Let us get started with few more problems on translation operator for a finite dimension that
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is the finite distance special finite distance.
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And this problem 4 will involve a problem on the commutator of the position operator and

Write down Heisenberg's time evolution equation for the
annihilation operator 4 and creation operator 4.

The translation operator for a finite (spatial) displacement is

given by )
f‘(é‘) = exp (—;pﬁ' a) :

where p'is a momentum operator in three dimensions.
Evaluate the commutator [#, T(3)] where # is the operator of
the jth component of position. Determine how the
expectation value {r} will change under translation.

the translation operator with a finite displacement.
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So in the question we have T a is exponential -ip dot a/h cross where p is the momentum
operator in three dimension. So we can write this as e raise to -ipx ax okay. I can write this
hat as the operator px, ax is a position fixed position, py ay+pz az/h cross. So we are given
that p is a momentum operator in three dimension and ri is a position operator in some certain

direction. So rx or rl1 will give me x direction. Then, I can have y direction and z direction.

So let us start by writing a specific case like you can you have to first evaluate ri Ti a okay
and then we generalize the result. We will generalize the result later. So as we know that the
momentum operator px, py and pz commute with each other. So will be Tx, Ty and Tz. So
this T cap a I can write it as T cap x ax sorry there will not be a cap Ty ay and Tz az. So these

translation operators will also commute with each other.

So when we are taking the commutation relation, we have to use this hint. So these operators
X, Y, Z are in 3 directions, 3 translation directions that is the 3 axes x, y and z and these Tx Ty
and Tz commute with each other right. Now since we have this, let us evaluate ri T ai okay.
So ri Tai you remember we have done such exercise in tutorial 5. In that, we have evaluated

this quantity and this came out to be just try to recollect ai times T ai.

This is what we had obtained in tutorial 5 and remember we will use these relations while
evaluating the general result. So ri commutator of ri and pi1 will be 0 okay. This we should
recollect and we know that ri pi is nothing but ih cross. We have seen this commutator
relation. These are the general relations which we have seen. In general, we have seen the
expression of ri and j, ri and pj okay that is delta ij when i and j are equal the will not

commute.

And when i and j are unequal they would commute in this particular case. So this is what we
have here. So will be ri, Tj aj, this would imply this remember because Ti depends on pi so if
I have a pj then I have a Tj which will be equal to 0 okay. So using 1 2 these two things.
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Using equation 1 and 2 what we obtain is let us right now ri this is position operator, T a
okay. So ri, T a, T a can be written as Tx, Ty, Tz okay and ri will commute only with Ti, so I
will have ri, Ti ai times that is Tx if I take and here if I take let me keep it i only okay. So I
have a Tj aj Tk ak. Remember these are operators and we need to denote it by cap. So this is a
ri Ti aj which is nothing but ai okay I will have ai and this quantity that is Ti ai Tj aj and Tk

ak which will give me back this term okay.

In the question, we have this. In the question, we have that we have to determine how the
expectation value of r will change under this translation. So let us now consider a system in
state psi. So let psi be the state of the system and now we have to remember this. It is
important to note here that translation operator is unitary okay. This is one thing you must

remember.

And now when we suppose we apply a translation operator that is T a what do we obtain? So
consider this T dagger a this is the operator T a ri. So we are finding out the expectation value
of ri. This is what we are asked to find but on this state we are applying the translation
operator. So T on psi on the right and T dagger on psi on the left because T will become T
dagger.
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Psi T dagger ai ri T ai, so this we will evaluate. Here what I said is I will use r1 T ai
commutator+T ai ri. I will substitute for this here. We have seen what is the commutator of
this; commutator of this was ai T ai correct. So commutator will give me this and the second
term is this term okay. So what do I get next from here? This will be nothing but T cap ai |

have got ri which I can actually take outside.

In the next step, I will do that. T cap ai this is the first term and the second term is T dagger ai
and [ have a T ai ri times psi okay. Now these two terms I will simplify, ai is a number, ai can
be taken out. It is a number not an operator sorry. So ai | can take outside very well and I
have a T dagger T which will give me just 1 okay. This is what I have correct and when i is

operated on a and this term will give me 1.

So let me write here okay, so this is the expectation value of ri on the state psi and when you
operate the translation operator, it is getting shifted by amount ai. So in the end what we see
is that there is a shift in the position by ai. So the position is shifted by ai, thus the expectation
value of ri is shifted by ai when one operates a translation operator okay. So there is a shift by
amount r ai okay. So this is the fourth problem we did. Let us go to the fifth problem.
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5 A coherent state |a) is defined as an eigenstate of ladder
operator 4 (called destruction or annihilation operator) with
eigenvalue o whose explicit form is

I”) - e—\nF;’QEnﬁ* |0)

(a) e Evaluate expectation value of %, £2, §, 5% in the coherent
state |n) and determine the uncertainty product AxAp. What
can we infer from this result? X

(b) If [A, B] = constant, then efef = eBeAelA Bl — (A+E A BI2
Using this show that

el g=n®d _ alaf?/2 fod! —ata)
{c) Using the above, we can rewrite the coherent state |n) as
) = D(a)[0),

% where D(a) = el*8'=2"3) is called the displacement operator.
4 Shew that the displacement operator is unitary,

Fifth problem is dividing 3 parts and it is slightly lengthy but it is interesting to check these
relations commutation relations and what will be the displacement operator and all things.
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And this was discussed in the last part of the lecture and you are asked to prove some of the
relations. So we have put some problems as the tutorial problems so that you actually sit and
solve them. So first part, in the first part you are given a coherent state which is defined as the
eigenstate of the ladder operator and you are given a relation. So for any operator or any
complex number alpha you are given alpha is e raise to -alpha square/2 e raise to alpha a

dagger so small a dagger okay and 0.

