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Lecture - 04
3-D Lattice

Welcome you all to today’s class, the last 2 classes, we have covered one dimensional
lattice and then how to constrict over from 1-dimensional lattice; 2-dimensional lattice
what are the symmetry elements associated with it; what are the types of crystal
structures which we can have, are planar groups which we can have. Today we will talk
about how to generate 2-dimensional lattice; from a 2-dimensional lattice, how to
generate a 3-dimensional lattice, what are types of a point groups and space groups

which are associated with these lattices.
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Generation of 3-dimensional lattice (from 2-D lattice)

Follow the same method that was followed
to generate 2-D lattice from 1-D lattice

Stacking of a layer of plane lattice on top of another layer at points
corresponding to the symmetry of the bottom layer or otherwise, three
dimensional lattices (Bravais lattice) can be generated.

lllustrated with examples

From a hexagonal plane lattice, trigonal, hexagonal and cubic lattices
can be generated

From a square, tetragonal and simple cubic Bravias lattices can be
generated

From a rectangle and centred rectangle, different orthorhombic Bravais
lattices could be generated

We have to follow the same procedure which we have done for generating the 2-
dimensional lattice from 1-dimension that is take a 2-dimensional lattice keep it on top of
one another at some particular angle or some specific positions with respect to the lattice
which is kept below and try to generate a lattice and see how many types of lattices
which can be generated, but there are many positions we can keep it, one lattice on top of

each other, but the distinct number of space lattices which will generate are only 14.



We will take a few examples and illustrate how this is being done, one | will take with
respect to hexagonal lattice and how different types of lattices could be generated, the
other example which 1 will take is essentially a parallelogram that is oblique lattice and
from that what are lattices which could be generated.
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Bravais lattice from hexagonal planar lattice
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Crystallography and crystal defects by A. Kelly and K. M. Knowles, Wiley

What are types of; how we can generate a Bravais lattice from hexagonal lattice, we will
consider what are we done here we essentially this if you look at it, it is a hexagonal
lattice, one lattice is what is where the lattice points are marked as a this is the hexagonal
lattice in which if you kept an another lattice on top of it, the lattice points which it can
come is that this lattice can be called as the B lattice which is kept at this particular
position that is on a hexagonal lattice if I consider it, here this is one particular position
where the next layer can come or this is an another position where the next layer can
come if you keep at this particular position B layer position and the next layer on C layer
position and the third layer if you keep it, it will be kept on this one A B layer, C layer
then the A layer will come.

So, this is how the layering sequences that are first layer, second layer, third layer, 4th
layer. So, if we consider it, this way we can generate a space lattice can be generated
while depending upon the distance which we choose it from here if we consider it this
distance it is called as s here and then at what height the next layer is being kept

depending upon that various types of lattices can be generated. If we keep the B layer at



a distance which is h is equal to 2 s by root 6 then this stacking sequence will generate an
FCC lattice, if we keep the B layer and all the successive layers at a distance which is h

is equal to like s by root 6 then we can generate a simple cubic.

If we keep the distance between the layers such that h the height is equal to s into s by 2
into root 6 then we can generate your body centered lattice if we choose a value of h
which is different from any of this value then we can we generate a trigonal lattice. Now
you can understand that using the same hexagonal lattice at what positions that is the
stacking sequence is A B C - A B C type of a stacking sequence, but the height at which
these lattices are this each of planar lattice is being kept with respect to one another we
can generate either trigonal simple cubic or body centered or face centered Bravais
analysis can be generated if we keep on top of an A layer and another A layer we
generate h hexagonal lattice. So, all the all these lattices could be generated from just a

2-dimensional hexagonal itself.
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Generation of 3-dimensional space lattice

Parallelogram to triclinic and monoclinic Bravais lattice

Triclinic

Primitive menoclinic B face centred monoclinic

Suppose we take a lattice which is an oblique lattice its nothing but a unit cell is a
parallelogram, if we keep this parallelogram one just on top of the another then what we
generate and keep the distance such that it is not equal to neither the translation vector A
nor the translation vector B then what we generate essentially is nothing but a
monoclinic lattice. If we keep the next layer so that this lattice point is at some position

the projection of it at some position which corresponds to a random point in the lattice



and the lattice parameter in that direction is not equal to neither a and b, we generate a
triclinic lattice. And if we keep these lattices in such a way that we kept at some
particular one the next lattice, but at a position which is halfway on the x axis just above
it then this is you can see that this the next layer which is being kept and then the third
layer which is being kept is right on top of a the first layer if you repeat it like this now

what we have generated is a face centered monoclinic lattice.

