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Clear kind of summarizing whatever you have seen in the last classes
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So getting with this all these definition in place what are the postulates of quantum mechanics.

So this I have been repeating many times you a quantum mechanical system with some dynamics

and you formally say all the information about the state of the system is going to be contained in

this side so that is the first posture. You say that the system is prepared in the state side so all the

physical observables.

Some of the simple ones which we are familiar position momentum, angular momentum energy.

In quantum mechanics we associate operator to every observable.
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Which is as follow of the in this also we saw that all the adjoint operator should be = to the

operator which is what we what we call it as Hermitian condition. The eigen values of Hermitian

operators have to be real or equivalently any expectation value of any operator If it is real then

that operator corresponds to the observables. Yes that is the first requirement. All the operators in

quantum mechanics which corresponds to observables.

Must satisfy linear all the operators in fact whether it corresponds to observables or not take the

to be linear operator. There are some operators which are anti linear operators also but that is

something  you  need  to  think.  What  is  an  anti  linear  property  you  know  at  least  for  the

observables which we are going to study is linear. Let me answer this question.
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So, we had this A operator on c times psi we wrote this as c times A operator on psi. So, this is

the linear operator if it is anti linear operator you have to complex conjugate co efficient. So, anti

linear operator let me call it as o  satisfies some point if we have time, we will talk about this

there is a time reversable operator which as to satisfy this property we will come to it. So, at least

for all the practical purpose.

Right now what we are going to take is the observables which we are studying like momentum,

energy on these things satisfy the linearity  property. So, you are looking at  linear  operators.

There are some more subtleties here that all your this anti linear operator which time reversal if

you do two time reversal it is identity, so it is only defined for discrete operation but whereas for

continuous operation like translation or rotations the operator has to be a linear operator. So, you

have seen this also

An eigen value equation I defined it for any operator for example A operator this lambda I is

called the eigenvalue and psi I s are the eigen states of this operator. You have to get used to tis

notation eigen value equation means which is an eigen value which is an eigen function and the

eigen function will be a eigen function with respect to one operator. Sometimes there will be

another operator which will also have the same eigen function 1 of x.

 



Then this is the same eigen function for both the operatos.so, all this possibilities exist it can be a

different eigen function or it can be the same eigen function okay. So, this is eigen value equation

and we also need linear operators to satisfy this property this is also I said whenever you take the

initiate state this A psi will gave you a new state you can replace it as psi with A dagger and with

psi and that is an inner product property which should have the star.

And then we also said that for observables whose expectation values have to be real you have to

have this property will force that A= A dash. So, I asked you to find out d/dx expectation value

on a state psi right and you have done this in the weight function formalism. Take the particle in

the ground state or first excited state on this expectation value can be taken to be if this is ground

state tis will be integral over dx 0 to L psi 1 of x d/dx psi 1 of x right.

Formally you can do this not even for a particle in a box. You can take In general a free particle

you can take this from -infinity to +infinity. And say that the way function should vanish well

defined it belongs to L2 of-infinity to +infinity the way function should vanish at + or -infinity

and you can work this out. Please d0 this and you will  see that will be same as negative of

integral. 

So, this is a star negative of integral dx-infinity to +infinity okay so you can have a d/dx tag psi 1

of x psi 1. So, you can show that the expectation value of d/dx is same as negative of expectation

value of d/dx dagger. What does that mean it gives expectation values in general complex a+ib to

be same as. Let us write this to be a+ib okay this one will tell me it is a-ib with the negative sign.

So, a=-a means it is going to be 0 so it is only b which will survive. B is only purely imaginary o

if you take the expectation value of del/del x operator you can show that the expectation values

are purely imaginary. So, they do not correspond to observables. Observables should have real

eigen  values  and  the  expectation  values  which  gives  by  Ehrenfest  theorem  related  to  your

classical results practical results they have to there.

So, the only way you can make it real is you put a ih cross here and this will become a -ih cross

sorry this is -ih cross and this will become a +ih cross. It will also come to why it is -ih cross



el/del x for the momentum operator. I do not think you know how the derivation goes to show

that the linear momentum as an operator has to be -ih cross del/del x. So, this + and this – will

give you the same okay.

So, then there is no – sign here I will play around with a+ib sorry a-ib right because there is a

dagger which means these two will cancel only ab. So, that is why the expectation values of

observables have to be real let us just take a toy example how to do it for a d/dx operator. Fine

for all observables which we study the eigenvalues have to be real, so those operators are called

self-adjoined operators which are denoted by a=a dagger they are also called Hermitian operator.

