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Hello in this class, we will look at one of the Nanomaterials that is derived based on 

carbon and that is the Carbon Nanotube. It has been around now, as a material of interest 

for almost now nearly 25 years maybe and people have been studying it and trying to use 

it for various applications. 

So, today we will spend some time, looking at this material trying to understand certain 

aspects associated with it. 
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In particular, we will look at; we will explain some nomenclature. I will look at some 

nomenclature that is used with respect to carbon nanotubes because if you read 

publications in the area of carbon nanotubes, you will tend to see this nomenclature. So, 

we will explain, we look at that and I will try to explain what that nomenclature is and 

how it comes about. We will also derive some important parameters of the nanotube, 

particularly it is diameter and also how it is twisted things like that, based on the 

nomenclature used. So, this is the idea that we will look at this class and this is the set of 

learning objectives that we have for the class. 



So, to begin with, we will start/a small rough diagram of what the nanotube is and I will 

show you what is it that we are going to do to put some numbers to this description. 

So, the general description is that it is like a tube. So, you have a cylinder and then. So, 

this is like the you know if you have the tube and you take a section like this; this is what 

you would see, you would see a cylinder and then you would see some two end caps. So, 

this is what you are seeing it is a cylinder with the two end caps and I have taken a 

vertical section; so, you are sort of a cylinder that is lying flat on a surface and then I 

have taken a vertical section. So, you see a cross-section that looks like this. 

Now we want to use, we want to say certain things about it; we want to say something 

about it is diameter, we want to say something about how the carbon atoms are sort of 

lined up with respect to each other and so on. So, to do that, one of the ways in which we 

can do it is to first start with a single graphene sheet. So, a single sheet of graphene and 

then fold it to create this carbon nanotube. 

So, I must point out that in the general synthesis of carbon nanotubes this is not the 

process that is actually used. We do not start with graphene sheets and then fold them to 

get the carbon nanotube in the actual typical experimental synthesis processes, that is 

used in the labs. Instead, we use certain processes that we will describe in a later class 

which helps us create the nanotube or synthesize the nanotube access. So, you get the 

nanotubes in it is final form. 

So, this is not how it is made, but this description if you look at it as a sheet that has been 

rolled to create the nanotube; then you are better able to understand how the structure of 

the sheet relates to the structure of the nanotube. So, that is what we will do. 

So, if you take this tube for example, and you cut off the hemispherical ends. So, then 

you will have a hollow tube. So, you will have a tube-like that, simply a hollow tube. So, 

you have a hollow tube-like that; and then you can cut this tube and open it up. So, 

supposing I cut it like this. So, I snip it like that and then I open it up into a sheet, then I 

would get a sheet like that. So, I started with the tube, I cut off it is the end caps, then I 

arrived at a hollow tube and then I cut open that hollow tube and got a sheet. 

So, this is the manner in which, I am explaining the arrangement of the tube and how it 

relates to the sheet. So, in reality, we could do the opposite. So, in fact, that is what we 



are going to do in the class, we are going to take the sheet which is the graphene sheet, 

and then roll it to get the tube; so that is how you would get this tube. And then later we 

will look at the end caps; we are not going to look at the end caps immediately today, but 

we relate to look at how those end caps might come about. So, but you can see, how the 

graphene sheet when it is rolled will get you a tube 

And in this process, we can understand how that rolling happened and how that tube 

came about; and how you can relate some things with the that relate to the structure of 

the graphene sheet to the structure of the tube. So, for example, I am now going to 

explain the same thing with a sheet of paper, which we will pretend for the moment is a 

graphene sheet. So, this is a sheet of paper, we pretend that this is a graphene sheet like 

the one that you see on the right extreme of your screen. And then you can see that I can 

actually roll it around; and once I have done rolling it around, I get a cylinder. So, I get a 

cylinder, a hollow cylinder is what I have. So, I can start with the sheet roll it around get 

a cylinder. 

