because of the

fluctuation this object elements its magnitude is getting suppressed and in fact if the off

diagonal component is suppressed to zero completely.

Suppose this off diagonal elements is made to be this whole thing gets zero. Then we will not

know any information about the phase relationship between the complex amplitude C g and C

e. So, if say off diagonal if off diagonal element is or component is suppressed to zero we

will loss all phase or initial will not have any idea about the initial phase information or we

loss loss all phase relation between the amplitude coefficient C g and C e.

So, this is very important and in fact this is what phase dephasing is. So, this is what phase

dephasing is. I hope this is so clear let me once again repeat suppose the energy levels are

sharply defined there is no energy flow there is no energy fluctuation in any of the energy

levels then the density operator here would be having the elements like this say C g C g star

C g C e star C g C e C g star and we will have C e C e star but when one of the energy level is

fluctuating energy level fluctuate.

Then this these elements would remain no problem with this of diagonal element diagonal

elements but these elements. So, you will here as I already we saw that this would be C g C e



star and then along with it you will have e to the power i omega a t and because of the this

particular term okay which is due to the fluctuation of the energy level similarly here you will

have that similar kind of term.

So, that would be basically let me write it. So, here we will have terms like say C e C g star e

to the power minus i omega a t and you will have e to the power i phi okay or whatever

minus. So, this is what we will have and these terms would be less than this term. And

because of that this particular state is no longer going to be this one is no longer going to be

pure rather it is mixed on the other hand this is pure state.
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Now I will not go into the details but in many practical cases the ones that we generally

encounter in circuit QED or in quantum optomechanics which is the topic for the next

module or in quantum optomechanics mostly this particular fluctuating term e to the power i

phi of t when we take average overall the fluctuation is approximated is approximated as e to

the power minus gamma phi of t.

So, this actually this term decays exponentially with time and here this particular decay rate

gamma phi is known as the dephasing rate this is called dephasing rate. This kind of quantum

noise when we make this kind of approximation this is comes under something called

Gaussian noise. So, let us not bother too much about how it came in all these things but this is

I think for our course this is this one is sufficient a good approximation and this is enough for

us to know.



Now the question is can we build up a relaxation operator in the Linblad quantum master

equation which can take this phenomenon or the noise into account. So, this is what we can

now answer and of course the answer is yes in the in the quantum master equation let me

write it as QME quantum master equation. What we expect? We expect that our this

coherence term would it should decay at the rate gamma phi.

So, we are expecting. So, this is basically g rho dot e we expect that we will have a some kind

of say some term would be here and that would be the usual bare dynamics usual bare

dynamics and apart from that there will be a term referring to the decay that will be gamma

phi rho g e. So, as you can see. So, this is going to give us the required relation and similar

expression you can get it for rho e g.

So, similarly for rho e g you will get some terms here and then here you will have gamma phi

rho e g. Now we want an operator. So, we are given the decay rate to be this one that is the

dephasing rate gamma phi now what about the relaxation operator. The operator which takes

us because there is no actually relaxation what we having is this kind of a situation we are in

the ground state and here this is the excited state we have this 2 energy state but there is no

transition.

But fluctuation is happening in the energy level here upper energy level. So, as if we are

going from this energy level and going back to it okay. So, this is what is we are having. So,

this is actually taken we can guess it as we are going from excited energy state again to the

another excited again to the same excited state and then this is typically given by these

relation okay this is what the relaxation operator in this case for the Pure-dephasing case.

So, if we have this then we can easily write down the Linblad master equation for pure

phasing case. So, Linblad quantum master equation Pure-dephasing for Pure-dephasing let us

now write it. So, we are given if I and the decade is there. So, this would be time rate of

change of the density operator the first term gives us the coherent evolution and then we are

having the decay rate that is gamma phi and in fact because root 2. So, you know the master

equation. So, let me write the master equation for the dephasing case.

So, that would be we will have terms like this e rho e e please verify it and you have minus

half e e rho and minus half rho e e. So, this is what the quantum master equation actually you



can very easily obtain from this Linblad master equation you can show that you will get g rho

dot e would be equal to minus gamma phi g rho e. In fact this particular term because

coherent evolution if the Hamiltonian is diagonalized.

Then this term is going to be zero this contribution from this term would be zero and you will

obtain this equation and you see this clearly shows that the coherence actually decays at the

rate exponentially it decays at gamma phi.

(Refer Slide Time: 27:47)

So, now let me discuss one important issue suppose we are having this transmon qubit or any

or any 2 level system in the presence of relaxation and dephasing in the presence of

relaxation and dephasing. So, what I mean by this is this. So, this is a very common situation

and often this kind of situation is encountered when we are dealing with artificial 2 level

quantum system.

