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Hello, welcome to lecture seven of this course .As you know in this course primarily we are

going to deal with the interaction of electromagnetic radiation with artificial quantum

systems. Mostly the artificial quantum systems in particular in circuit quantum

electrodynamics they are going to be modeled as two level atoms. On the other hand when

we are going to deal with quantum optomechanics the quantum system would be modeled as

harmonic oscillator.

This electromagnetic radiations when quantized they will be also modeled as harmonic

oscillator. As we have already learned about two level atoms fundamentals of two level

atoms. Now let us discuss harmonic oscillators.
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The harmonic oscillator is one of the most basic model in physics. It describes the dynamics

of systems close to their equilibrium state. Say, consider a potential energy function say V of

x ,let me plot it. Suppose this potential function V as a function of x has a minimum at some

position say x 0 then, we can expand this potential function one dimensional potential

function V of x into a Taylor series. Taylor expansion would be like this V of x0 around this

minimum equilibrium point plus here it will be x - x 0 dv of dx evaluated at x is equal to x 0



+ 1 by 2 factorial d 2 V dx 2 evaluated at x is equal to x 0 and we have x - x0 whole square

and. So, on.

Now since x 0 is the location of the minimum of the potential energy ,its first derivative is

obviously going to be 0. So, therefore we’ll be left out with V of x is equal to V of x 0 plus

half k x - x 0 square and there will be other terms as well ,where this k is defined as the

second order derivative of this potential function evaluated at x is equal to x 0 and it is a

positive constant. Now since it is only the difference in potenial potential energy that matter

physically we can choose 0 of the potential energy such that V of x 0 we can take it to be 0.

And if now the position ah of the origin of our coordinate is at say x 0 ,if we shift the origin

to the coordinate x 0 ,then we can write V of x is equal to half k x square okay. We are taking

our coordinate position of the origin of the coordinate at x 0 is equal to 0 and if we save the

coordinate origin of the coordinate system to x 0 then we can write this potential energy

function to be as half k x square ,provided the system is undergoing if the system is

undergoing very small or sufficiently small oscillations about the equilibrium point about the

equilibrium point .Okay.
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So, in that case we can neglect all the higher order terms in the Taylor series ,then we can

neglect all higher order higher order terms in the Taylor series and the effective potential

energy is that of a harmonic oscillator. So, this is the harmonic oscillator potential ,in fact you

see if I write down the equation of motion uh here for in one dimensional case. So, here the



force is equal to mass into acceleration. So, mass into acceleration x double dot and that is

equal to force, force is given as uh dv of dx ,right.

If we take it then we are going to get -kx. So, this is what the Newton’s second law gives us.

In fact, let me use the coordinate q instead of x and then I can write down the equation of

motion like this mq double dot is equal to –kq. One typical example of a harmonic oscillator

this is the equation of a harmonic oscillator and one typical system is of this type say, a mass

a mass of m attached to a spring of spring constant k. So, q is the displacement from its

equilibrium point ,then this is the equation of motion.

Alright here we can also write this equation of motion as q dot plus omega square q is equal

to 0 where omega square as you can see is simply k by m and the potential energy function I

can write it as V of q is equal to a half k q square or half m omega square q square. And Now

it looks like because I have shifted my origin to 0 here, okay. So, this is the typical plot of the

harmonic oscillator potential energy function.

Now we can express this Newton’s equation of motion which is a second order differential

equation uh in the form of two first order differential equation, if I write say q dot is equal to

p by m where p is the momentum and p dot is equal to -m omega square q uh these two first

order differential equations are equivalent to this Newton’s equation of motion q double dot

omega square q in fact ,you can very easily get it from this system of first order differential

equation and the you see that means we are actually.

Now going from when you are in the Newtonian mechanics, we dealt with this variable q and

q dot and when we go over to uh this two first order differential equations ,we are going over

to the variable q and p.
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And this is actually known as going from the configuration space configuration space to the

so-called phase space. In fact this face space description of classical system is very useful

because we know that as regards quantum mechanics is concerned in quantum mechanics

these phase space variables q and p ,they, in quantum mechanics they would be represented

by operators and they satisfy this commutation relation q p is equal to i h cross where q and p

are canonically conjugate variables.

As you know that when we want to discuss the quantum mechanics of a system ,generally we

look for the Hamiltonian of the system. And in fact when we go from the classical regime to

quantum regime ,then we must know the Hamiltonian of the classical system. But to know

the Hamiltonian of the classical system first of all we need to know the lagrangian of the

system.

