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So let me just get on to this compatible and incompatible observables okay.

(Refer Slide Time: 00:36)

So as I have already said the operators of compatible observables satisfy commutator A, B=0.

There could be a set of compatible observables with A, B to be 0 okay. This condition what

does  it  mean  in  the  context  of  measurement?  I  had  already  told  you  when  you  do  the

measurement on an arbitrary state psi of t, it will collapse to one of the eigenstate of that

operator correct.

So this condition will imply that if you first measure A operator on an arbitrary state, it will

collapse to some eigenstate of the A operator. If you try to measure the B operator on that,

this what will it give, So the claim is it will give the same the order if you do it in this order

or the other order, the result which you will get will be whatever measurement you get for A

and B will be the same.

So for finite dimensional linear vector space, I have always stress the fact that you can write

for these operators a matrix representation and if you write a matrix representation then two

matrices commutator being 0 means that you can simultaneously diagonalize the matrix.
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So if you have AB=BA, suppose let  us take 2 x 2 matrices,  so this  is the meaning of A

commutator B=0. If phi 1 and phi 2 are the basis, eigenbasis of A operator, what is that mean?

Phi 1 is lambda 1 phi 1 or let me call it as a1 phi 1, A on phi 2 is a2 on phi 2. Let us use this

on the state, let us do that on that state. So A on B on phi 1=B A on phi 1 but A on phi 1 is a1,

a1 is a number eigenvalue, B operator on what have I got.

What is this equation? See the extreme left  and the extreme right,  B on phi 1 is also an

eigenvector of A operator with the same eigenvalue a1. So B on phi 1 should be proportional

to they are not degenerate eigenvalues, eigenstates, you cannot have two different what is that

LV that B on phi 1 should be proportional to phi 1 that is it or B will also share the same

eigenbasis of A operator.

So  what  have  I  tried  to  prove  here?  I  have  tried  to  use  the  fact  that  it  is  compatible

observables or the corresponding operators are commuting. Once I take the corresponding

operators as commuting, then I get an equation which is like an eigenvalue equation. For

simplicity, we have taken a two-dimensional linear vector space and a matrix representation

which is 2 x 2 matrices.

Take the basis which is an eigenbasis of A which is non-degenerate, a1 and a2 are not equal

and in the process you find another eigenstate B phi 1 and that means for a completeness of

these  two-dimensional  linear  vector  space  B  phi  1  should  be  proportional  to  phi  1  or

equivalently we have proved that B operator on phi 1 is some b1 times phi 1. So this means



both A and B can have the same, this can be eigenbasis of A and B which is what we call it as

a simultaneous eigenbasis of A and B.

You cannot do this if they do not commute, you can do this only if they commute and we are

also  assuming  the  fact  that  both  the  eigenvalues  of  A operator  and B operator  are  non-

degenerate. You could have had the same eigenvalue with the different linearly independent

state, that case we are not considering, we will come to that.

So I have proved for you that for finite dimensional linear vector space, we can have matrix

representation  for  the  compatible  observables  which  can  be  simultaneously  diagonalized.

Now you are clear? When I say it is a simultaneous eigenbasis, it means that given an A

operator and B operator which are 2 x 2 matrices, you can find so you can find you have an

operator. How do you diagonalize the matrix?

You try to  find some S matrix,  similarity  transformation  which will  give you a diagonal

matrix right. Matrix mechanics everybody has done. Now the claim is that this S matrix is the

one which gives you the eigenvectors. So when I say they are simultaneous eigenvectors, it

means it is a same S matrix which should also operate on this which will give you the B

diagonal, it cannot be a different S matrix.

Both A and B are simultaneously diagonalized by the same diagonalizing matrix which gives

you the two eigenvectors which are the same eigenvectors for both A and B. The earlier

statement was if you do two consecutive measurements A followed by B, A measurement and

then followed by B, the final result which you get will be the same as doing B followed by A,

the order does not matter, that is what is the first statement.

The second statement is the commuting operators in a finite dimensional vector space need

not  be  two-dimensional,  even  in  n  dimensional  n  x  n  matrices,  you  can  simultaneously

diagonalize by the same similarity matrix which means the eigenbasis of A and eigenbasis of

B will be 1 at the same.
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So this is the first case which I said for the 2 x 2 matrices. Assume eigenvalues ai of A are

distinct, distinct means they are non-degenerate and similarly eigenvalues bi of B are distinct

okay, so both are non-degenerate. This is a very special situation. You could have situations

where  some  operators  may  have  two  eigenvalues  being  same  which  will  give  you  the

degenerate situation right.

