
Quantum Mechanics
Prof. P. Ramadevi

Department of Physics
Indian Institute of Technology – Bombay

Lecture - 52
Oscillator Algebra

Okay so today I am going to use the oscillator algebra applications whatever we learnt in

oscillators to solve problem which we have done explicitly using the position space wave

function for a particle in a magnetic field and then later on we will study angular momentum

algebra using this oscillator approach okay. So that is the plan. If you recall, we did this in the

last lecture last week.

(Refer Slide Time: 01:07)

The harmonic oscillator we had a with a dagger is identity, this is what we will call it as an

oscillator algebra and Jx with Jy is ih cross Jz. This is what we will call it as an angular

momentum algebra. So the number operator for the oscillator algebra is an eigenstate n with

the number operator with eigenvalue n and with the number operator the two ladder operators

has this commutator relation.

And from this we can determine a on n is square root n times n-1, it is a lowering operator

and similarly a dagger is the raising operator okay. So using this oscillator algebra, we would

like to solve this problem of particle in a magnetic field and then can we use this oscillator

algebra to determine the spectrum for the angle of momentum also. So this is the motivation

for today's lecture okay.



(Refer Slide Time: 02:08)

Recall the particle in a magnetic field. Let us take the magnetic field along z-direction. So

this is  given by this  Hamiltonian which is  pi x pi y are in terms of it  is proportional  to

momentum minus the shift due to the vector potential. It pi-Ai and as I said already recall the

number operator eigenstate is the simultaneous eigenstate of the Hamiltonian with eigenvalue

proportional to h cross omega.

So in this problem this is for a general harmonic oscillator. What does omega will correspond

here we will figure it out. So the ladder operator in any harmonic oscillator has this property

as I have already discussed for you.
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And in one of the earlier lecture, I explicitly went through a trial wave function and a choice

of a vector potential and derived the energy spectrum to have the frequency with which we

will call it as a cyclotron frequency and it is like a free particle along the z-direction. So this

is what we called as Landau levels. How do we obtain such an energy eigenvalues using these

ladder operators which we saw in the harmonic oscillator?

So couple of things I want you to work it  out is commutator of the x component with y

component for pi x and pi y and similarly we know that p with A and A with p that order

really matters, p dot A is not same as A dot p. So just to take you on how.

(Refer Slide Time: 03:56)

In general, the potentials are functions of positions. So pi x is Px-eAx which is a function of

positions. So if you take Px with Ax that commutator is not 0, it will be –ih cross del/del x of

Ax. This is because you know x, p commutator, px with x is nonzero and if you have any

function of x, it should be del/del x of f of x. Similarly, if you try to find the Px commutator

with Ay, you are expected to be –ih cross del/del x of Ay.
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So if you want to work out using these data, use these data and let us work out for a particle

in a magnetic field along z-direction magnitude is B along z-direction, try to compute the pi x

with pi y, the nonzero commutators  are Px with Ay and Ax with Py and that  gives us a

constant okay. So the pi x with pi y is not 0 like Px and Py but this is nonzero and it is the

constant depends on the magnetic field.

You can normalize the pi x by this normalization, so that you can make pi x prime with pi y

prime to be identity. So this is what I said in the earlier lecture, earlier slide Px with Ay is

del/del x of Ay and Px with Py is del/del y of Ax and if we use that here you get curl of A

which is nothing but it is a (()) (05:47).
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Similarly, the P dot A-A dot P Px with Ax is del/del x of Ax. P dot A-A dot P is nothing but –

ih cross divergence of A or del dot A. We can choose a gauge which is  known to us as

Coulomb gauge where del dot A is 0 and recall that the vector potential can be changed from

by a gauge transformation by a gradient of chi but this change will not affect your magnetic

field, magnetic field will remain same under this gauge transformation but what happens to

the Hamiltonian. Hamiltonian can in principle change to H bra.

(Refer Slide Time: 06:42)

So we worked out pi  x and pi y and P dot A and A dot P. Take the gauge which is  the

Coulomb gauge and if this gauge pi x pi y is ih cross eB and this is similar to our familiar x,

px  commutator  which  helped  us  to  write  a  and  a  dagger  okay. So  that  is  what  is  the

motivation,  just  like  we had  in  the  harmonic  oscillator  x  squared+px squared  putting  n,

omega everything to be 1 here.