There  is  a  slight  subtle  difference  between Hermitian  and self-adjoined but  for  all  practical

purposes in this course we can take we can call Hermitian as self-adjoint operators we will not

into that. There is a formal way in which you have to look at domain of an operator and so on we

will not get into it. I introduced you the Fourier transform which kind of told that if you have a

square summable sequence.

And a finite dimensional or a countable infinite dimensional all these things we have done. But

when we did the Fourier transform by taking K to be a continuum there also it is actually a

uncountable continuum linear vector space right.
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So, the set of kns which we have which corresponds to the phi n of x for periodic functions we

could have a k which is similar to what we wrote c to the ikx as the basis functions right we did

this. So, this one has a discretized index so kns is a set of allowed vectors and for that we have

this corresponding functions phi n of x you may recall that right and then we also went into a

wave packet where we used the basis function that needed the ikx and k was a continuum.

So, with periodicity we showed kn to be like 2n pi/r here this k is a there is no condition k will

also go as k k+delta k so on it is dk is very small so this is a continuum, so this vector space is

countable, but it can be infinite dimensional right a particle in a box stationery states the phi n of

x which you write, and it can go up to there is no cut off it is infinite dimensional but countable.

In the sense that it is summed up series right. 

But if you look at a free particle these basis functions are also for a linear vector space. But here

there is a continuum because there is a linear vector space to be an uncountable linear vector

space. Slowly taking you into abstract notation by showing you some simple examples I hope

you appreciate.
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So, this is where we get into the uncountable continuum linear vector space. Some of the things

which we can start doing as we can introduce basis states in the position space okay. So, x is a

continuum it goes from -infinity to +infinity like the k. So, I will formally follow the derived



notation  write  the  basis  states  in  position  space  by  a  ket  x  allowed.  How  will  you  write

completeness in orthonormality in this continuum vector space.

Exactly like what you did in the discrete you have to only replace wherever summation over n

was there by an integral over tx because x is the variable, so we have I the continuum linear

vector space uncountable there is an outer product summed up all the positions, but the positions

are continuum. So, there is no point in putting a summation you have to put an integration.

Suppose you are in some kind of a checker box.

That you know the ball will only fall at l,2l ,3l then this position will become discretized. Then

the integration can be removed, and you can put a summation. But I am trying to say that the

particle can be anywhere from -infinity to +infinity. So, this is a well-defined position basis for

that and following our completeness and orthogonality for a continuum vector space we can

define the completeness relationship of this.

And orthogonality to be the derived delta function confining myself to one dimension. What will

happen if I go to 2 dimension there will be two integration dx dy the state which I have written I

could write x,y outer product ad we can do this. What happens here it will be a derived delta

function in to dimension, I am taking you through this so that slowly we will see what exactly is

wave function which you all studied which you were doing you could write a wave function.

Or you can define the direct formalism over ket and ket in the position basis ket in abstract basis

and we can see how to get wave function which you study using this position basis. So, that is

why I am trying to stress the position basis. Any arbitrary state you can expand in any basis that

is what I was trying to tell you it is not required that you have to expand it in momentum basis

alone. You can expand it in position basis you can expand in energy basis. 

Like all your particle in a box then you expand it a super post wave it is taking the stationary

state which are energy basis. The psi ns Hermitian operator on them have you a specific energy

nth excited state energy. So, that is an energy basis so here can do the psi in a position basis why



not any basis is good enough. So, if I do that, I can just insert the identity operator and write this

what will we call this as this inner product.

It  is  the  probability  amplitude  for  an  arbitrary  state  psi  to  be  in  position  specific  x.  This

probability the amplitude in the position basis is what you all study of wave function. What you

have been seeing as wave functions are nothing but the probability amplitude for an arbitrary

state psi to be in the position x is given by this inner product and that is what we call it as a wave

function.

So, whenever you do wave function there you can go and replace it as an inner product and we

can try to see whether everything is consistent, so this is what we call it as a wave function.
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So, what is expectation value? This also I said for a system prepared in state psi the expectation

value of some operator X for example let us take this to be the position operator in quantum

mechanics in the direct notation I would have if this state is in psi then this is what I would have

written but equivalently I can insert this parenthesis which is nothing but a identity operator

which is what I have done here.