Energy eigenvalues for example when you look at a particle in a two-dimensional box, if you

look at the first excited state, there are two linearly independent states right with nx=1, ny=2

or nx=2 or ny=1 in a two-dimensional particle in a box where you will have the same energy

eigenvalues, nx, ny formally.
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These are various notations where you can have the Hamiltonian operator for a particle in a

two-dimensional box which will give you En x squared+ny squared. If nx=1 and ny=2, this

energy will be E5. If nx=2, ny=1, this is also E5 but that states which I write nx=1, ny=2 is

not proportional to some constant times nx=2 ny=1. They are linearly independent, in fact

you can explicitly show that nx=1, ny=2 and nx=2, ny=1 is 0 or nonzero.

If you say it is linearly independent and you are looking at a basis which are orthonormal

basis, then this is. So this is a degenerate situation. One observable A if I take it to be an

energy operator for a two-dimensional particle in a box that will be a degenerate situation. I

am not looking at the situation, I am looking at one-dimensional particle in a box, let say that

there are two operators each of the eigenvalues, the position operator for example in a one-

dimensional box, it is going to be distinct energy sorry position eigenvalues.

But there could be situations like this, some functional operator; you can have a functional

operator  as  x  squared+y  squared.  Then  all  the  points  on  the  circle  will  have  the  same

eigenvalues but the states will be different. So that is where you will start seeing degenerate

and non-degenerate. Just for simplicity, let us look at most of the 2 x 2 matrices or 3 x 3

matrices.

Let us take all the eigenvalues of A operator are distinct, no two eigenvalues are same and

similarly eigenvalues bi of B are distinct. What will happen when you do the measurement

now?
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Suppose you do a measurement of the operator A or observable corresponding to the operator

A on arbitrary psi. So I have just replaced your phi n by this n or phi k by k okay. So this is

just to further simplify notation, do not worry about why we are not writing, so we are going

to  always  write  instead  of  phi  n,  I  am  going  to  just  use  the  shorthand  notation  here.

Remember that phi n eigenvalues lambda n and that n is what I am keeping track of and I am

not really going to keep track of the phi.

This is just the matter of notation. It is just a variable, dummy variable okay. So measurement

on an so you initially have a system given to you prepared in a state psi, that is what you are

given, you are trying to do a measurement of an observable A on that arbitrary state in which

it is prepared. So we already argued that it will collapse to one of the eigenstates of the A

operator but which eigenstate nobody knows before measurement.

After measurement, the person says I got ak as eigenvalue. Once he says I have got ak as

eigenvalue then I know that it has collapsed to the state k in phi k as k now. Then, if you do B

measurement immediately after this, what will be the B value? It will be bk right. So this is

what is the system collapse is here. What will be the value B measured immediately after

this? We can definitely say even before measuring, it has to be bk.

And you can measure and say it is in bk because once it has collapsed to the eigenstate, it is

going to remain in that eigenstate right. It has collapsed to one of the eigenbasis of A operator

but once it has collapsed into the eigenbasis of the A operator, it will remain in that eigenbasis

which is  the simultaneous eigenbasis  for the B operator as well  because it  is  compatible

observables, both A and B are commuting.

That is why even before measurement of B, after you do the measurement of A, you can

precisely say what should be the value of the B measurement and you can verify okay.
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What is the next complication we can do? This is what I was trying to say. Suppose say

eigenvalues ai of A are degenerate. Let us take a1 to repeat twice, the remaining of them are

distinct okay. That is what is the degenerate situation and whereas you take eigenvalues bi to

be non-degenerate, b1 to bn are all different, so let us take that simpler situation.

(Refer Slide Time: 14:31)

So let us take a1 and we tied a1, a2, a3 so let us continue here a1, a1, a3, a4, a5 dot as distinct

eigenvalues. There is a degeneracy, two-fold degeneracy for the eigenvalues the first and the

second eigenvalues. What does it mean? The state 1 and state 2 are degenerate. So A operator

on state 1 will be a1 times 1, A operator on state 2 is a2 I should have written but a2 same as

a1 on 2 because of the degeneracy.



So now when you do a measurement on an arbitrary state, suppose you take an arbitrary state

psi and you try to do a measurement of the A operator, we said it should collapse, what is an

experimentalist get? He says I get a1 eigenvalue suppose. Can you predict the state now?

What  can  you  utmost  say?  It  can  be  either  one  of  them  or  it  could  also  be  a  linear

superposition of them.

When he says he has found eigenvalue as a1, the system state has collapsed to we can only

say psi collapses to some linear combination of 1 and 2. So summation over let us write Cl l

where l is 1 to 2, I do not even know what they are. The Cl can have a system, which of the

set  of Cl’s I  am measuring  I  cannot  say without  touching the system. You do not know

beforehand, you only know that before measurement, it will go into one of the eigenstates for

the non-degenerate case.

For  the  degenerate  case,  you  just  get  an  eigenvalue  in  your  hand  that  it  has  collapsed

specifically to 1 or specifically to 2 that equation you do not have before, whatever you miss,

think about it okay. This is one small scenario which we are taken.
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So the collapse of an arbitrary state  to a  degenerate  state  of A, suppose I  know that  the

collapse gives me the degenerate eigenvalues will not uniquely determine the expectation

value for the next immediate measurement of B. This is all I am trying to say. It could be

either b1 or b2; we do not know which one, so this formally I had tried to help you in one

particular thing.