Now the interesting thing to note is that, when I say how the, when I make a mention of 

how the arrangement of atoms in the sheet relates to the tube; what I mean is although I 

have just rolled this to get you the tube, there is we have actually a few different options 

on how you can roll this to get the tube. So, this is one way in which you can get the 

tube, I can also twist the sheet when I roll it. So, in other words, I would twist it like this. 

So, I twist it like this and I can still get a tube. So, I have now twisted it. So, I am still 

getting a tube, but it is not the same as the tube that we started with. So, this tube is not 

the same as what I previously showed you. So, this is a twisted tube. So, you can see 

here clearly it is a twisted tube, let me hold it correctly for you and show you. So, this is 

like a twisted tube. So, I can do it like this or I could do it like this. So, I can give it a 

twist. 

So, this is called chirality and so, this is one of the things that we want to understand 

about the nanotube. We want to know whether the nanotube got formed like this or it got 

formed like that. So, and the reason we want to know is, it tells us something about the 

structural aspects of the nanotube. It also actually impacts very significantly on the 

properties of the nanotube; things like conductivity of the nanotube are often associated 

with the aspects of how it has being twisted. So, this is very important. So, knowing what 



the chirality of the nanotube is and putting some kind of a number to it, some kind of 

numerical value to it gives us a better way of describing the nanotube and a better way of 

understanding what the nanotube is capable of. So, that, therefore, we are going to spend 

some time, figuring out how this structure relates to the nanotubes. 
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So, what you see here is a graphene sheet. So, we will spend a few moments on this, we 

are going to derive things based on this. So, what do you see here are, so for example, 

this is all hexagonally bonded carbon atoms, the whole sheet consists of hexagonally 

bonded carbon atoms. So, I have just highlighted one of them, all. So, now, as I said one 

way to look at it, look at a nanotube is to roll, take a sheet-like this and roll it around and 

form a tube. So, now, we want to get a little bit more specific, on what have we done 

while we rolled it. 

So, what we are saying is, let us look at two different hexagons here. So, one hexagon is 

here and another hexagon is here ok; and I identified two points this is O and this is A. 

Now the idea of saying, I know how I rolled it is basically translated to the sheet to say 

that, when I roll it, I get the point A to coincide with a point O. So, we roll such that 

point A coincides with point O. 

So, therefore, now we have a much more specific way in which I specify that I have 

rolled the sheet. In other words, if you also take a sheet you have a separate graphene 

sheet and I have a separate graphene sheet; and if we are able to specify O and A like this 



and then roll the sheet such that O coincides with A or A coincides with O. Then the two 

tubes that we will get will be identical; the tube that you get and the tube that I get will 

have the same kind of twist and therefore, many of the properties will start getting 

defined appropriately. So, this is the idea. 

So, now, with respect to the graphene sheet, there are two directions that are defined; 

from the perspective of symmetry between these two directions, we have a range of 

possibilities and then outside of these two directions whatever you see,/symmetry is the 

same as what you would see within these two directions. So, what are these two 

directions? One direction is referred to as the zigzag direction. So, one direction is 

referred to as the zigzag direction.  

So, for example, you see this line marked here, this is the zigzag direction. So, as you 

can see it is easy to visualize it with respect to the graphene sheet structure, because 

basically you just see this, if you go along the direction you see the zigzag pattern right, 

it goes zigzag like that. So, therefore, you can visualize this direction as the zigzag 

direction. So, when I say zigzag direction you can quickly understand what exactly I am 

referring to. There is another direction which is in this direction here, this is dotted line 

that I am drawing; this has another descriptive way of being referred to and that is called 

the armchair direction. 

So, the first one that I wrote there is the zigzag direction, and a second one that I have 

drawn here is the armchair direction. So, this is some general descriptive term that has 

been used in the literature. And why do we call it armchair? Well again there is no it is 

not a very scientific way of putting a descriptive name to this particular direction; but 

generally if you look at it if you consider this as the base of the chair and these as the two 

arms of the chair, you are such that you are going to be sitting on this place here like that. 