We have processes like this suppose there is a downward transition which is happening at the

rate gamma minus and there is thermal excitation which is happening at the rate gamma plus

and apart from that there is this dephasing is also happening because suppose this energy

level is not fluctuating with time or some kind of a phase decay is there. So, then how one

can take this into account now we have actually taken all the cases separately.

So, therefore we can combine all of them and then we can write down the Linblad master

equation for example we can write down the relaxation process for the downward transition is

this we are going from the excited state to the ground state and which is basically your atomic



lowering operator and this is happening at the rate gamma minus then we have this process A

plus where we go from the axis excitation we are going from the ground state to the excited

state.

This is atomic raising operator and this is happening at rate gamma plus and then in addition

to the all these things we are having this dephasing where we are going from the excited state

to the excited state and this is happening at the rate gamma phi. Using this one can very

easily set up the Linblad quantum master equation and from it you should be able to obtain

these density operator equations.

The density matrix equations basically for all the elements for example very

straightforwardly you should be able to get it. So, please do that you will get time rate of

change of this term would be equal to minus gamma minus rho e e + gamma + rho g g and

then you will get rho dot gg this is for the time evolution of the ground state probability that

is basically minus of this term because the total probability is equal to 1. So, you can easily

get it.

So, therefore this would be simply gamma minus rho ee minus gamma plus rho gg and this

coherence terms decay if we can get it will be from the master equation you can. So, that you

will get terms like this it will be rho g e minus you will get gamma ++ gamma minus by 2

and you will have plus gamma phi. So, these are total decay and then here you will have rho

ge the other equation is straightforward to get because you have rho eg is equal to rho ge this

is the Hermitian conjugate.

So, these are actually called dissipative Bloch equation. Earlier we have studied block

equations without presence of any noise. So, now also noise or dissipations are taken into

account. So, these are called dissipative Bloch equations. And these equations are capable of

describing the dynamics of an artificial qubit or transmon in the presence of quantum noise.
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Finally now let me give you a quick prescription on how to work out the decay or relaxation

rate we can work out the decay rates using the. So, called Fermi golden rule and this rule you

must be familiar with because you may have studied in your quantum mechanics course may

be in the chapter called time dependent perturbation theory. Let me explain the rule say we

have the system and environment.

Suppose we have this system and this is surrounded by some environment this environment is

also called bath or bath and this environment and the bath is say it is getting coupled to each

other by some coupling parameters say g and the interaction between them or the coupling

between them is responsible for all the relaxation process. So, coupling between the system

coupling between the system and environment or bath is responsible is responsible for all

relaxation process.

All relaxation process that means whether upward transition or the; downward transition

processes in the system. So, we know this let us say the interaction Hamiltonian has this

generic form the interaction Hamiltonian for the bath and the system has this generic form

say A refers to the system let me put A s that refers to the system part and then we have the

another part refers to the environment.

So, this is the system part and this is the environment or bath. So, we have this let us say the

system is initially in the state say ket i and its final state is say f or any state suppose it is

going from the cis state it transiting from the state ket i to the state ket f by emitting an



excitation it may be in atomic case it would may be a photon. So, according to Fermi golden

rule, so, in this case the transition is happening from initial state to the some state say f.

And according to the Fermi Golden rule the relaxation rate when we are going from the state

i to the state f or which i can simply write it as gamma f i this is given as per the Fermi rule

by this I will explain it first of all this interaction is happening within the; transition is

happening within the system via this system part of the Hamiltonian it is going from the state

i to the state f this is the transition probability.

If I take the mod square, so and this is caused by the environment and or the bath and this is

evaluated and this is called I will explain what this guy is ff and this is evaluated at the

frequency omega. Let me write it here this is evaluated at the transition frequency of the

system say omega is equal to e i energy of the ket i and f e f is the energy of the ket f divided

by h cross this is evaluated at this particular frequency.

And this is basically the spectrum because this is evaluated at frequency omega this is the

spectrum of the fluctuating bath operator. Spectrum of the fluctuating bath operator but

operator evaluated at omega. And f is basically it is a noise or a f is a noise or perturbation we

can take it like a perturbation. Perturbation due to the environment and the noise spectrum

this quantity is basically the noise spectrum and this is nothing but the Fourier transformation

of the correlator.

So, this is the bath operator f of t at a time t and this is evaluated at time t is equal to zero and

then if we take the averaging of these 2 quantities product of this 2 quantity and then we take

the integral and this is the Fourier transformation we are having here it is going from say

minus infinity to plus infinity. So, this particular quantity is known as the correlator, this is

called the correlator.

What it gives, it basically relates the bath operator at different time and separated it by by

time t. So, this correlator relates the bath operator or the environment operator bath operator

at 2 different times separated by time difference as you can see it is simply t here now this

quantity f of t which is the time eval fluctuating quantity.



