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Okay so today let me just briefly summarize what we did in the last lecture. Make you recall 

all the notations again and in the process I will slowly take you to basis for operators. You have 

studied in your first course that momentum operator can be given a differential operator 

representation right. Momentum all the observables can be written as operators; we want to see 

just like we want to write a basis set in a linear vector space. 

 

We would also like to see what is the basis for an operator okay. So that is the theme and I will 

just briefly summarize what we did in the last lecture. 
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State of a quantum mechanical system formally denoted as ψ, typically the ψ will have 

evolution in time, so we call |ψ(t)> . Most of the time we suppress this t, this is the state of the 

system and this angular braket is called as ket. So this state, once I give the state, this supposed 

to contain all the information about where this system is, what is the state of the system means. 

 

It could tell me what is the energy of the particle, it could tell me where is the location, all kinds 

of informations are all stored in this braket ket which is having a state ψ okay and we talked 

about span, can span the space and you could also make the span such that they are linearly 



independent, if you have both spanning the space and linear independent states that connection 

is what you call it as a basis set for the vector space. 

 

And the number of states in the basis set that defines the dimension of the vector space. Just an 

example we were looking at the three-dimensional space but you can do it in general an abstract 

space. Then, we talked about that there is a dual vector space which will denote it as V tilde, 

states in this V tilde they are given by a different angular braket and they are called bra okay. 

 

So this is the Dirac braket notation which we are going to exclusively follow. And why do you 

need these dual vectors? If you have these dual vectors, you can determine scalars by taking in 

the conventional three-dimensional space you would have set dot product. Here we will say it 

as an inner product. 
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So we confine today with finite dimensional vector space, it could go to infinite dimensional 

so on, let us confine ourselves to finite dimensional vector space. If |ψ> so in this finite 

dimensional vector space, you can denote the ket, you can represent the ket by a column vector. 

So you can represent a ket by a column vector, let the column vector have n components so 

this n=3 is similar to what we saw in the three-dimensional space. 

 

But you could have an abstract n-dimensional vector space where n is finite. Similarly, the dual 

of this ket which we call it as a bra some other state will be denoted by row vector that it is 

denoted by a row vector. Suppose the entries in the n components are 𝑥1 to 𝑥𝑛 some kind of an 



n-tuple. These 𝑥1’s to 𝑥𝑛 could be real if it is a real vector space, it could be complex if it is a 

complex vector space. 

 

So with these two states which I have given in the vector space and the dual vector space, you 

can find an inner product. What is inner product in this representation of a column vector and 

a row vector? It is multiplying a row with a column; you have done this in matrix mechanics 

right, theory of matrices. A row multiplying a column will give you a scale, so row multiplying 

a column is given by the inner product and that will be a scale. 

 

The next question you can ask us, if you write two states in this fashion the second line, what 

is this? That is the column multiplying a row. You have done column multiplying a row? What 

will that give you? It gives you an n x n matrices okay. So this is also an allowed operation but 

this does not give a scalar but it gives a matrix. If you represent the states by column vector 

and the dual vectors by a row vector, the inner product is a scalar. 

 

This angular braket is what we will call it is an outer product okay. So earlier we call the earlier 

one as an inner product, this angular braket we will call it as an outer product. So outer product 

is going to be giving you not a scalar but it is a matrix. If the vector space is finite dimensional 

n-dimensional vector space, then it will be an n x n matrix. So in some sense in the Dirac 

notation, the outer product can be treated like an operator. 

 

And which can be represented by n x n matrices okay. So representation means what? Suppose 

it is like giving a color to something okay. So it is some kind of I represent this by a blue color, 

I represent this by a green color, something like that, it is like different colors or different 

dresses. You can dress this operation, suppose I want to look at roots of unity right, you are all 

familiar with cube roots of unity right.  

 

Omega is a cube root of unity because omega cube is identity and 1+𝜔+𝜔2 is 0. You can 

represent that 𝜔 by a 2 x 2 matrix. It can give a dress to that omega by writing a 2 x 2 matrix. 