So, then you can loosely say that this is described as an armchair and then this direction 

is then the armchair direction. So, these two would be considered the arms of the chairs 

and that is the chair. So, well you can argue that that is not a very great description, but 

that is the description that is used in the literature; and therefore, that is the armchair 

direction. So, this direction this dotted line that I have drawn here is the armchair 

direction. 



So, what I have drawn here, OA. So, the vector OA, if you say O is the origin and A is 

another point there on this lattice; OA is a vector, this vector is somewhere between 

these zigzag directions and the armchair direction. And we have a choice a range of 

vectors like this that we can select, which all go between the armchair direction and the 

zigzag direction. And as I said because of symmetry if you go beyond this on either side, 

you are essentially repeating the same thing. So, therefore, it is sufficient that we look at 

the structure within the scope of this zigzag direction and the armchair direction. 

 So, now, we are basically saying that we have rolled the sheet so that A coincides with 

O. So, now, what we do is, we specify a few things here, we say that the angle that the 

vector OA makes with the zigzag direction is this angle θ. So, this θ is an angle that the 

vector OA makes with a zigzag direction. And we have the X and Y directions indicated 

here, X and Y direction. So, we will use unit vectors in the X-direction x ̂ and unit vector 

in the Y direction y ̂ to help us in some of these calculations. 

So, we can also see here, I will put a vector here a1 and a1; these are the unit vectors of 

the graphene sheet, so a1 and a1. And therefore, we can think of OA as it is called the 

chiral vector. So, it is called the chiral vector. So, this is the chiral vector Ch. So, I will 

put the vector or symbol here, is the vector OA. So, the vector OA is the chiral vector 

Ch. So, it is na1+ma1, so where n and m are integers. 

 So, for example, if you look at what do we mean/this, we have a1 direction here marked 

like this, you will notice that the a1 direction is exactly the same direction as the zigzag 

direction. So, the zigzag direction and the a1 direction coincide. So, when I say n×a1 and 

m×a1; a1 is this direction. So, we have to now have some combination of a1+a1 which 

should get us to go from starting from O to arrive at A. 

So, if you look at it here, I have to go 1 2 3 4 5. So, I have to travel 5 steps along the a1 

direction, and I have to travel 2 steps along the a1 direction to arrive at A. So, I have to 

travel 5 steps in the a1 direction, two steps in the a1 direction to arrive at A. So, therefore, 

OA in this context is 5a1+2a1. 

So, in the context of this description, we are able to show that OA is 5a1+2a1. So, in this 

case, n and m would be 5 and 2. Any other selection that you make, you will have a 

different value of n and different value of m. So, that is the way in which. So, almost all 

the tubes, the basically the tubes that you can generate using this sheet, can all be 



described in terms of n and m. If what the n values and what the m value is you start, you 

will have a very good idea of what is the tube that you have created; and then from that 

we can ascribe properties to the tube. 

So, this is what we will do, we will figure out some more properties of the tube-based on 

the values of n and the value of m. So, that is what our derivation in the rest of the class 

is going to be. 
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So, now I have just magnified this a1 and a1 vector. So a1 is there and a1 is here and we 

have a unit vector in the X-direction which is x ̂ and unit vector in the Y-direction which 

is y ̂. 

So, this is basically you have two hexagons here. So, this angle is 120 this is also 120 

and so is this. So, these three angles are 120º. So, if you see here, if you draw. So, if this 

is 120º angle. So, then you have 60º remaining. So, this is 30º and this is 30º. So, that is 

those are the angles of the triangle. 

So, now let us see if you want to write a1 in terms of unit vectors in the X direction and 

the Y direction. So, let us just see what that is. So, to do that I have to just draw the, 

extend it and draw like that and also draw it like this for a1. So, what do we have here, 

we have 30º here? So, if you see here, if I write a1 modulus of a1 equals the modulus of 



a1 equals some numerical value a; then we have a1 is equal to a cos 30 which is √3/2 in 

the x-direction +asin(30) which is half, so a/2 in the y-direction. 

a1 = √3/2 x ̂ +a/2 y ̂. 

