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Just to recap what is wavefunction which you have already seen. I have put it as a plot here. 

(Refer Slide Time: 00:34) 

 

The mod of the complex wavefunction, mod squared of it, is going to be positive definite and 

there is a plot as a function of x and looking at the plot, you can try and define formally 

probability of finding a particle between x and x+dx at a specific time t, will be|𝜓(𝑥, 𝑡)|2𝑑𝑥. It is 

nothing but it is just area which is shown here. I put a shaded area here and that gives you the 

probability of finding the particle between x and x+dx. 

 

If you want to find the probability of finding the particle between x1 and x2, what do you have to 

do? You have to integrate between x1 and x2 and that will give you the shaded area under this 

curve. So the probability of finding in the region x1 and x2, that is going to be the ∫ |𝜓|2𝑥2

𝑥1
𝑑𝑥. So 

that will be the total are shaded under this curve. So one is to have some kind of a pictorial view 

not to mechanically do integrations, differentiation. 

 

But you should all know that, both the math part as well as the graphical part and experimental 



data. All these things should be in your mind, then you understand quantum mechanics, okay. 

This also you have kind of being imposed when you did all the potential step function, well, 

barrier. In no region, you want your wavefunction to blow up, right. Did you allow anywhere the 

wavefunction to blow up?  

 

If you had an exponentially growing function, if the region goes to −∞ , +∞, then you put that 

coefficient to be 0, okay. So you will make sure that the probability is always a finite quantity. It 

is not infinite, okay. So p which we find for x lying between x1 and x2. This has to be 

∫ |𝜓|2

𝑥2

𝑥1

𝑑𝑥 

. 

(Refer Slide Time: 03:16) 

 

And this has to be finite. Here the mod squared, we will do a box normalisation. From that, okay, 

yes. So the question is that if suppose you have a wavefunction which is 𝑒𝑖 𝑘 𝑥. 

 

(Refer Slide Time: 03:52) 



 

The claim is that when I do the probability |𝜓|2, that is 1 and  

∫ |𝜓|2𝑥2

𝑥1
𝑑𝑥, if you go from -infinity to +infinity, it will be infinity. Because this is 1, |𝜓|2 = 1. 

But what you will do is you will put it from -L to +L or something, okay. What will that be? It 

will be 2L, right. So we will keep it as 2L and do all your work, observable calculations which 

are averages and then this L will get cancelled. 

 

So it is, even though it is not a, it looks like from this expression that it is infinity, you can 

regularize it in this way for the oscillatory function. These are called oscillatory functions. And 

you keep this L and later on you put L tending to infinity and all your calculations will all be 

finite, okay. So this is one of the important requirement which is called as squared integrable 

condition. 

(Refer Slide Time: 05:12) 



 

And square integrable functions, is for formal definition. If you have ψ(x,t), you have to make 

sure that it goes to 0 faster than 1/√𝑥 as x tends to +∞. I am looking at the positive x axis, |𝑥| →

∞ and for such functions, you can normalise them and normalisation condition is that the |ψ|^2 

dx in the entire regime, the range depends on the situation but if you are looking at a region 

which goes from -∞ to +∞, this integral has to be equal to +1. Most of the time your 

wavefunction may not be normalised. 

(Refer Slide Time: 06:05) 

 

But you can normalise it. Like for example if ψ(x,t) is another wavefunction whose integral over 

the whole region is N, N is called as a normalisation constant and it should be finite. And how do 



you write the normalised wavefunction? You try to put 1/√𝑁 on the unnormalized wavefunction. 

 

And if you try to do mod psi squared integral, it will be, that will be normalised and you also 

want your normalised wavefunction to go to 0 as x tends to ±∞. So these are the formal 

definitions of the squared integrable functions. And for you to call it as a normalizable wave 

function, okay. So this is one exercise which I want you to do. Use the time dependent 

Schrodinger equation which I showed.  

 

The slides will also be there. I will try to put them on Moodle also for you. Show that the rate of 

change of probability, this is the total probability. You have seen that the total probability is 

normalised, it is a constant. Use the Schrodinger equation and show that it is 0, okay. That is the 

question? 

(Refer Slide Time: 07:49) 

 

More exercises. Starting from expectation value of x, how do you write the expectation value of 

x? How do we write expectation value of x? 

(Refer Slide Time: 08:05) 



 

If I assume ψ to be a normalised wave function, this is the way we will write the expectation 

value of x, right. Just recalling what you have learnt in your first few course. So you start from 

the expectation value of x, show that d/dt of that expectation value, we do the algebra and show 

that it is expectation value of momentum. Momentum, you all know. Momentum expectation 

value is –i ℏd/dx; so that is the momentum expectation value. 

 

So what is this equation tell you? Classical mechanics when you do, right hand side, extreme 

right hand side, is actually velocity, okay. You can write this as mv, then it is expectation value 

of velocity. Expectation of velocity, please derive this, okay. So this is an exercise. Expectation 

value of velocity is rate of change of expectation value of position. Classical mechanics you did 

not have expectation value. 