So, in the case of harmonic oscillator also if we want to discuss the quantum regime of the

harmonic oscillator or quantum harmonic oscillator, we first need to know the Hamiltonian of

the harmonic oscillator or even before that we need to know the Lagrangian of the harmonic

oscillator. So, let us find it out. We know that the Lagrangian of a classical system is given as

kinetic energy minus the potential energy and this for one dimensional case it is Lagrangian is

a function of the variables q the position and the velocity.

And this Lagrangian satisfy this so-called Lagrange equation that is del l del q - d of dt del L

del Q dot is equal to 0. So, this is known as the Lagrange equation of motion equation of

motion.
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So, uh in our case in the case of harmonic oscillator, the Lagrangian would be, for the

harmonic oscillator for the classical harmonic oscillator one dimensional classical harmonic

oscillator the Lagrangian would be half m q dot square - half m omega square q square. So,

this is the potential energy part, this is the kinetic energy part and it satisfies this Lagrange

equation of motion which is nothing but the so-called Newton’s equation of motion that is

what we are going to get.

You see you have del l del q is equal to you will get from here it will be - m omega square q

and del l del q dot is equal to m q dot and in fact del L del q dot this quantity is known as the

conjugate momentum, momentum of the harmonic oscillator mass times velocity or I can

write q dot is equal to p by m. So, um if I put del l del q and this quantity in the Lagrange

equation ,here then you will you see from the Lagrange equation I will get - m omega square

q - mq double dot is equal to 0 and which is is nothing but q double dot + omega square q is

equal to 0.

So, we rederive the so-called Newton’s equation of motion for the one dimensional harmonic

oscillator.
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Now coming to the Hamiltonian of the harmonic oscillator for one dimensional case, the

Hamiltonian of a classical system is given by this one q dot p - the Lagrangian. So, in the

case of the harmonic oscillator, the Hamiltonian would be uh we you see this Hamiltonian is

a function of position and the momentum variable. So, therefore I have to express everything

in terms of position and momentum only, q and p variable. So, I need to get rid of this q dot.

So, here I know that q dot I can write it as p by m. So, I have here p by m and then p from

here then the Lagrangian is half m q dot square - half m omega square q square but again I

have to replace this q dot by um p by m square. So, if I do the maths. So, it is very easy to see

that I am going to get this familiar form of the Hamiltonian for one dimensional harmonic

oscillator p square by twice m half m omega square k square. So, this Hamiltonian we are

now expressing it in terms of this variable q and p.
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Now this Hamiltonian satisfy the so-called Hamilton’s equation of motion and these variables

q and p are called canonically conjugate variables and they are called canonically conjugate

variables .Actually any pair variables are called canonically conjugate variables if they satisfy

the so-called Hamilton’s canonical equation of motions. So, or simply call Hamilton’s

equation of motion. So, Hamilton’s equations of motion are ,one equation is q dot is equal to

del x del p.

And another equation is uh p dot is equal to - del x del q .In fact you can verify that uh indeed

uh this uh q dot and in fact let me quickly see for the harmonic oscillator case, for the

harmonic oscillator case we know the Hamiltonian. So, del x del p from here you see that this

is going to give us the familiar equation p by m. So, this already we know that this is correct

and here p dot if I take del x del q from here then you will see Iwill get this force equation

here that is m omega square q.

So, this is also we know that this is Newton’s equation these are the correct equations ,correct

form of equations. So, these variables q and p they satisfy the so-called uh Hamilton’s

equation of motions and that is why they are called canonically conjugate variables.And apart

from that another thing is that this canonically conjugate variables q and p they satisfy the

so-called Poisson bracket.

This Poisson bracket is ,equation is satisfied and let me just remind you that the Poisson

bracket between two classical quantity A B is defined like this it is del A del q del B del p

minus we will have del B del q del A del p and you can easily verify that q p is equal to 1.



And now knowing all these things, we can easily go from the so-called classical to quantum

harmonic oscillator and this transition is very simple and this quantum harmonic oscillator we

can go and this transition is known as the canonical quantization.

The only thing that we have to do is that this variables canonically conjugate variable q and p

they are now going to be replaced by their corresponding operators in quantum mechanics

and these Poisson brackets qp these Poisson brackets are going to be replaced by the

so-called commutation relations for the corresponding operators between the variables q and

p. So, qp we know that that is equal to is cross and this Hamiltonian.