So, you will have a √3/2 x ̂ will bring you from here, from the origin to this point I have I 

will call it B, OB will move us in the X direction which is a √3/2 x ̂; and then if I have to 

go from B to this point C then I have to do a/2 y, so in the y-direction y ̂ direction. So, 

this is a/2 y ̂. You will note that this is also a/2 y ̂ and the and therefore, but except that 

this is in the negative direction. So, this is now we are talking of vector. So, this is in the 

negative direction. 

So, if you write a1, in the x-direction you travel the same distance a √3/2 x ̂; but now in 

the y-direction, you are going in the opposite way like this as suppose to previously you 

went upwards, now we are going downwards. So, this is - a/2 y ̂. So, this is the way we 

write a1 and a1. And incidentally these two if you just see, I have also written here that it 

is equal to √3acc. So, why does that come about acc is this bond length. So, from here to 

here, for example, this is acc and that is the same for all sides of the hexagon. So, all sides 

of the hexagon is equal to acc. So, that is the same as this distance marked here, from here 

to here is acc. 

So, if you look at it, if you want to again look make draw a perpendicular bisector to that 

line, it will come here. So, this is 30º. So, whatever is the acc × cos 30 which is √3/2 is 

equal to half of; so because you have taken a perpendicular bisector here. So, this 

distance here is only half the value of a equal to half of a. Therefore, a is equal to  acc 

and that is what I have put here. So, this is how they relate to each other and as necessary 

we will take this value and put it. 

So, now if you go back to what we had for the chiral vector; we wrote the chiral vector 

equals na1+ma1. So, we will write  

Ch = na1+ma2 

Now we already have expression for a1 and we have an expression for a1. So, we can 

substitute in this chiral vector notation and what will we have, we will have Ch equals na 

/2 +na/2y ̂ now, so that covers our a1 term, a1 term is covered; now we look at the a1 



term here, that is m, so ma √3/2x ̂. So, because now we are going to do a1 we are take the 

second equation here, is this equation we have to take and multiply it/m and; so - ma/2y ̂. 

So, now if we club together the terms in the X direction and terms in the Y direction; so, 

after we club them together, you will basically have  

Ch = na√3/2+ma√3/2x ̂+na/2-ma/2y ̂. 

So, this is our chiral vector. So, in terms of in the taking some vectors in the X direction 

and Y direction, unit vectors in the X direction and unit vector in the Y direction 

clubbing the terms together for a1 and a1 you arrive at this value for the chiral vector. 
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So, having done that, so this is what we have done here. So, you can see the same thing 

that, I put in the previous slide is what I have put down here. So, you can see this 

equation here and the second equation out here; those are the two equations that we have 

here. 

Of course, we put the vector symbol here. So, this is x ̂y ̂x ̂y ̂. So, therefore, we get this 

thing and we put this Ch equation also down, which we had here. So,  

Ch = na1+ma1 = (na√3/2 + ma√3/2) x ̂+ (na/2 - ma/2) y ̂ 

so we got the expression for the chiral vector. 



Now having got the chiral vector we would like to find two other parameters associated 

with the nanotube. So, what are the two parameters, we would like to understand, what is 

the diameter of the tube in terms of n and m? So, in terms of n and m what is the 

diameter of the tube. So, that is one thing that we would like to derive; the other thing is 

in terms of n and m, we would like to understand, what is the theta to which we have 

twisted the tube? So, as I told you, you can join it like this or you can join it like that. So, 

that twist the chiral angle, it is called the chiral angle θ. So, we would like to understand 

what is that value θ, in terms of n and m? And you also want to understand, what is the 

value of the diameter of the tube in terms of n and m? 