What is a 2 x 2 matrix? It is just rotation about 120 degrees right, cos 2π/3 sin 2π/3 could do 

that. So this is what we call it as a representation. 
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So 𝜔3=1 and 1+𝜔+𝜔2 =1. I can denote 1 representation as ⅇ
2𝜋ⅈ

3 . This is one representation. The 

second representation is omega could be written as a 2 x 2 matrix as cos 2π/3 sin 2π/3-sin 2π/3 

cos 2π/3, so these are called representations. Why representation? The one which are written 

here it satisfies both these equations. 

 

Similarly, the 2 is a different representation or a different dress which satisfies both those 

equations. So given some equations you can try to write different representations and see 

whether it satisfies those conditions okay. Similarly, a formal abstract state ψ which I write I 

am giving a representation as a column vector with n rows and 1 column right. Similarly, a bra 

vector in the dual vector space will be denoted by a row vector, which is 1 column and n row, 

so this is what is happening. 

 

So whenever you take an inner product, it becomes a number which is a 1 x 1 element. If you 

take an outer product, so inner product <ψ|ϕ> is actually a number with 1 x 1, a |ψ> <ϕ| will be 

a matrix which is n x n. It is very simple but if you start getting used to the left hand side 

notation, you can do many abstract calculations in a very neat and elegant fashion. Always 

recall with what you do in matrices and that will help you to remember this okay. 

 

So this is what we call it as an outer product okay. So this is a representation if you want. You 

can represent the ket vector in a finite dimensional vector space by a column vector. You can 

represent the dual vector which is the bra as a row vector and this is what we conventionally 

going to follow. For a finite dimensional vector space, we can play around with matrices. 
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So this is what I said column multiplying a row is the outer product and that will give you n x 

n matrix. In fact, we call this to be this outer product to be an operator in the Dirac braket 

notation. By the way you remember that this inner product of the same state is called the norm 

and if you try to write it in this notation, you want the norm to be always>or=0, when then it 

be 0, when ϕ is a null vector okay. 

 

Otherwise, this is going to be in general positive and if you try to rewrite in the representations 

as a row vector with 𝑥1 to 𝑥𝑛 and the column vector with 𝑥1 to 𝑥𝑛, then this is the condition 

you will get further in the product of these two vectors right, the square of the norm right and 

because this is positive definite, this will also be each one is the square, I have written 𝑥𝑛
2, 

technically this is not correct. 

 

When is it correct? When it is a real vector space. It is a complex vector space, I have to take 

conjugate and transpose of a column vector, complex conjugate. So you have to put 𝑥1
∗ , 𝑥2

∗ up 

to 𝑥𝑛
2 and this condition for a real vector space if suppose I take n to be very large even though 

I started with a finite dimensional vector space, n becomes very large, the squares which I add 

may become may blow up okay. 

 

They become infinity, so you need the condition that the summed up quantity. For a finite 

dimensional vector space, you can always make it finite but if n becomes very large, there are 

chances that this would not be finite but you have to impose this condition, take the states in 

the vector space such that the norm is always finite. You did this in the wave functions; I said 

that those wave functions are all square integrable wave functions right. 

 

I said this in a week or two weeks ago I said this. Similarly, this condition on a vector space 

which is on a finite n-dimensional vector space is supposed to be the sequence is supposed to 

be a square summable sequence if it satisfies this condition and this collection of such square 

summable sequence which are a set of 𝜙1 𝜙2, a set of states which belongs to this n-

dimensional vector space, that vector space if it has these kinds of square summable sequence, 

then you call that vector space, you denote that vector spaces as l2. 
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So 𝑙2 is a vector space with set of states obeying summation over xn squared to be<infinity, the 

states is <ϕ|ϕ>. Technically, I should put |𝑥𝑛|2 because I am not specified whether it is a real 

vector space or a complex vector space. So the square summable sequence, so this condition 

which I have maybe I should put an i, i from 1 to n, so this condition is what we call it is a 

square summable sequence. 