Now would be written in terms of this operator. So, h is equal to p square by twice m here p

is now the operator and I have half m omega square q square. So, thereby we basically obtain

the so-called uh Hamiltonian for the quantum harmonic oscillator ,quantum mechanical

Hamiltonian can be obtained. So, the procedure is very easy and let me just once again tell

that.

In any classical system this we can hopefully quantize it ,provided first of all we need to

know the Lagrangian of the system it may have only uh if in one dimension this is what we

can do extend this argument for any dimensions. So, first thing is that we need to know the

Lagrangian, then we need to find out the Hamiltonian.

(Refer Slide Time: 18:31)

Then we need to uh, sorry, this Lagrangian will be function of q and q dot then we need to

find out the Hamiltonian and once we find that the Hamiltonian we have to check whether



this variables basically we need to dig out the canonically conjugate variable because these

conjugate variables are going to satisfy this Hamilton’s canonical equation of motion. So, that

is what we have to do and if we can do that if we can find out these canonically conjugate

variables.

Then we will also see that they satisfy the so-called Poisson bracket relation and if we have

all these things with us ,then the next step is just to you know find out the, replace it by the

corresponding operators and they will satisfy this uncertainty relation, this commutation

relation and the corresponding operator h everything would be replaced by this operator. And

this is the procedure and this is the general procedure that we are going to apply for any

classical system.

Later on we will see in our course that we are going to quantize the so-called LC circuit there

also uh this would be the kind of procedure that we are going to adopt. Now from your

elementary quantum mechanics course you may know that the Hamiltonian of a harmonic

oscillator satisfies this eigenvalue equation where psi n is the energy eigenstate and E n is the

energy eigenvalue.

And E n is given as n + half h cross omega h cross is the so-called reduced Planck constant

defined as h divided by 2 pi and you know that h is equal to 6.626 into 10 to the power – 34

joules second and omega is the angular frequency of the harmonic oscillator and n takes

value, this integer value 0 1 2 3 like this. And one thing that you can immediately see is that

energy levels in a harmonic oscillator are equally spaced.

Say you have n is equal to 0 n is equal to 1 n is equal to 2 and so on. And the spacing

between these energy levels are always equal and that is h cross omega. In fact this is a

unique, one of the unique characteristics of harmonic oscillator which sets it apart from other

quantum systems and by the way this integer n, here n in this energy eigenvalue expression

refers to the number of quanta.

So, n refers to the number of number of quanta and this this quanta has different name in

different situations, for example it is called phonons. These quanta’s are called phonons when

we discuss vibrations in uh solids or is a mechanical oscillator if we model a mechanical

oscillator as an harmonic oscillator then these quanta’s would be called phonons.



On the other hand if we talk about electromagnetic fields or light these quanta quanta’s are

called photons. So, for electromagnetic field or light these quanta’s are known as photons.
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Now uh instead of psi n actually most of the time we can write it by this ket n here and in that

case our energy eigenvalue equation would become like this. So, here n is also known as

Fock State or it is also called or it is also called number state and this ket n or this Fock state

here ,it is, basically a refers to the state ,it refers to refers to the state where there is n number

of quanta. Now uh there is a very useful formalism uh called operator formalism of harmonic

oscillator and which is going to be very useful for us.

The idea here is that we can introduce operators which may take us from one energy state to

another energy state. Say if we introduce operators where one we can go from say this ground

state to the these operators may take us from the ground state to the excited state or we may

go from the excited state to one another lower state and so on. So, these operators are called

creation and annihilation operators.

Say we have, we want to go from ah say, the from the energy state n to n - 1 lower energy

state then we have to operate it by an operator that is called the annihilation operator, you are

going from a energy state n to n - 1 and this is what we will achieve by this annihilation

operator and maybe some of you already know and then there is a creation operator where it

is going to take us from n to n + 1 and this effectors here would be square root of n + 1.



And these operators are defined such that when you operate on the ground state because there

is no energy state below this ground one. So, you have to ket 0 .It is going to be defined in

that way and also uh a and this any this creation, this is annihilation operator and the creation

operator satisfies this uh commutation relation that a a dagger has to be equal to 1. Further

what turns out that a dagger a ,this bilinear combination when it operates on this energy

eigenstate or Fock state n then it is going to give you a number and this operator is term

called it is uh symbolized as this n cap and this is called the number operator a dagger a.