 

But you would have done d/dt of x to give you V, okay. If you want to match with classical laws, 

it is the expectation value which satisfies the classical laws. Quantum ideas, momentum is -ih  

d/dx, does not give you any matching with classical laws. But if you want to understand classical 

laws, find out the expectation value and see what equation the expectation value satisfies, okay. 

 

So this explicitly when I do it, you see that d/dt of expectation value of x is 1/m*⟨𝑝⟩which is 

what we expect for a classical law where we do not do expectation value. Exercise 3, is also 

familiar to you. If you are in the presence of a potential energy, the force law will be the -



gradient, conservative potentials if you have, the force will be proportional to -𝛻V, everybody 

knows that, right, classical. 

 

But now, in quantum physics, your expectation values have to satisfy the equation. So please 

verify these things using this formal definition of how one writes the expectation value, given an 

indication. Please verify this and we could have a discussion on the tutorial session on Monday, 

okay, if you are not able to do it. But please try to do it, okay. So these classical laws satisfied by 

expectation value in quantum physics. 

 

This comes under the title as Ehrenfest Theorem, expectation values obey classical laws, okay. 

The couple of things which you have done in the previous course, one is when we have a particle 

in a box. This is something which you have used. 

(Refer Slide Time: 13:09) 

 

And you have also done potentials which are 𝑉−, 𝑉+ at x=0. So these finite, 𝑉− and 𝑉+ are finite. 

When you did this finite potentials, okay, you made sure that 𝜓− the region at x=0 should be 

equal to 𝜓+ at x=0. What else? d/dx of ψ, so this is 𝜓−evaluated at x=0 should be same as or 𝜓+ 

at x=0. So this is continuity of wavefunction, this one and this one was continuity of derivative 

of wavefunction or finite potential. 

 

Once I do a particle in a box, which is removed? The second one is removed. Why? You know 



the reason. “Professor - student conversation starts” This will be finite term. So suppose you 

make it infinite, then you expect that? (()) (14:57). This is one way of saying it and we would 

like to see for other kind of potentials. What are the other kind of potentials? “Professor - 

student conversation ends.” You have all learnt about Dirac delta function in your math 

course? Yes? So what is that property? 

(Refer Slide Time: 15:22) 

 

Suppose I have V as 𝑉0𝛿(𝑥). This is a delta, Dirac delta function. We expect what? We expect 

𝜓− of x to be same as 𝜓+ of x. Continuity of wavefunction, there is no problem. Even for a 

particle in a box, your wavefunction should vanish that x=0 and at x=L and there is a continuity. 

Once there is infinite potential, wavefunction is 0 in the outside region of the box. Wavefunction 

is continuous. 

 

The derivative of wavefunction cannot be checked for infinite potentials, right. So the derivative 

of wavefunction in general, only for finite potentials, will be continuous when you go from 

region 1 to region 2. This is the statement we make and as he has already pointed out, if you go 

and stand at the Schrodinger equation, you can actually prove these things, okay. So that is what 

I am going to show now, okay, just to take you on the tour of seeing it from, okay. 

(Refer Slide Time: 16:42) 



 

So take V of x below x=0 to be 𝑉−  and V of x to be 𝑉+ for above x=0, x>0. If you take the 

Schrodinger equation and write the double derivative as difference between the single derivatives 

divided by epsilon and integrate over dx, so  
𝑑2𝑓

𝑑𝑥2  if you want to write, how will you write this? 

𝑑𝑓

𝑑𝑥
 evaluated at x=+ε, 

𝑑𝑓

𝑑𝑥
 evaluated at x=-ε then divided by 2ε, right. 

 

You want to integrate this over dx. You can also integrate this over dx. You can remove this, 

okay. So this will give you, okay. So let us do this. So take that double derivative of the 

wavefunction and rewrite it as the difference between 2 single derivatives, integrate it over dx so 

that 1/2 𝜀 cancels and you will have the other term, d of x-C. So this is just the Schrodinger 

equation which is rewritten here, an independent Schrodinger. 

 

Now you can play around putting V of x from –ε to 0+another V of x between 0 to ε and 

substitute V- and V+ and take their limit epsilon tending to 0 limit, okay. We are looking flows 

at the boundary between the 2 regions. Is that right? So if you do that, there will be an epsilon 

factor multiplying. You also use the fact that psi of x is continuous. So you can pull out psi of x 

as psi of 0 out of the integral. 

 

Ψ of x is continuous, so you can pull out ψ of x as ψ of 0 outside the integral and this V(x) will 

become 𝑉+ +V-, okay. And you will have an epsilon because of this integral over dx. Similarly, 

E of ψ of 0*another ε run, okay, 2 ε. When you take the limit ε→0, what happens to the second 



term? Second term as long as V+ and V- are finite, epsilon*a finite quantity when 𝜀 tends to 0 is 

0. 