We have a pi x squared and pi y squared and similar to x, px commutator which is constant

and nonzero we have pi x with pi y to be nonzero and a constant. So using this we can try to

construct a new ladder operators involving pi x and pi y.
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So this is  what we do here.  We try to take the ladder operators as pi x+i pi  y with this

normalization and similarly the conjugate Hermitian conjugate of that and if you try to find

the  commutator, please  check the  commutator  and you will  be able  to  show that  this  is

identity and also construct the number operator which is b dagger b and turns out to be please

verify this but we need in the Hamiltonian pi x squared+pi y squared.

So you can take this  term to the left  hand side and try to rewrite  your Hamiltonian  and

rewritten  Hamiltonian  is  exactly  similar  to  what  you  would  have  seen  in  the  harmonic

oscillator with the b dagger b is like the number operator, the frequency omega is eB/m which

is your familiar cyclotron frequency. So once you have this Hamiltonian rewritten looking

like a harmonic  oscillator  you can read off the spectrum as n+1/2 h cross omega c+free

particle along z direction which is h cross (()) (08:56).

The thing which we did if you recall, we worked out the position space wave function and we

took (()) (09:05) trial function for it but if you want to work it out, you have to make a great

choice okay.
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So  just  for  completeness,  the  Hamiltonian  the  particle  in  a  magnetic  field  Hamiltonian,

suppose we take the wave function energy eigenvalue is E. By doing a gauge transformation

A to A+ gradient of lambda, you could get a new Hamiltonian but this Hamiltonian is what

we could call it as a canonical transformation of the original Hamiltonian because the energy

spectrum remains the same, it is just that wave function will pick up an overall phase factor

and no physics changes if you pick up the phase factors.

But we will see in some situations like Aharonov-Bohm effect where such phase factors will

become important. If anybody is interested, can take a look at Bohm-Aharonov effect okay.

So this is what we did in the class a couple of lectures ago.
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Maybe yeah where we took a choice for A and a trial wave function but you can also see by

doing a gauge transformation using the lambda gauge parameter. You could actually get a

new vector potential and try to see how the wave function changes by a phase factor okay.

(Refer Slide Time: 10:40)

So now that we have got the energy spectrum if you recall for this Hamiltonian, I said you

should get the Lorentz force, I do not know how many of you have already worked it out but

if you have not recall Lorentz force theorem and that should be obtainable in the Heisenberg

picture writing the Heisenberg equations of motion. So in the Heisenberg picture workout

dxi/dt which is given by your familiar commutator of xi with the Hamiltonian.

So if we work it out, you will be able to see this. We would like to work out the m d squared

xi/dt squared okay. So this is something which you need to work it out. So if d/dt of dxi/dt so

the operator is dxi/dt which will show up on the next right hand side with the commutator

with the Hamiltonian. So this I want you to work it out and what is your expectation. This is

the force law for a particle in a magnetic field.

So this should be proportional to your Lorentz force Fi yeah. So here this is your classical

force equation where F is the Lorentz force.
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And let us work with the case where the electric field is zero, this is what we are doing now.

If you are taking a particle in a magnetic field and this is the Hamiltonian x component of the

force, I would have written it as P cross P in classical physics but if you go to quantum

mechanics you have to write a Hermitian operator. In fact, when you write the Heisenberg's

equation of motion for d squared xi/dt squared you will exactly get this combination V cross

B-B cross V will show up there okay please check it.

(Refer Slide Time: 12:40)

So please check that this  force the quantum mechanical force form for the Lorentz force

should have the Hermitian operator which is the combination of dr/dt cross B-B cross dr/dt

for the Lorentz force and we can set E to be 0 because we are working with (()) (13:03) is 0

okay. So far I have tried to show how using the harmonic oscillator algebra, trying to write



the Hamiltonian for a particle in a magnetic field in terms of the ladder operators we could

get the spectrum.

And I have also tried to use the Heisenberg's equations of motion and derived for you the

familiar Lorentz force.

(Refer Slide Time: 13:32)

This will move on to the angular momentum algebra taking some of these data of these ladder

operators and whether we can find the states for the angular momentum operators. So recall

the orbital angular momentum and the spin angular momentum which we discussed last week

for the Stern-Gerlach experiment.