It is actually time evolved fluctuating quantity representing the bath fluctuating quantity and

this is important to remember that as per the Heisenberg picture this one this is averaged

when we take the average it is averaged with respect to the with respect to the uncouple

system with respect to the uncoupled system that means when we are averaging it we are not

considering the coupling we are just considering the basis state of the uncoupled system and

then we are calculating the expectation value.
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So, basically what I am saying is that when we are writing this quantity or working out this

parameter this term here this is the expectation value. The expectation value is taken this is

important to remember is taken with respect to the unperturbed with respect to the

unperturbed unperturbed that is not yet coupled but okay with respect to the unperturbed.

But okay in fact it turns out that this quantity or the noise spectrum when you evaluate this it

is real valued and it is non-negative or it is positive and is non-negative that means greater

always greater than zero. A typical spectrum generally looks like this we will see some

example later on. Suppose we plot this noise spectrum here with respect to frequency

typically we will get a plot like this.

So, this is in the quantum case suppose this is your omega is equal to 0 and this is not

symmetric around omega is equal to zero as you can see suppose we have this 2 point here

say P and then you see Q and as you can see this point P here. Here omega is greater than

zero at the point q the omega is less than zero and you see they are not both sides are not

symmetrically located it is basically not symmetric in the quantum case.



However this is not symmetric around omega is equal to 0 in the quantum case in the

quantum case. However in the classical case and but in classical case and this has many

physical implication in the classical case it is symmetric it is symmetric around omega is

equal to zero that means if we will get the spectrum to be something like this it would be let

me draw it properly.

So, it would be symmetric suppose this is ff in the classical case if it is omega is equal to 0

this is omega then it will be symmetric in the classical case okay. This asymmetric behaviour

as we have in the quantum case this is asymmetric this spectrum this is asymmetric about

omega is equal to 0 in quantum mechanical case and these are some physic interesting

physics for example if we look at the point p you see at the point p as i said at the point P we

have omega is greater than 0.
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Now what it physically mean the spectrum when omega is greater than 0 you see omega we

are defining as e i minus e f divided by h cross that means the transition is taking place from

the state i to state f and this is system is going from the state i to state f by emitting some kind

of an excitation here. That means the system when omega is greater than zero the system is

releasing we can say our system better let us say system relaxes the system relaxes and the

bath and the bath absorbs energy.

The bath in the process gets energy absorbs energy okay on the other hand if you look at the

point q where omega is less than 0 this side here. Then in this case as you can make it out the



system is excited the opposite things happen the system is excited and so the part supplies

some energy the bath supplies some energy to the system. So, in this case the system is going

from the lower state to the say excited state and in the process the bath is supplying this

energy.

So, this is what the physical implication is in fact what happens in thermal equilibrium as you

see in thermal equilibrium there is always a larger tendency for the environment to absorb

some energy then to supply some energy to the system.
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Let me write here in thermal equilibrium the there is there is always a larger tendency there is

always a larger tendency of the for the environment or the part for the environment for the

environment to absorb to absorb some energy from the system some energy from the system

then to supply then to supply energy to the system. But interesting things happen at t is equal

to zero what about at t is equal to zero case.

In this case you see at t is equal to 0 the bath has no energy the bath has no energy to supply

while okay at absolute zero temperature bath has no energy to supply and you see omega less

than zero refers to the case the other side of on the left hand side of omega is equal to zero

that represents the part where the environment is supplying energy. So, as you can see in the

absolute zero temp at t is equal to zero temperature the spectrum would look like this.

So, here we will have a situation like this suppose at t is equal to 0 the spectrum will be of

this type. Here omega greater than 0 and this is omega and this is your omega is equal to 0.



So, for example if we have a qubit or an atom it can easily emit a photon into the empty

vacuum field empty vacuum fill we can consider as the bath and atom is the system at zero

temperature and this is why in general you will we know in circuit QED or even the topic that

we are going to discuss in the next module of quantum optomechanics we will get into this

kind of picture again and again.

As you know that whether in circuit QED or in this kind of system or quantum

optomechanics the system is always kept at a very very low temperature nearly equal to zero

temperature. So, the spectrum there will always get like this. Let me stop here for today in

this lecture we learned about the phenomenon of Pure-dephasing and we saw how quantum

Linblad master equation can be used to incorporate this phenomenon.

And after that we discussed the dissipative Bloch equation in the context of a qubit where

both relaxation processes and pure phase dephasing are taken into account. Finally very

briefly we discussed about the Fermi Golden rule which is used to calculate various decay

rates. In the next lecture we will start discussing quantum optomechanics which is another

potential platform which is exploited nowadays for various quantum technological

applications.

In fact we will see there that some of the tools that we have learned in this module as well as

in this lecture is going to be very useful. So, see you in the next class, thank you.