So, by keeping either at symmetry points or at random point we can generate different
type of lattices, but finally, if you try to look at how many lattices which we can generate

there are going to be only 14 these 14 lattices are represented here.
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FOURTEEN BRAVAIS LATTICES
P A

A A

Tl N Unit cell of Bravais
y ‘ J lattices (not all primitive)
'—*’ 1/
—
Trielinic lattice H--lnkhﬂku
1 </ j | Space lattices = 14
[ 1| f—| f—o
‘ . ‘t‘ v l-
y 74 |/ 7| For disordered crystalline
Ciin material has to form in any one
| of the fourteen Bravais lattices

i Tetragonal lattes !
‘r 6 / HCP is not a Bravais Lattice

1 D T T
AR : P - Primitive
X o7 i ctelen |1 - Body centred
—17 |/ pp F - All Face centred

R- Rhombohedral

4\ r=ht A, B, C - face centred
.5 Trigenal hattce ‘ w Hexagenal attce
¥ y Basic Elements of Crystallography by
\/ i

A= N. G. Szwacki and T. Szwacka

So, generally the way these lattices are represented is with respect to a B and C the
lattice parameter and with respect to a angle between them actually that is essentially a
consequence of the type of symmetry which is associated with these lattices strict
classification is on the basis of symmetry that is if we take triclinic it has no symmetry
associated with it if we like monoclinic it has one 2 fold axis rotation axis if you take at
orthorhombic perpendicular to each of the axis there is a 2 fold axis if you take triclinic
there is only one 4 fold axis which is there if we look at a cubic systems there are 4 3fold
axis which are present if you take trigonal there is only one 3fold axis hexagonal is one
which has got a 6 section hexagonally has got one 6 fold axis.



So, essentially what we have now is the seven crystal systems which we call it is based
on these types of symmetry these are all the minimum symmetries which will be
associated with these crystal systems they can have a maximum symmetry that will come
to later what is the maximum symmetry which we have and we should always remember
that hexagonal close pack system is not a Bravais lattice Bravais lattice is only hexagonal
it is a one which contains 2 atoms 2 lattice points per unit cell hexagonal close pack
lattice and the symbols which we use here are primitive lattice is represented by P | for
body centered F for face centered R Rhombohedral A, B, C for the different face
centering, but all are capital letters which are used unlike in the case of 2-dimensional

lattice.
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In the next slide, in this particular one all the 14th Bravais lattices are being shown what
X 1 have try to show here is that in addition to the this one bodies the space group
symmetry which is associated with this | will come back to it later what these space
group symmetries are, but essentially what the P represents is what is the type of a lattice
which we have and what are the symmetry elements which are associated with it that is
what it represents generally the lattices as | mentioned earlier exhibits the full symmetry
of the lattice the maximum symmetry will be exhibited by all the lattices that way here

all the maximum symmetry which is associated is exhibited.



One thing which one should always remember is that earlier case when we considered
how if you put a motive around different planar lattices we are not able to we are able to
join only uniquely some of them that is if we put your motive asymmetric motive around
whether it is a square lattice or whether it is a rectangular lattice we generate only an 1
fold symmetry. That gives an indication that irrespective of the value of A and B they the

symmetry is the one which besides the; what type of a specific space group which it has.