So, I am sure most of you know all these things but I am just recapitulating and reminding

you. Now in terms of this uh creation and annihilation operator this our original harmonic

oscillator Hamiltonian p square by twice m + half m omega square q square can be expressed

in terms of annihilation and creation operator in this useful form h cross omega a dagger a +

half.
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In fact uh these all these things that I have written here, would be satisfied if we define this

annihilation and creation operator this way say this position operator is written as a

combination of say a + a dagger and this is dimensionless and it has to be multiplied by a

dimensional quantity say q 0 which says the dimension of length. In fact q 0 refers to this as

the dimension of length refers to the special width, width of the ground state wave function it

refers to the ground state wave function of a harmonic oscillator.

What I mean by that is that you know that the ground state for the ground state from your

elementary quantum mechanics you know the ground state uh wave function of the harmonic



oscillator is Gaussian and if you calculate the width of this uh Gaussian in the ground state

you are going to get q 0. So, if you can see the width is del q if you work it out you are going

to q 0.

What I mean to say is that you have to just calculate the standard deviation or first you

calculate the variance and variance in the ground state with respect to the ground state if you

calculate ,that is your q square 0 - 0 q 0 whole square and if you want to find out the width

you just have to take the square root and if you take the square root you are going to get uh

simply q 0 and in fact it would turn out that this guy is nothing but h cross, if you do the

calculation ,this would be h cross by twice m omega.

And so, therefore what we have basically is that this position operator is now defined in terms

of the annihilation and creation an operator like this and the corresponding momentum

operator is defined as by definition it is i m omega q 0 a dagger – a. In fact you can write

from these two equations, you can write annihilation and creation operator like this,

annihilation operator would be one by two q q 0 uh you will have q + i p by m omega.

And a dagger is basically the Hermitian conjugate of this annihilation operator, this is the

creation operator that would be 1 by twice q 0 q – i p by m omega. So, these are extremely

useful relations and you should remember it all the time.
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Now let me briefly talk about the thermal equilibrium statistics of a harmonic oscillator. You

know that photons or phonons these are bosons and when a harmonic oscillator is in



equilibrium with its environment at some temperature say T, Bose Einstein statistics

basically determine the occupation probability of its energy level its level and this is given by

occupation probability of an energy level in a harmonic oscillator is given by this expression.

So, this is h cross n h cross omega by K B Tor 1 - exponential - h cross omega K B T.

I hope you have uh get this expression or learn this expression in your statistical physics

course actually let me quickly show you how this expression can be obtained very easily

because if you can start from the very basic statistical mechanics. Because you know that if I,

as per this Gibbs canonical ensemble or distributions Gibbs canonical distribution ,Gibbs

canonical distribution you know that occupation probability is dependent on ,isgiven by this

expression this is proportional to e to the power minus say energy divided by K B Tis the

Boltzmann constant T is the temperature.

And for harmonic oscillator okay, for n e n and for harmonic oscillator, obviously you have

uh it would be n + half h cross omega by K B T and I can actually this half s cross omega is a

constant term. So, I can take it into this constant, I can write it again include it in the constant

C then I have e to the power - n h cross h cross omega by K B T. So, this is my starting

expression and I know that the total probability has to be equal to 1 and from here you can

easily find out the this constant C.

If you take it out c and this is a you will get the you will get a series actually K B T is equal

to 1 n goes from 0 to infinity and this I can now write it as uh 1 + e to the power h cross

omega by K B T+ e to the power twice s cross omega by K B T and. So, on and it is 1,. So,

this one is 1 divided by e to the power h cross omega by K B T. So, you get the constant from

here that is simply 1 - e to the power s cross omega by K B T and so, you see you finally got

this expressions here.

Let me just complete it. So, you will get pn is equal to this constant ,1 - e to the power h cross

omega by K B T that is what you have this one and then e to the power - n h cross omega by

K B T. So, that is how you get the expression, finally you can if you can just rearrange it,

okay, you get it actually this is I can. Now take it this side and then you will get what I have

written uh originally.
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Now I hope all of you by the way know that this Boltzmann constant K B is useful to

remember that has a value 1.38 into 10 to the power -23 joule per Kelvin. Now using this I

can easily uh find out the mean occupancy ,the mean occupancy uh of the oscillator, of the

harmonic oscillator that is I can just have to find out the average number of quanta and we

just have to calculate the expectation below this number operator or I can just calculate this

quantity n into the probability pn.