Just recollect that and this operator or the normalized eigen ket of a as eigenvalue a alpha. So

when A operated A dagger or A, operator A is operated on alpha you get eigenvalue A alpha



okay. This you have to remember. Now the next step would be that we have to define, we
have to calculate X X square P P square in this coherent state basis. So for that you need to do

some algebra.

Few hints I will give and you can maybe use those hints to work further. So let us define
dimensionless position and momentum operators as A+A dagger/2 and p as A-A dagger/2
times 1. So this is a position operator X and the momentum operator P which are defined in
terms of the operator A which has eigenvalue alpha when you operate it on the eigen ket
alpha okay. So now let us rewrite X and P in terms of A and A dagger okay A and A dagger.
So what will be in terms of A and A dagger?
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A will be=X+i P cap/2 and A dagger is simply the complex conjugate, you can see here
correct. So we know that for simple harmonic oscillator, we have this relation capital X is
nothing but m omega/2 h cross inside the square root x cap and p is nothing but 1/2 h cross
omega m inside the square root p cap. So capital X and small x are related by this relation

okay. We have defined capital X in terms of dimensionless variable.

So we have to now and remember x and p are our regular or usual position and momentum
operators right. So it is now easy to evaluate what is X. This is X is what we are going to
evaluate. X we had defined as A+A dagger/2. So first we will evaluate X, then we will
evaluate X square, then P and then P square. So expectation value of X on ket alpha will be

1/2 T have A dagger A.



So I will write A alpha+alpha A dagger alpha correct and when you operate this, this will give
me an eigenvalue alpha, this will give me an eigenvalue alpha square alpha star. So I will
have alpha+alpha star and these are normalized eigen ket. So these are of the form R, I can
write it as real part of alpha okay.
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Now in the same manner you evaluate X square will be you will find when you solve this you
will have the real part of alpha which we evaluated will be square+1/4. So please check this.
Check yourself okay. Then, I will write what is my P. We have seen that operator P was 1 A-A
dagger okay and I have skipped this but you must remember that when there is a hat it is an

operator notation.

So I have 1/2 and then I will have alpha-alpha star kind of a term which is equivalent to or
which can be written as imaginary part of alpha okay. Similarly, you evaluate this and you
will find that imaginary part of alpha square+1/4 is what you obtain. Now the next step would
be to calculate delta X dot delta capital P okay. Delta X dot delta P will be square root of you

know the definition, X square-expectation value of X square*similarly P-P square.

We have evaluated all these and when you substitute this, you will have something like this.
Now you will substitute for capital X and capital P in terms of small x and small p. This is
what we have right. So when I substitute for these, I get delta x dot delta p as in the operator
notation let me be very explicit. So this relation is nothing but Heisenberg uncertainty

principle, delta x dot delta p should be<or=h cross/2 okay right.



So this coherent state, note coherent state alpha actually achieves the minima in Heisenberg
uncertainty principle relation which is equal to the value of the uncertainty principle because
of capital X and capital P, we have seen that.
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The second part or the b part, b part you are asked to calculate the exponential eB if
commutator of A and B is equal to a constant then you have to show that e raise to alpha A
dagger e raise to —alpha star A dagger is having some relation like e raise to alpha square/2 e
raise to alpha A dagger-alpha star A. So we have this relation and we are going to use Baker—

Hausdorff formula.

So what we have let me write here as B A e raise to A, B okay and you have this equal to e
raise to A+B times e raise to A, B commutator of A, B/2. So using this relation and applying
Baker—Hausdorff formula, we have e raise to alpha a dagger and another term is e raise to
alpha star a okay. This expression I can rewrite using this result. I can rewrite this as e raise to

I can write this as alpha a dagger okay.

This term -alpha star a, so I have used this times e raise to alpha a dagger-alpha star a/2 and
this will be a dagger alpha a dagger-alpha star a and I can have alpha square outside and
commutator of a dagger and a and a dagger is 1, so I have alpha square/2. So this is what we
have proved. It is just one step okay. These relations will be useful in proving other results
also. So now the c part is that we can rewrite the coherent state in terms of the displacement
operator. Can we do that?
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Now let us write the displacement operator we have to write in terms of the coherent state. So
the coherent state given to us is e raise to -alpha square/2 e raise to alpha a dagger. This is
what is given to us and remember we know that when you operate annihilation operator on
any inner state 0, you will obtain 0 okay. It will not go further. This is the end of the ladder.

So I can write this again as alpha square/2 times e raise to alpha a dagger.

I can write this as e star a, I can just multiply by some coefficient. It will not matter; we have
used this okay. Now remember we had this relation over here okay. I will use this relation in
this expression, so when I use this relation I will have this term times this and I have 1
exponential-alpha square/2 in the expression already. So I will just end up having e raise to a

dagger-a star a on alpha.

And this is the definition of displacement operator and hence we can prove that this is the
coherent state can be written in terms of displacement operator and you have to show in this
part that the displacement operator is unitary. This is explicitly seen, it is very simple, e raise
to alpha a dagger-alpha star a and D dagger alpha will be e raise to alpha star a-alpha a dagger
okay.

So when I take D dagger alpha D alpha, so U dagger U is 1 that is it is unitary operator. It is
very simple. You can see it without even solving okay. So these exercises and you had in your
lecture few more exercises, try and solve it and see if you can do solve those exercises which

were discussed.