So, again if you look at it if you go back to how we had put this image together you can 

see here, that once you fold, so if you take the, if I say that I am going to roll the tube 

such that O and A coincide. So, then what is the meaning of that? The meaning of that is 

the line that goes from O to A is the circumference of the tube. So, if I have taken a point 

O I mean a point O here and a point A here and I roll it such that that O coincides with 

A. 

So, I have got O to coincide with A, as I formed the tube. Then the OA vector basically 

goes from here, goes all the way around and comes back here. So, that is what that OA 

vector is. So, therefore, the chiral vector or rather the magnitude of the chiral vector is 

essentially the circumference of the tube. So, a magnitude of the chiral vector is the 

circumference of the tube and if you look at any and since the tube is circular in 

geometry; if you take the diameter of the tube to be D then πD is the magnitude of the 

circumference. 
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So, therefore, essentially, we are saying that the magnitude of the chiral vector equals 

π×diameter of the nanotube. 

So, now we see that we have suddenly, we were looking at vector on a flat sheet of 

paper, we rolled it up to get the tube, and now we are able to relate the diameter of the 

tube to the magnitude of the vector when it was a flat sheet. We have also got an 

expression for the chiral vector as it is. So, we can use that to complete this calculation. 

So, that is exactly what we will do now. So, we have  

Ch = (√3/2na+√3/2ma) x ̂ + (n/2 a - m/2 a) y ̂ 

So, now, what is the modulus of Ch, it is simply the2 √a2+b2 that is basically the 

modulus; so, if the2 √this term, a2 of this term+the2 of this term. 

So, this is equal to simply the square root of the two of this term plus the two of that 

term. So, if you take the two of this term the first term. So, you will get  

Ch=3/4 n2a2+3/4 m2a2+2×3/4 nma2+n2/4a2+m2/4a2-2nm/4a2. 

So, this is the 2 of all the terms in this second part and this is the2 of all the terms in the 

first part, of this part. So, this is what we have. So, now, we simply just simplify this and 

see what we have. So, we have n2a2 here. So, we have an n2a2 term here and you also 

have an n2a2 term here. So, this is 3/4 n2a2 that is+1/4 n2a2. So, that is n2a2. 



So, this is2√n2 a2 plus similarly you have a 3/4 m2 a2 here and a+1/4 m2 a2 here. So, if 

you add them you have m2 a2. Then we have 2×3/4 nma2 - 2×n m/4 a2. So, if you just 

simplify that is+2 into 3/4 - 1/4 which is 1/2 n m, and the whole thing is multiplied/a2. 

So, therefore, if you simplify this further, you will simply have if you can pull out the a2 

and then it is a2. So, it is a. So, this is simply a× n2+m2+nm is that right, 2×3/4 - 1/4 

will get you half. So, you will have n m. So, this is what you will get n2+n2+nm. So, a is 

out here. 

And we also see that a is equal to √3acc. So, you can also write this as acc into 

3×n2+m2+nm. So, you can either write it using a or a that I have put here or you can 

write using acc. 
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So, this is the modulus of the chiral vector and this is equal to πD. So, therefore, so we 

can write that here, again πD equals you have a×√3(n2+m2+nm). Therefore, the diameter 

D of the nanotube relates to the values of n and m as I am sorry this is acc here. So, 

D=acc√3(n2+m2+nm)/  

So, therefore, we find that we can actually start with n and m values. So, if you see here, 

you will see that down here as well; we will again come to that in just a moment. But 

you can see that, we have started with looking at the diameter of the tube; we looked at 

how the diameter of the tube of course because it is a tube D it has a circular cross-

section and therefore, π×the diameter of the tube is that circumference. And we also saw 



the way we defined the tube, the way we created the tube; so, to speak conceptually was 

to take the circumference and roll it and that circumference there was the chiral vector, 

Ch or OA in this case. And therefore, we equated the magnitude of the chiral vector to 

the diameter of that to π × the diameter of that tube; and then we did the mathematics and 

simplified it to see, how you could go from the chiral vector and related to πD and then 

arrive at a value for D in terms of n and m, because the chiral vector itself was described 

in terms of n and m. 