And if you I am just leaving it as an exercise to you can very quickly do it, you know you pn

expression is already it is there with you, just have to expand it then please. So, that the

expression that you are going to get is 1 divided by h cross e to the power h cross omega by

K B T- 1 and this is a very useful expression and this is one of the quantity which is, by

which I can actually tell whether a system is quantum or not to characterize the system.
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For example in the classical limit ,in the classical limit ,in the classical limit your this

quantity K B T is much greater than h cross omega. What I mean by that is in the context of

harmonic oscillator that means uh this harmonic oscillator is going to behave classically

because the energy spacing the thermal energy would be much larger than the energy spacing

between two energy levels.

So, the whole system will actually behave like, you will not be able to see the this discrete

nature actually. So, in that case this harmonic oscillator is going to behave classically and in

the classical limit if you look at from this expression then you will get this average number of

quanta would turn out to be when K B T is much greater than h cross omega you can easily

see that that would be K B T divided by h cross omega.

So, uh in a to give some examples say in a typical micro or nano mechanical oscillators

where this uh resonance frequency or this frequency omega is basically in the range of one to

say one megahertz to say one gigahertz 1 megahertz means say 10 to the power 6 hertz and 1

gigahertz refers to 10 to the power 9 hertz. So, this is for a typical nano mechanical oscillator

nano mechanical or say micro mechanical oscillators.

So, this is the frequency, resonance frequency then if you put the numbers suppose at room

temperature t is equal to 300 Kelvin then you will find that the mean number of quanta would

turn out to be if you put K B you put t is equal to 300 Kelvin okay. So, on then you will find

that that would be around 10 to the power 4 the mean number of quantum beta this much.



So, this is a very huge number and that is why uh you cannot uh observe the quantum

behaviour of this kind of oscillators at say room temperatures ,right. To see the quantumness

of this because of this quantity is very high. So, you have to if you can reduce this number

and that you can do, provided you do some kind of cooling, okay, you have to cool these

oscillators and then only you will be able to see the quantum behaviour.

In fact uh in this context let me talk about there is another kind of oscillators that we are

going to encounter and that is the so-called electromagnetic oscillators or electromagnetic

fields and electromagnetic oscillators are light basically.
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This has typical frequency of light, if I can consider them as some kind of oscillator and they

have a frequency on the order of 10 to the power 14 hertz and if even it had room temperature

if you try to calculate their mean occupation number of the quanta or basically mean number

of photons at 300 Kelvin ,then just use this expression. If you use this expression you know

all the parameters then it would turn out to be around 10 to the power -35 which is a you see

that means it is a very small quantity it is nearly 0.

So, that is the reason that optical fields this is refers to optical fields or fields. So, optical

fields at room temperature, optical fields at room temperature can be can be ,because this is

nearly equal to 0 ,can be safely considered to be considered to be in their ground state in their

ground state ,okay. And this issue is going to be very useful why I am saying that because if

you have mechanical oscillators say, you have a oscillator like this and if you make it in

contact with an optical field.



Suppose you have an optical field, even if it is at room temperature, the optical field is or at

some finite temperature you can consider it to be at temperature T is equal to 0 because it is

in the ground state and this mechanical oscillator ,this is the mechanical oscillator this is at

some uh finite temperature optical field at 0 temperature. So, therefore if you keep the

mechanical oscillator with this optical oscillator or optical field and then thereby you can get

you can actually cool the mechanical oscillator .This is actually very elementary way I can

explain cooling of a mechanical oscillator.

Now one useful information that we’ll require later in this course is the evolution of this

annihilation operator ,evolution of a annihilation operator. This can be easily found out by

using the so-called Heisenberg equation of motion which we learned in the last class

,annihilation operator satisfies this Heisenberg equation ,here h is the, let us work it out ,x is

the harmonic oscillator Hamiltonian.

So, a h cross omega a dagger a + half this h cross omega half is a constant term. So, that is

not going to contribute. So, we can now write this as h cross omega a a dagger a who is we

can further write it as h cross omega a a dagger a and you know that commutation relation

between a and a dagger is equal to 1. So, we will have h cross omega a. So, that means we get

this simple differential equation and the solution of this differential equation is trivial.