And once I put this identity operator you can see that this psi with this x is a complex conjugate

of your wave function.  And then the x operator on the x basis  will  give you an eigenvalue



equation. X operator operates on this state x will give you an eigenvalue x times x. So, operator

is gone you get an eigen value then what are we left with a psi an inner product x what is that?

So, we are going to define an operator x on the position basis.
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So, let us take some x0 specifically if I say it is a position basis the position operator on x0 state

will  give  you.  Suppose  if  I  take  a  state  with  some  momentum  and  I  operate  with  some

momentum operator I am supposed to pull out that number of that state, right? so this state is at a

let us say this state at x0 and I have a position operator it hits that state what you will get a

position eigenvalue it will give information about that state and xo.

So, this is an eigenvalue equation for the position operator with eigen value x0 and get x0 that is

what I call it as a eigen function. So, the position basis means they are eigen states of the position

operator okay. So, if we use this then whatever I wrote psi x operator psi formally I could have a

psi and then integral/dx xx and then I have a x operator on psi. So, this integral/dx I can take it

out not a problem.

This will be psi with x and you have a x operator operating on x that will give you eigen value x

you are still puzzled I wrote x0 earlier yeah but all the observables the eigen values are real. All

your position operators are all it is an adjoint operator I you want you can take it x star you can



write but x star is same as x for all observables. Eigen values are always real, so you do not need

to write star. 

If it is some other operator which has no corresponds with observables, then technically you have

to put a star there. Otherwise I do not need agreed so here I am trying to say that x0 with x

operator is formally you would have written x0 with xo eigenvalue as a star but since this is a

observables lambda =lambda star so this will be the eigen value will be real. So, we do not need

to put a star.

Is it okay then what else is left that comes out with psi so this piece is what we call it as wave

function psi of x. And if you call this as psi of x this one has to called as psi star of x and x

integrated. You get back your earlier quantum mechanics where you did in the wave function

formalism but here, I had the direct notation, but I inserted a position basis completeness identity

operator in position basis and then went to the familiar wave function.

It is this notation is so neat that you can go back and forth between the wave function and the

state vector formalism. I do not know this angular bracket is so really very elegant now we all

universally follow it, so I want you to appreciate that you can also start using this by inserting

unit operator in between any time for convenient. Like if I am looking at position operator, I will

put a unit operator in the position basis.

But if I am looking at momentum operator, I could do unit operator can be in any basis I can also

put  a  momentum  test  right  you  start  seeing  that  start  doing  that  momentum  basis  and  the

corresponding  momentum  operator  on  the  momentum  basis  will  give  you  the  appropriate

eigenvalues and to go from position basis to the momentum basis what will you do again you do

this inserting unit operator right.
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Let me formally write that you will have a position basis which I can write dp pp this is identity

operator operating on x nothing wrong. So. if I take x then this is dp state p and then this inner

product of p with x what is this inner product one has to find, and we will do this at some point

and show that it is should be b then b and then the product or does this one and maybe at some

point so that to I px/h cross.

So, this will turn out to be e to the I px/h cross we will prove this okay. In some senses going

from one basis to another between the momentum basis and the energy basis sorry momentum

basis and the position basis the Fourier transform shows up. But I have introduced for you that

there is a unit  operator in the continuum linear vector space uncountable linear vector space

which is this is the completeness condition.

And the corresponding orthogonality condition in momentum space will be pp prime if you are

in one dimensions you have px px prime then this will be a delta function of px-px prime. So,

you need to remember that when you are in unaccountable continuum linear vector space you

will have the derived delta function for ortho normality. We did this in the function space you go

back and rewrite the function space is similar to what you do with the wave functions.

You will see all of them will be visible there. So, for an system in an abstract state psi we can

work out this expectation value for a position operator. Either in this wave function formalism or



here and both are equivalent, This is exactly=evaluating psi star x x psi of x which you have

done in your first year course. So, once we have operators and expectation values, we would also

like to see what is the uncertainty in the evaluation.

It is nothing similar to your standard deviation right so how do you define that? you find you

define uncertainty in the position is  find the expectation value of the square of the position

operator subtract out the expectation value of x and then take the square. Like standard deviation

standard deviation you have to do it  on the expectation values.  See you have done with the

square root thank you yeah there should be a square root, or you can write square delta x.
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Okay I want to spend some time on this measurement issues if you want to measure position if

you what to measure energy you know given a state to you how do you know what is the energy

of that state for example if it is a stationery state you operate a Hermitian operator, or which is

equivalent to finding an expectation value of Hermitian by Ehrenfest theorem it should be=to the

energy or average energy.