 

That it sums up and it is finite, so you can slowly see that when you go to in your course on 

integration, what exactly you do? Initially if the lattices spaced, you start doing discrete 

summations but suppose I make n to be very large and make it to be a continuum, then it could 

become a square integrable situation okay. So you can see that I am trying to make it as a finite 

vector space. 

 

But at some point I will start making it as a continuum and look at square integrable functions 

and states so it is just to give you a feel of what exactly is happening in a finite dimensional 

vector space. This finite dimensional vector space is something which is not you know it 

happens in the systems right. How many of you have seen Stern-Gerlach experiment? Actually 

two beams and those two states are linearly independent and you can have a two-dimensional 

vector space. 

 

So it is not that whatever I am saying here is not happening, it happens, so you do have two 

linearly independent physical finite dimensional vector space okay. So let me just get to the 

two-dimensional vector space, just for simplicity till now I was talking about n-dimensional 

vector space. 
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But I will now confine myself to two-dimensional vector space and try and clarify a couple of 

notations and then you know how to do it for a n-dimensional vector space. So if you remember 

we had two basis in the last lecture, one was a orthonormal basis and the other one was a non-

orthogonal basis right. So let me just proceed with this example. 

(Refer Slide Time: 18:17) 

 

So we call  |𝜙1 > and |𝜙2 > to be orthonormal basis. When is that? When the inner product of 

< 𝜙1|𝜙1 >=1, < 𝜙2|𝜙2 >=1 and < 𝜙1|𝜙2 >=0, < 𝜙2|𝜙1 > also=0. This can be compactly 

written as <𝜙𝑖 | 𝜙𝑗 >=𝛿𝑖𝑗. For a two-dimensional vector space, i and j will be 1, 2. Both i and j 

will take 1 and 2, this is a compact. Now you see the generalization, if I go to n dimension, 

there will be n basis vectors not two basis vectors. 

 



And it will satisfy this orthonormality condition, so this is normalized, this one is orthogonal. 

So now what we would like to do is we could also have a non-orthogonal basis right. 
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So we call that as |𝜓1 > and |𝜓2 >. Why is it non-orthogonal? If you try to find what is <

𝜓1|𝜓2 > this will not be 0 okay and <𝜓1|𝜓2 > will be in principle the star of this. So this is 

the meaning of saying this is non-orthogonal basis. What is the meaning of basis? If you want 

to write any arbitrary state, I could use once I call this as basis, I can use some complex 

coefficients on |𝜓𝑖 > for a two-dimensional vector space it is 1 to 2. 

 

So this is the superposition of the basis states which will give you any arbitrary state in the two-

dimensional vector space. So this is why this forms the basis set but this is not orthogonal and 

then what did we do? We wanted to get to the orthogonal basis from the non-orthogonal basis. 

This is what we were doing in the last lecture and some of you were asking me which should 

be the starting vector? 

 

Any of these two vectors I can choose in the two-dimensional vector space and in the n-

dimensional vector space the starting vector could be any of those n basis vectors. There is no 

requirement that I have to start only from this vector to do the Gram-Schmidt orthogonalization 

okay. So just for convenience, we say |𝜓1 > to be proportional to ϕ 1 with normalization. 

 

If suppose this is normalized, then |𝜓1 > itself will be the first vector and you find the second 

vector by taking the projection, that is what you do right, this is what we did last time. So let 

us redo it here. 
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So we define |𝜙1 > to be |𝜓1 > but this may not be normalized, you have to normalize it. So 

we are doing the Gram-Schmidt orthogonalization. Take one of the two states, just normalize 

and call it to be the first basis vector. How do I find |𝜙2 >? |𝜙2 > will be the second non-

orthogonal vector but subtract the component along |𝜙1 >, so that is what you will do. So 

typically you do this is what will give you the component along |𝜙1 >. 