And you can easily see that the solution will be a of t is equal to a of 0 e to the power - i

omega t. So, this is a very very useful relation and we are going to encounter it many times

later on. In fact I can depict the evolution of this annihilation operator in a picture, just

remember that a as per our definition this is the 1 by twice q 0 q + i p by m omega.
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So, the real part of this annihilation operator is associated with position and the imaginary

part of the annihilation operator is associated with momentum and taking this as the hint.

What I can do I can plot it if I take my x-axis as the real part of any, sorry I cannot actually

plot an operator ,what I have to do I have to take the expectation below the operator. If I take

the expectation value of the operator ,annihilation operator the real part would be you can see

from this expression that would be simply expectation value of q position operator divided by

twice q 0.

So, this has a dimensionless. So, we can term it as normalized position. So, x axis is our

normalized position on the other hand the y axis is imaginary part of a annihilation operator

and who is you can see from here that would be the expectation below the momentum

operator divided by twice m omega q 0 which has the dimension of momentum. So, this is

again normalized momentum.

Now to plot it because of the fact that here we have right a of t if you look at this expression

it is very clear that the magnitude of a of t remains constant magnitude of a of t because of

this exponential factor. So, this remains constant in time. So, only it is multiplied by this

phase factor here and phase varies linearly in time .The phase phase factor if you look at it, it

is the phase factor is e to the power -i omega t and this phase varies linearly in time.

And it rotates here actually because of this minus sign this rotates, in the in the anticlockwise

direction, it rotates in the anticlockwise direction and evolution basically takes place this is a



- omega t at time t and it is in pollution is happening in a circle because the magnitude is

constant.
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As a final topic of this particular lecture let us discuss how to model a system of coupled

harmonic oscillator quantum mechanically. So, say we have a two spring mass system like

this ,I have a spring of spring constant k 0 1 and mass m 1 is attached to it and another spring

or spring constant k 0 2 and a mass having m 2 is attached to it and they are coupled by

spring of spring constant k say this mass oscillator is also um displaced from the equilibrium

position by x 1 and then this is displaced by x 2 then you know that the Hamiltonian of this

whole system this couple system would be as follows.

So, you will have p1 square by twice m 1 + a half k 0 1 x 1 square, this is the energy of the

first oscillator then for the second oscillator you will have p 2 square by twice m 2 + half k 0

2 x 2 square that is the energy of the second oscillator if that is not coupled, these are the

individual energies of the oscillators when they are not coupled. But because of coupling they

would have another term that would be the coupling energy between them that is a half k x 1

- x 2 square. So, this term is very important.

So, let me analyze it little bit further. So, this coupling term or coupling energy term for the

two oscillators that is half k x one - x two square if I open it up then I will get half k x 1

square + half k x 2 square - k x 1 x 2. Now you if you look at these terms this term and this

term assess qualitatively speaking it is not going to change the physics of this couple system



because these two terms are actually changing the spring constant of the individual

oscillators.

But interesting term is this cross term which is actually refers to the fact that energy is getting

transferred, transferred from oscillator 1 to oscillator 2. So, let us analyze this particular term.

So, this term here if I now want to study quantum mechanics if I go to the quantum regime

then I can write x 1 and x 2 in terms of creation in any relation operator. So, let me do that.

So, you will have x 1 would be ,you will have as per our definition, it would be say q 01 a 1 +

a 1 dagger just to remind you that we defined earlier that this position operator we can define

as q 0 a + a dagger ,right, and therefore here I have x 1 would be represented by this one and

x 2 would be again q 02 8 a 2 + a 2 dagger and here q 01 is h cross divided by twice m omega

1.

So, that is for the first oscillator this is the 0 point fluctuation and q 02 is h cross divided by

twice m 2 omega 2 it will be m1 here. So, this is what we have. Now if I open it up then i can

actually rewrite it like this k q 01 q 02 and I will have a 1 + a 1 dagger and a 2 + a 2 dagger.

So, this is what I will have and if I talk about the quantum mechanical version of this part of

the Hamiltonian then I will have it would be represented by say h cross omega 1 a 1 dagger +

a 1 + half.

And similarly here this part would be h cross omega 2 a 2 dagger + a 2 dagger + half .We are

going to neglect these two terms because they are just basically changing the spring constant

of the individual springs. So, therefore the total quantum mechanical Hamiltonian for this

classical system if we go to the quantum regime. Then the quantum Hamiltonian would be h

cross omega 1 a 1 dagger + a 1 + half term is there but let me ignore that because that is a

constant term.