But if the state is  an eigen state  then it  would have actually  give you the exact  energy. So,

Hermitian suppose its operating upon some psi n is en times psi n and you state is in our psi n

this is the expectation value of psi n what will this be gives you En. So, if state prepared to be a



perfect eigen state if you try to measure the energy of that state or try to find the average energy

of the system prepared in that state both will be same giving you some energy eigen value. 

But wat exactly you are doing in expectation values for a super postulates. Suppose I have a

super position cn on psi n what exactly are you doing here. When you try to do a measurement

what  happens system collapse  to  one  particular  which  state,  we do not  know any of  these.

Suppose if I tell you the system has these stationery states possible, I know some value n it will

collapse right.

But how will I determine cn you take the same identically prepared system. Let us take 100 of

them in each of that identically prepared system. Simultaneously you do the measurement and

find suppose take the ten rows each ow is doing measurement on our identical system you same

as the energy somebody says E2 as energy and so on. If it infinite I can find out how many of

you got e1 how many of you got E2 and I can take the average.

So that mode cn square cn squared is the probability of finding energy value as En. Okay since

we also take it to be normalized the state psi is normalized what does it mean?=1. So, this is what

for a specific energy when you have infinitely identically prepared system when you try to do a

simultaneous measurement  each system you will  have different  energies.  Somebody will  get

something but if you take that.

And see tabulate how many of these systems got e1 how many then you can actually find mod cn

squared. Okay so this is what we get information from a state vector and we find this mod cn

squared by doing this on an identically prepared system. So, measurement when we do where I

take  the  state  one  person  when  he  does  the  measurement  with  that  table,  he  is  doing  a

measurement he does not know whether he will get E1 or E2 or E3 or something.

But it will definitely be in that set. If the system gas stationery states with energy E1 E2 E3 when

he does some measurement, he will not get 1.1 times E1 okay or he will not he will get E1 or E2

you cannot get something intermediate in between that he will not measure he will measure only



one of the stationery state energy eigen value which stationery state eigen value you will measure

nobody knows he will either get E1 E2 or E3 and so on.

But he will not get somewhere in between you will not get something like E1+.01 or something

you would not get that that is for sure but which one he will get he himself will not know that is

where  the  probability  gets  into  the  picture.  Tat  is  very  intense  nothing  you  can  do.  so,

measurement by an observer on a state psi will make it go into one of the stationery state this is

what we call it as collapse of the wave function.

And you will have an energy which you cannot predict what it will be. But it will be one almost

that set of the stationery eigen value so if you take for measurement take n identically prepared

system.
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Psi is the state of the system before we measure the energy of the system, we can only say it will

be one of the set of a loud energy eigen value you cannot say which energy eigen value. So, once

you do a measurement the state collapse to one of the energy eigen values energy eigen states.
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So, when you do this measurement when I do this Hermitian operator on psi which is Hermitian

operator on summation /n cn psi n what I will get is I will get some specific em state so psi m

state this is what you will get and after tis when we start measuring Hermitian on this it will give

energy Em on psi. It will remain in that stationery state after that an observer who is trying to

measure an arbitrary state will see that the state psi will collapse.

To  some  stationery  state  which  stationery  state  he  does  not  know  when  he  is  doing  the

measurement. It is not a specific m one of the set of this. After he has it will remain in that state

throughout it will remain as psi m again if he does the measurement on it, he will not get a new

energy he will get the same energy is that clear. So, the measurement on a system leads to a

collapse of psi to psi m a specific eigen state and it will have an energy which is measured. 

After that if we again repeat to measure the energy again it will remain in that state, then you can

have a predictive answer takes the super prostate and does the measurement only measure he

does not know what is the energy even before measurement he cannot guess but he gets it to

collapse to a specific stationery state which is an energy eigen state. After it collapse if we try to

measure again and again.

He will get the same energy value so as long as the system is undisturbed. What do I mean by

that I cannot make the stationery state to undergo some other transformation I do that then it may



again go to a super postulate As long as I do not disturb the system, I keep it after collapse it will

remain in that collapsed state which is one of the eigen states of that operator. Okay let me stop

here.