(Refer Slide Time: 14:00)



So Lx Ly is ih cross Lz and L dot L commutes with all the components, for conventions we

are going to take it with respect to Lz and we write it to be a simultaneous eigenstate of Lz

and L dot L and these are the eigenvalue equations with eigenvalues which we have seen

when we discussed this hydrogen atom and the questions we should ask is how Lx operates

on lm and similarly how Ly operates on lm okay. What do we get are the questions which you

would like to know?

(Refer Slide Time: 14:35)

So we have seen orbital  angular momentum and spin angular momentum. They obey the

same algebra. This is what I tried to motivate you from Stern-Gerlach experiment. It exactly

behaves the algebra of the spin operator should be exactly similar to what we have plus they

are in  two different  spaces.  They have to be 0 and we have this  condition which is  the

simultaneous eigenstate of L squared and Lz.

We are checking the i  to be the z  component  for  convenience  and universally  following

whatever books are doing and similarly you can have it to be a simultaneous eigenstates of S

squared and this is it. (()) (15:18) trying to talk whether we are talking about orbital angular

momentum or spin angular momentum. We will compactly write angular momentum by a

symbol J and the J will satisfy the same property.

And we will write eigenstates of J squared and Jz to be the simultaneous eigenstates. So we

have done this all ladder operators. The ladder operators are not Hermitian operators. You

cannot experimentally observe them. A is not equal to A dagger that is why you have two



ladder operators; they are not Hermitian. Similarly, we would like to do a ladder operator

here using these angular momentum Jx, Jy and Jz okay.

Motivated by these harmonic oscillator ladder operators let us write J+ as J1+iJ2. I am using

1 2 and 3 as x y and z okay and J-s J1-iJ2. It is similar to the angular momentum operators

which  I  am writing  J+  and  J-  are  looking  similar  to  the  way  we  wrote  non-Hermitian

operators in the oscillator algebra. What is the next thing? I had this Jx Jy to be ih cross Jz. I

would like to write the commutator of J+ with J-, J+ with Jz and J- with Jz. So that I can try

to play around and find how to go about this problem.

(Refer Slide Time: 17:08)

So write down the algebra using these ladder operators which is J+ or – with J3. What will

this be? Can you work it out?
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What is this? The negative side right. Is that right? What is this answer turning out to be? So

it is twice h bar J3 and do the J+ with J3 excellent. So it is +h cross J+ or –h cross. So the

same algebra of Jx Jy Jz which we wrote, I am trying to rewrite yeah J+ with J- what it is

which is like your a and a dagger, something wrong – okay. Both of them are – yeah, sorry.

The third one is + and second one is – okay I will correct it please try to.

(Refer Slide Time: 18:48)

So J+ with J3 or Jz is –h cross J+ and J- with Jz is +h cross J- and J+ with J- is twice h cross

Jz.  Now  let  us  compare  with  the  harmonic  oscillator,  kind  of  said  that  the  states  are

eigenstates of Jz from the hydrogen atom experience right. So this is similar to your number

operator (()) (19:28) not exactly okay. It is like Jz operator is like number operator. If I write

my state as jm with Jz operator, it gives you m h cross jm.



We have one more because we know J dot J it is an eigenstate of J dot J that is why I put this

additional index. Otherwise, I could have just work with m okay. The maximal compatible set

for an angular momentum algebra is simultaneous eigenstate of J dot J and Jz that is why I

have  two  integers.  So  Jz  is  like  your  number  operator  in  harmonic  oscillator.  It  is  an

eigenstate with eigenvalue mh cross.

Then, what does it tell us? J+ and J- are like your, I do not know one of them will be a and the

other  one will  be probably  a  dagger  or  the  other  way around okay. So this  algebra  will

actually tell you what happens to J+ on jm. If you remember when we did the oscillator, we

tried to say that a on n, how did we argue a on n? a on n went to I do not know whether this is

m-1 or m+1 so I think it is like a dagger and this is like a.

Rewrite it that way, then this will become a +sign, that will become a –sign. Then, that will

be like the a dagger and a excellent. This has to make you think also and do it. So use this

algebra and try to figure out that it is like a ladder operator. It is not an eigenstate but this one

will be an eigenstate right. This will be an eigenstate of Jz with eigenvalue m+1 h cross that

is why we wrote the state as use this algebra.

Similarly, the next one to figure out that it will be a lowering operator. You see the power of

algebra  now. How  we  are  exploiting  the  power  of  algebra.  What  is  left?  You  have  to

determine these coefficients that is right. So that is from the hydrogen atom data but we will

do it independently now and show that how the restrictions are that is all. So those things will

come to, those things are not visible here.