So, this is what we got and that is what you see in your next slide. 

(Refer Slide Time: 32:12) 

 

You can see, we did all this, we wrote the chiral vector. So, I will put that down here. So, 

this is the modulus of a1 modulus of a1 is a; and that is how they relate and the chiral 

vector Ch is n×a1+m×a1. And that is how since we know what is a1 and a1 in terms of a 

and n and m, we arrive at these values for the chiral vector. And then once you take the 

modulus of the chiral vector and equate it to πD, we arrive at this equation here, which is 

what we did just a moment ago; on how the diameter of the nanotube relates to the 

values of n and m which then design, which are based on again how the tube has been 

created in terms of a twist in the carbon nanotube. 

So, therefore, the n and m they are very useful in telling us what the diameter of the tube 

is. So, what we will do now is, this is one part of it, we would also like to see if you go 

back the other parameter that we want to get a handle off. So, we have now understood 



how O A, how the value OA gives us the diameter D. We are also interested in this θ 

value, the chiral angle. So, chiral vector and chiral angle are two important the 

parameters of a nanotube. We saw the chiral vector now Ch and we did certain 

calculations with respect to Ch; we would also like to do some calculations to get 

ourselves a value of θ based on, what the chiral vector is. 

So, if you see here, if you look at what we are dealing with here; if you take that a1 

vector here, which is what is this vector here a1. If I take a dot product of a1 and the 

chiral vector Ch, if I take a dot product of those two, then that is simply the magnitude of 

a1 into the magnitude of the chiral vector multiplied/cos of the angle between them. 

So, the dot product of a1 and that cos of the angle that angle is this chiral angle. So, a dot 

product of the a1 vector with the chiral vector is simply the modulus of a1×the modulus 

of the chiral vector × cos of the angle θ between them which happens to be the chiral 

angle. So, that is the approach we will use, we will use that equation and simplify that 

equation to arrive at the angle θ. So, that is what we will do. So, if you go back, we will 

go to a place where we can do that for ourselves, so, the angle θ. 
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So, what is the angle θ? We are basically saying if you take the chiral vector Ch, I will 

remove this and your dot do a dot product with a1, the vector a1 this is equal to modulus 

of Ch into modulus of a1 into cos of the angle θ between them. So, we will use this 

process to arrive at our result. So, what is the chiral vector here? The chiral vector  



Ch = na√3/2 x ̂ + ma√3/2 also x ̂ + na/2 y ̂ - ma/2 y ̂ 

this is the chiral vector. And the vector a1 itself we have derived defined it here. So, if 

you go back here you can see how we have defined the vector a1 it is defined here. So, 

we will use the same definition in our activity here. So, we will do a dot product of √3/2 

x +̂√3a/2 then and a/2y ̂. So, this is our dot product. 

So, now, we simply have to do complete this math. So, what do we have here, you will 

see that if you take this term here, and you do a dot product with this term here; and 

correspondingly you take this term here and you do a dot product with this term here? 

So, we will have, let us see if you have some space here to do that. So, you will basically 

have. So, you take √3a/2 and you do this you will have na2/4 3 na2/4. So, that is what 

you get 3na√3/2 √3/2 3 a2 3 a2/4x ̂ will go+3ma2/4.So, we will have a  

3na2/4 +3ma2/4 + na2/4 - ma2/4 

So, this is what we will have, when once we get done multiplying these terms. So, you 

will have na2 is what you will have here -ma2/2. So, this is what we get as the dot product 

of Ch and a1. And this we are going to equate to the modulus of Ch × the modulus of 

a1×cos θ it is. So, this is what we are planning to do. And if you see here the modulus of 

a1 and a1 is itself a. So, it is simply a value a is what the modulus is. So, that. So, this part 

is already known here this is the modulus of a and this is equal to a. So, we only need 

this modulus of Ch. 