 

That is why the second term will become 0. The second term becomes 0, this is what he pointed 

it out already, you will have your first derivative of your wavefunction at +𝜀 and first derivative 

of the wavefunction at -𝜀 will be continuous across the boundary. Very clear from the 

Schrodinger equation. Will you do this intermediate step? Please do this intermediate step 

explicitly putting in V of x in these appropriate region, take the 𝜓(𝑥) out as 𝜓(0). 

 

Because 𝜓 is continuous and check that you get continuity of the first derivative. Please check it? 

(Refer Slide Time: 21:24) 

 

For infinite potential, suppose some region you make it infinite, okay, even if V- is 0, sorry if 

𝑉+is 0 and you make V- to be infinity, even then there is a problem. Because there will be an 

infinity multiplying a 0 and you have to be careful when you have 0 multiplying infinities, okay. 

When you have such problems with some potential in some regions where potential becomes 

infinite, you cannot assume the first derivative of the wavefunction to be continuous.  

 

So that is why the derivative of wavefunction is not continuous for such potentials. Is that right? 

So what have we said? 

(Refer Slide Time: 22:13) 



 

We say that 
𝑑𝛹

𝑑𝑥
 in region 1 at x=0 should be d psi in region 2 at x=0 if x=0 is the interface, if V+ 

or 𝑉1and 𝑉2are finite. If 𝑉1is infinity, 𝑉2is finite, then we do not have this. 

(Refer Slide Time: 23:12) 

 

So the immediate problem which we can try to solve as V=𝑉0𝛿(𝑥), okay. So how do we do this. 

We will have a −
ℏ2

2𝑚

𝑑𝜓

𝑑𝑥
 at 𝜀+, right, minus −

ℏ2

2𝑚

𝑑𝜓

𝑑𝑥
 at 𝜀−. Let us center it around x=0, - 

𝑑𝜓

𝑑𝑥
 at +𝜀, 

or is the other way around, +𝜀 and this one will be ∫ .
+𝜀

−𝜀
(𝑉(𝑥) − 𝐸)𝜓(𝑥)𝑑𝑥. Is that right? And 

we are going to substitute for V as 𝑉0, 𝑉0 as a constant and delta of x. 

(Refer Slide Time: 24:23) 



 

So let us substitute that, 𝑉(𝑥)𝜓(𝑥) 𝑑𝑥, so it will be; what is this? 𝑉0 𝜓(0), 𝑙𝑖𝑚
𝜀→0

∫ 𝐸𝜓(𝑥) 𝑑𝑥
+𝜀

−𝜀
=

𝐸𝜓(0) ∫ 𝑑𝑥
+𝜀

−𝜀
,  and in the limit, you have to take limit epsilon tending to 0. That will be? That is 

going to be? So this term is 0, V(x) 𝜓(𝑥) as 𝑉0 𝜓(0) which is finite. 

(Refer Slide Time: 25:35) 

 

 

So in the context of delta function potentials, we can try and tell 
ℏ2

2𝑚
{

𝑑𝜓

𝑑𝑥
|

𝑥=−𝜀

𝑑𝜓

𝑑𝑥
|

𝑥=+𝜀
} or the 

other way around, so you can remove the -sign and make it +sign here, okay, will be +𝑉0𝜓(0) =

0. So what have we achieved? In the context of particle in a box, we cannot find the amount of 

discontinuity, right. You need not even worry about it. 



 

Here even though it is an infinite Dirac delta function potential, I can tell the difference what 

should be the discontinuity element to go from the x- region to x+ region by this specific, if you 

know the wavefunction at 0 and 𝑉0 is the factor multiplying the delta function potential, I know 

exactly the amount by which there is a discontinuity in the derivative of the wavefunction. 

 

Suppose I give V to be 𝑉0𝛿(𝑥 − 𝑎) + 𝛿(𝑥 − 𝑎), these are the double delta functions, so these are 

the various potentials where you need to get a feel of what is the solution and when can you get 

bounce states. You know what is the condition for a bounce state? Why do you call it as a 

bounce state? Particle, harmonic oscillator, what is the requirement? With a bounce state, do you 

know? 

 

When is the scattering state you can get? All the free particles are scattering, right. So there are 2 

regimes. If energy of the particle is greater than V, you have the scattering states possible. You 

have the states which are transmitted. And there is another regime which is energy of the 

particle<V, okay. So these are the 2 regimes which you might have, this is what you would call it 

as a condition for getting bounces, right. 

 

So now what we would like to do is, let us formally, in the next lecture, we formally put in the 

conditions for the bounce states. Just how the way we should look at bounce states. And then we 

could try and do some of these delta function problems, potential, double delta function, when 

will it be a bounce state, when will it be a scattering state. That will depend on the sign of 

𝑉0 okay. 

 

So these are things which we will start exploring purely from the wavefunction formalism. It is 

just a 1-week, we will have a warm up doing these things and we will reproduce all these things 

from the linear vector space notation. That is the idea. So you need to know these things. You 

cannot say I will forget this. You need to know the wavefunction formalism. You should also 

know how these can be reproduced from the Dirac notation of the vector space and Dirac Bra-ket 

notation, okay. So I will stop here. 