I am just saying it is like. If it is exactly harmonic oscillators, then nothing more to do. As he

is pointing it out, there is no information that m goes from –j to +j and you cannot have

raising operator going to infinity like the way you did it in harmonic oscillator okay. So we

need to fix those things, will come to fixing that. I am just saying that you can if jm is an

eigenstate given to you which is a simultaneous eigenstate of J squared and Jz, I can actually

get the trend how the J+ and J – operates on it from this algebra.

That is all I said but this coefficient of proportionality has to be fixed and also these issues

that m should go from -J to +J also J could be integers or half-odd-integers. All these things



are not fixed right now. I am just using hydrogen atom data and just doing this but we will

now do explicitly to figure out all these informations.

(Refer Slide Time: 23:14)

So I need to figure out that j and m, m goes from –j, -j+1, till +J. This has to be figured out.

You  have  to  also  figure  out  whether  J  could  be  0,  1/2,  1,  3/2  you  know these  are  the

possibilities  has  to  be.  In  the  orbital  angular  momentum in  hydrogen atom,  it  was  only

integers. Now we have to naturally see whether we can get half-odd-integers. This is also to

be figured out.

What else I need to also figure out jm as dm on jm, what is this dm, J- on jm is some Cm on

jm-1. We need to figure this out also where some of these things have not been fixed as of

now. So we need to fix this. Is this clear? The problem clear, how do we do this? Yeah, so

there is another nice trick which we are going to do. This is what is the Schwinger method.

Let us do that just as okay.
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So this is things I have said except for this negative sign which is here. So all the other things

are fine and we can write simultaneous eigenstates jm which is an eigenstate of J squared and

J3 and we will show that J+ is a raising operator and J- is a lowering operator. This also you

can see from this algebra is what I was trying to tell you. Only proportionality constant has to

be figured out using this above algebra.

Not only that as he has already pointed out that we need to figure out m takes values from -J

to +J. You have to also figure out that J could be integers, could be half-odd-integers. All

these  possibilities  because  if  you lose Stern-Gerlach  J  is  actually  half.  If  you do orbital

angular momentum, J is actually integers. So all possibilities are allowed has to be figured

out. We have not still done that okay. So for that we use this Schwinger oscillator method.
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What  is  the  theme?  Theme  is  to  generate  the  angular  momentum  algebra  using  two

independent oscillator algebras. There are two independent oscillators for the system, one

with a and a dagger, another one with b and b dagger. Do not confuse this B with what I

wrote with pi x+ so this is just a two independent oscillators. You can call a1 a1 dagger a2 a2

dagger if you want but you can as two independent oscillators.

So  we  are  going  to  write  address.  This  is  what  is  called  representation  right.  You  can

represent the angular momentum ladder operators J+ J- and Jz or J3 as follows. Let us take

two  ladder  operators  with  one  of  them  as  raising  and  another  one  does  lowering.  By

independent, I mean that between A and B, the commutator is always 0, a and a dagger will is

harmonic oscillator algebra, b with b dagger is harmonic oscillator algebra.

Between a and b or a and b dagger or a dagger and b you know a dagger with b dagger they

are all 0. This is what I mean by rest of the commutators are 0. They do not talk to each other.

They are independent. Using two independent harmonic oscillator, we could write a product

of two ladder operators. If you note here, one ladder operator is like raising, the other one is

like lowering.

It is just combination which we take; the J- is Hermitian conjugate of this. You can take the

dagger of this and you should get the J-. Order is really does not matter because whether I put

first b and next a or a and b does not matter because they commute. I can work with this. So

now to find what is J3 substitute these two here and determine what you get for J3. I will

leave it to you to do this. Please try this out. J3 should be a function of again involving the 4

ladder operators okay.

Please try this out and interestingly if you work this out, you will find that you get it to be a

difference between the number operators. Please work this out okay. Similarly, work out what

is  J dot J.  Please work out what is J dot J. Na is the number operator  for the harmonic

oscillator with ladder operators a and a dagger so Na is nothing but it is a dagger a. Nb is the

harmonic oscillator with ladder operators b and b dagger.

I am not bothered about the frequencies of the two oscillators. For me I am more interested in

constructing the angular momentum algebra in terms of the two harmonic oscillator ladder



operators. Is it okay? So please work this out J dot J and tell me what you get okay. Please

very whether you get this. Let me stop here today.