So, to get the modulus of Ch, we simply have to look at what we have here, we see that 

the Ch is this term that we have got out here; the Ch modulus of Ch we have already 

calculated here, this is the value that we got out here, this is the value of modulus of Ch. 

So, this term also we have, modulus of Ch we have. So, therefore, if you go back to this 

equation we have here, this part that we have here is simply a √(n2+m2+nm)  a cos . 

So, this is a2√(n2+m2+nm cosθ). So, that is the right-hand side of this equation, this term 

here is exactly what this term here is and then we also found the left-hand side of this 

equation is here. So, we are only simply equating these. So, you are going to have. So, 

this is equal to n- m/2 or 2n- I am sorry this will be a+ here; so, na2+m a2/2. So, 2n + 

m/2 is what into a2, is what this equation is and then this is equal to the term above. 



So, this is the left-hand side of this equation here and what you see here is the right-hand 

side of this equation. So, these two are equal. So, now, if you equate these two, you can 

get cos θ very easily. And so, therefore, we will see that in our next slide. 

(Refer Slide Time: 40:41) 

 

We are simply going to write here, we are going to write a2 into2 √n2+m2+n m is equal 

to, if you go back to the previous slide you will see the, I into cos θ is equal to 2 n + m/2 

a2. So, this is what we have. So, now, we just have to simplify this you cancel the a2 and 

a2; therefore,  

cos θ =  

So, this is the expression that we are getting here. So, cos θ is what we have here, is in 

the numerator . 

So, this is how we have got this equation. So, now, you see that the θ value, which is 

basically this chiral angle here; cos θ is also related to the values of n and m. So, once the 

values of n and m, you can actually tell something about the θ associated with this the 

nanotube; you can also say something about it is diameter. So, both these important 

things the diameter D and chiral angle θ; both of these we are able to associate with the 

values of n and m. We just doing some little bit of mathematics and calculating out a1 dot 

Ch and then equating it to the modulus of a1×the modulus of Ch × cos . 



So, once you do that, you get this equation. So, therefore, you can get all these 

parameters of the nanotube from n and m values; and that really is the primary idea that I 

wanted to discuss and elaborate upon in this class. 
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So, if you look at what we see here as our major conclusions; there is a notation n and m, 

that is used to describe different types of carbon nanotubes. So, we will see here that, 

there are carbon nanotubes that are referred to as zigzag carbon nanotubes; there are 

other carbon nanotubes that are referred to as armchair nanotubes, and there are carbon 

nanotubes which are referred to as chiral nanotubes, it is all got to do that angle of 

chirality, we will see that in our subsequent class. 

So, the angle of chirality decides whether it is a zigzag nanotube, armchair nanotube or a 

chiral nanotube and therefore, this n and m is very useful in describing that. And when n 

and m are not equal, the nanotube is chiral or there are some specific values that the or at 

least especially if it is, you know; if m is not equal to 0 and then you have a range of 

values for m which are not equal to the value of n then it is referred to as chiral nanotube. 

And the values of n and m can be related to the chiral angle of the nanotube. And the 

values of n and m can also be related to the tube diameter. 

So, therefore, in the context of describing nanotubes, if you use this description using the 

value of n and m, you can actually tell lot of things about the nanotube. It turns out that 

based on the values of n and m, things like electronic properties of the nanotube get fixed 



or at least they tend to be a certain type. And therefore, it is very important, it is not 

simply a structurally descriptive approach which itself would be very useful; given that it 

is a tube and you are trying to explain something about the way in which the tube has 

been put together so that itself would be any way useful. 

In this case, it also reflects very specifically with respect to the properties of the tube; 

and therefore, that is very important and therefore, this description is used. And we will 

see all those descriptions and how it relates to the properties in our subsequent class. So, 

with this we will halt for today. 

Thank you. 