 

The inner product of the state |𝜓2 > with |𝜙1 > will give you the component along |𝜙1 > but 

this is a scalar, you have to get a vector equation. So I can put the |𝜙1 >this side or I can put 

the |𝜙1 > this side okay. So this is a number and this is a column vector if you give a two-

dimensional vector space. So if we are in two-dimensional vector space, I can denote |𝜓1 > to 

be a b and then you can find out the fact. 

 

Let us give the a and b some specific value, we can take it to be (
1
1

). So then |𝜙1 > will be 

what? Is that right? There will be a by √2 because of the norm, clear. This is a representation 

and we use this to find this. So if I want to find |𝜙2 >, I need to take |𝜓2 >, |𝜓2 > in this 

notation I could take to be (
1
0

). If I take that, then you can see this is (
1
1

) and this is 1/√2 (
1
1

) 

with (
1 

0
) that give you 1/√2. 

 

So do this and after you do this, whatever is the numerator result I need to whatever is this let 

me call this to be some new state and you have to take the norm of the inner product of that 



state with itself. You understand what I am saying right and then take the square root and you 

should get the |𝜙2 >. What do we expect here? What do we expect? We will get 1/√2 that is 

what I expect. 

 

Can you please do this algebra and check. This will be (
1
0

) -1/2 (
1
1

)(1 1) (
1
0

). So (
1
1

) and then 

(1 1) with (
1
0

) right. What happens? That is 1 and this is 1/1, so you will have 1/2 and a -1/2 

right. Numerate but that is not normalized right, if you do that, it is 1/4 (12+12) but 1/4. So this 

gives you what normalization some N on ¼(1+1) which is 2/4 which is 1/2 implies square root 

of n is 1/√2. 

 

So you get the state is 1/√2 types, so very simple, try to do it for a simple example like this and 

get a feel of it but in this process there is something which I wanted to tell you. What is it we 

see here? This piece what is that piece? I just said few slides ago is an outer product but what 

is the operation of this outer product? It projects the component of an arbitrary state along the 

ϕ 1 direction. 
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So this outer product is a projection operator is |𝜙1 >< 𝜙1| is a projection operator which is 

going to be a matrix operator. If this operates, so let me call this as and  𝑃̂1 put these operators 

with a hat. This is the convention which we follow; do not confuse this with momentum. It is 

some projection operator. 𝑃̂1 suppose I do it on |𝜙2 > what is this zero or nonzero? Zero. So 

that is a definition of a projection operator. 

 



If you have n basis set, if you define a projection operator with projects onto a specific basis 

|𝜙1 > that when operates on the other orthonormal basis it is going to be 0. It is the definition 

of a projection operator. So you can also similarly define for a two-dimensional vector space, 

a projection operator 𝑃̂2. You can define a projection operator 𝑃̂2. 𝑃̂1+𝑃̂2 The sum of the 

projection operators should be like an identity operator. 

 

In two-dimensional vector space I am specifying myself. In the two-dimensional vector space, 

the two projection operators can be summed up to be identity. So whenever I write an arbitrary 

state |ψ>, I could write this as, as I said I could write it as some 𝑐𝑖|𝜙𝑖 >. I could also write it as 

projection operation 𝑃̂1 |ψ>+𝑃̂2 |ψ> because 𝑃̂1+𝑃̂2 is identity. The state ψ is same as this. 

 

And this state ψ can also be written as a superposition of the basis states with complex 

coefficients. Now tell me what is c1 and what is 𝑐2? 𝑐1 will be 𝑃̂1 is the outer product 

|𝜙1 >< 𝜙1|. What is 𝑐1? 𝑐1 will be < 𝜙1|ψ>, 𝑐2 will be the state |𝜙2 > will come here in this 

outer product, so what is 𝑐2?<𝜙2|ψ> okay. So if you understand this concept in the two-

dimensional vector space for you to do it for any finite dimensional, infinite dimensional vector 

spaces, this theme is the same. 

 

Only thing is the number of projection operator will increase right. You would not have this 2, 

depends on the number of basis or the dimension of the vector space and any arbitrary state 

can be written as either this linear combination or this thing. Let me stop here. 