And similarly for the second oscillator I will have a two dagger a 2 and we have this uh this

coupling term here that is that I have as - k q 01 q 02 a 1 + a 1 dagger + a 2 + a 2 dagger,

these are operators, okay, but this one let me write it in because this has to has the dimension

of energy. So, let me write it as h cross g ,g is the coupling coefficient between the two

oscillators. So, finally the quantum mechanical Hamiltonian I can write in this particular form

that would be for the second oscillator I have this one.



And when they are coupled this is the coupling part of this two oscillator a 1 + a 1 dagger and

a 2 + a 2 dagger.

(Refer Slide Time: 52:27)

Now let me analyze a little bit further this particular coupling term, if I look at this coupling

term you will see that I have ,okay just let me take the product here ,that is a 1 + a 1 dagger

and a 2 + a 2 dagger if I take the if I open it up then I will have 4 terms that would be a 1 a 2

a 1 a 2 dagger + a 1 dagger a and I will have a one dagger a two dagger ,alright. So, for what

these terms physically mean ,if I look at these two terms.

So, a 1 a 2 dagger this basically means that in an excitation is getting destroyed in oscillator

one and that is one excitation is created in the oscillator two. So, and similarly ,okay, let me

write here excitation here it means that excitation is destroyed in oscillator one and excitation

is created in oscillator two. So, basically now from oscillator one to oscillator one excitation

is getting transferred on the other hand the other term that is a1 dagger a 2 here the opposite

things happen excitation is.

Now destroyed in two and it is transferred to 1. So, these two terms are called resonant term

and because of the fact that if you we already know that how a 1 this annihilation operator or

the creation operator evolves in time if you look at it a1 evolves like in time it will evolve

like e to the power – i omega 1 t and the other one will it is because it is a dagger that will be

+ i omega 2t.



So, overall this whole combination would evolve as i - i omega 1 - omega 2t. Now if omega 1

is nearly equal to omega 2 ,you see that that basically refers to the fact that we had energy h

cross omega 1 in oscillator 1 and that is getting transferred to oscillator 2 which is helping

energy h cross omega 2 which is if omega 2 is nearly equal to omega 1 then uh that is quite

physical means simply energy is getting transferred from one oscillator to the other oscillator

and that is why they are called resonant term.
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On the other hand if you look at these two terms a one dagger and a and a two dagger ,sorry ,

this would be a one dagger a two dagger if you look at this term this implies this a 1 and a 2

this means that excitation is destroyed in oscillator 1 and excitation is destroyed in oscillator

2 as well. So, simultaneously excitation is destroyed in the two oscillators or um let me write

here that is simultaneous destruction of actually quanta or excitations in oscillators in both the

oscillators or opposite things is happening at that is creation of uh excitations in I can just let

me just copy it here.

So, the same thing I can instead of this one I have simultaneous creation of excitation in

oscillators. So, actually these two events are very unlikely and it is not physical also initially

you have nothing and now we have destructed or created two excitations. So, this is not

physical and this can be actually neglected, these two terms can be neglected ,these two terms

can be neglected on physical ground .An another way to look at it these are actually called

non-resonant terms.



So, if you again look at the time evolution of these two operators or these two combinations

you will see that this one a 1 and a 2 this would, this, it would be e to the power i omega 1 +

omega 2, okay, and similarly for the other one a 1 dagger a 2 dagger this in the time evolution

will go like this omega 1 + omega 2 .That is why these are called non-resonant terms ,they

are called non-resonant terms and they can be neglected if and when you neglect this is

actually another form of the so-called RWA order rotating wave approximation that we

discussed earlier.

So, under RWA this Hamiltonian finally I can write the for the coupled oscillators it would be

h cross omega 1 a 1 dagger a 1 + h cross omega 2 a 2 degree a 2 and we have this coupling

term s cross z a 1 dagger a 2 + a 1 a 2 dagger. Let me stop for today in this lecture we have

learned about the fundamentals of harmonic oscillators. In the next lecture we are going to

see how to quantize electromagnetic radiations.

It turns out that when quantized electromagnetic radiation behave like a collection of infinite

collection of harmonic oscillators and the quanta of these harmonic oscillators are known as

photons. So, see you in the next lecture, thank you.