Suppose measurement  of A on arbitrary state  psi  goes to  kl  where kl is  degenerate  with

eigenvalue ak okay. So all the l’s, so you can take l this to be two-fold degenerate where l is 1

and 2 this is the example I took. So ak is the same eigenvalue, you could try to rewrite the

state in terms of the superposition of the eigenstates of the B operator. No harm doing this

and you will find that the measurement which you do on B operator on an arbitrary kl, it will

collapse either to l=1 or you know the s=1 or s=2 for a specific one.

But  which  one  it  will  collapse  to  you do not  know till  you measure.  If  you get  the  a1

eigenvalue, I know the B eigenvalue has to be b1 or b2, that much I can tell but when you try

to do the measurement it will be either b1 or b2, which one you will get beforehand you

would not do amongst it. So immediately after B measurement what will A give? So it will

give a1 only.

If suppose a1 was a measurement before and then the B measurement suppose it gave b2,

again you do an A measurement, it will be a1 only okay. The logic is from non-degenerate to

degenerate nothing will happen if collapsed to a specific ideal fashion but if you are going

from a degenerate to non-degenerate, there is some ambiguity that it can go into a superposed

state and then you need to worry about what is the B measurement.
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So what is  incompatible  observables? So far, we have spent a lot  of time on compatible

observables and even in compatible observables there are two kinds where one observable

can have degenerate eigenvalues or non-degenerate eigenvalues. In non-degenerate, there is

very simple, they are the simultaneous eigenbasis of both of them. In the degenerate case,



there is some certainty that you can rotate in that degenerate subspace to write the eigenbasis

for the B operator. This is what I have tried to tell you.

So incompatible observables means they do not commute and we cannot write a simultaneous

eigenstate of A and B operator. So measurement of A followed by measurement of B and

again measure A may not give C as a value,  cannot give you the same eigenvalue,  same

values, you agree know. This is the key point which plays a very crucial role in the Stern-

Gerlach experiment.

How many of you know about Stern-Gerlach experiment? So that they can put it through the

spins presence of a magnetic field, this will be one of the themes which will work on the rest

some of this lectures following and you will see that the measurement of the x component of

the spin followed by y, again come back to the x, you cannot predict, it keeps on oscillating.

You cannot say that once I have done the measurement what is the reason?

That is incompatible, some of the incompatible operators I am sure you are all familiar with.
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Suppose I ask you Lx, Ly commutative, Lx is yPZ-ZPy and this Ly is ZPx-xPy sorry xPz.

Use the properties commutative properties and work this out for me and tell me what you get.

Check whether you get this, please check this. You have not done the steps but please use

that. What do you have to use? You have to use ri, pj is ih cross delta ij, use that and prove

this that Lx, Ly=ih cross Lz, please prove this, exercise for you.



And once you prove this, what can we say about Lx and Ly? Compatible or not compatible?

Incompatible observables. So if you try to measure Lx and then do the measurement of y and

again Lx, you cannot predict what the Lx measurement is. In the Stern-Gerlach experiment,

the  intrinsic  split  was  happened  of  the  two beams showed that  even though the  angular

momentum is  0,  they  have  some intrinsic  quantum numbers  which  is  the  spin  quantum

numbers.

They also satisfy the same property is what they said okay. So those are the incompatible

operators, which makes the systems much more interesting. You do a measurement once; you

come back and repeat the measurement you get a new result because of this incompatible set

of  observables  lot  of  beautiful  things  happens  in  the  system  okay.  Classically  classical

mechanics, we would not think like this but now you know incompatible observables plays a

very important role.

Although, some more things if this is going to act on a finite dimensional vector space, the

trace of Lx, Ly should be same as trace of Ly, Lx. So which means trace of Lz has to be 0 for

finite dimensional linear vector space. So the matrix representation when I write for Lx, Ly,

Lz, so this rule is also you can try to find what is the commutator of Ly with Lz, what do you

expect?

This is just x, y, z rotation, so this is going to be ih cross Lx. So it is same argument you can

show the trace of Lx should be 0, trace of Ly to be 0. Here what happens? By the same token,

there is an identity operator trace on the left hand side if you do it is 0, right hand side trace of

identity, can it  be 0? So then we say that  we cannot  give a matrix  representation for an

infinite dimensional Hilbert space.

Matrix representations are possible only for a finite dimensional Hilbert space. That is why

this equation is allowed in an infinite dimensional Hilbert space and if claim this is true in

finite  dimension,  then  these traces  of them have to  be 0.  So all  these properties  will  be

satisfied by the spin operator in Stern-Gerlach experiment that they will be traceless, these

matrices which we will find they will all be traceless, so it is very consistent okay. Okay So I

stop here.