On that basis that when we write a not equal to B not equal to C it does not mean that it
is not equal to a necessarily not equal to B not necessarily not equal to C that is what in
crystallography term it means not equal to is does not mean not equal to necessarily not

equal to it can be also.
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Symmetry elements associated with 3-D crystals

Translational symmetry

Rotational Symmetry |
consistent with
Reflection symmetry translation

Inversion symmetry

Rotation plus translation - Screw axis

Mirror plus translation - Glide

So, now let us look at what are the types of symmetry elements which can be that is
before going into the details we will just list these are all the symmetry element and then
we will try to see how go into a details about the symmetry elements they are one
translational symmetry element will always be there with any lattice, then we have a
rotational symmetry element which we have already seen, what are rotational symmetry
elements? Reflection symmetry element which we had seen it in addition to it here we
will have an inversion symmetry element also will come then in addition to this, this is
all with respect to consistent with translation, but we are considering it around a point in

addition combination of rotation and translation combination of rotation and reflection



combination of rotation and inversion all the 3 are possible they will also we can

consider cases. So, these are all the cases which we look at it.

In fact, the combination of rotation plus translation gives raise to screw combination of
rotation and translation gives raise to screw axis reflection and translation gives raise to
glide reflection and translation will give rise to one is a glide which you get it then the
other is a rotation and translation gives a screw axis then rotation and a reflection
perpendicular to the rotation axis if we consider that will give rise to an inversion we will

complete later.
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Translational symmetry
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Any lattice point can be brought into coincide with another lattice point by
an operation R of translational symmetry

R=ua+vb+we U, v, w = +ve or -ve integers

|R=n,a+n2b+n3c| |R=u&+vl3+wt

If a, b and ¢ are primitive lattice translation vectors, all lattice points
can be mapped using the vector R

In this particular slide we have just shown the 3-dimensional unit cell which is
essentially a like a triclinic structure and any vector in this can be represented by a vector
R is equal to u into a plus v into b plus w into ¢ where u v w are the integers and a, b, ¢
represents the translation symmetry this way in the vector notation all the lattice points
can be generated by taking various combinations of u, v and w and what | have shown
here is that various types of this one because different types of notations are used
different ways it is represented in the books about the rotational symmetry | had already
explained how this rotational rotation consistent with translation put some restrictions on

the type of a rotations which are possible. So, I will not go into the detail.
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Rotational symmetry
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But in this slide what | had shown is there how they are represented on the stereography
projection | had just given a brief idea without going to a detail anything about the

stereography projection.
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Stereographic Projections

Stereographic projection is a form of projection where angular
relationships in three dimensions are represented in two dimension

Different type of projections exist
Perspective projection
Orthogonal projection

Plan / elevation (parallel projection)

But that I will do it now what a stereography projection is how important it is because
when we have to represent in 3-dimensions what we would like to do is that when we
talk of symmetry angular relationships have to be specified or the angular relations that

be shown on 2-dimensions because 3-dimensions we can view it, but when we have to



put a projection it is always in 2-dimensions we deal with how do we go about and do it
there are various types of projections are there the simplest is a perspective projection in
a perspective projection we can see it, but the distance unless we give more information
we do not know how far an object is far away in a stereography projection is a projection
where it is from the angular relationship in 3-dimensions could be represented in 2-

dimensions here | had just given what are the applications of stereography projection.

One in the crystallography for may showing angular relationship between different
planes and directions we can use stereography protection in x ray diffraction when we
have to represent texture we require it in electron microscopy different orientation of
crystals their planes and directions between different interfaces when we wanted to find
out orientation relationship in all these cases, stereography projection is important then
when we reforming a single crystal, how the different slip planes are rotating, all these
information, we can get it using a stereography projection because there it is at a 3-

dimension, what is happening?

But we wanted the same angular relationship to be projected in 2-dimensions. So, that it
is easy to do the calculation what is a stereography projection the way in which we can
understand it is that you take a sphere in a sphere as we know for a globe when we
consider there are latitudes longitudes are there or we can have it similar to that we can
have it in a globe we assume that there is nothing else is there fix the coordinate system
at the center x y and e z coordinates are fixed and then what we do is that take a point
which is on the surface of the sphere with respect to the e z coordinate it makes an angle
theta are the e z coordinate we considers the pole and if you look at the if you view this

from the other end of the pole from the south pole.
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Stereographic Projections

Stereographic projection is used in morphological crystallography,
electron microscopy and X-ray textural studies of polycrystalline
materials.

is a projection of points from /
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its equatorial plane. The / |
projection is defined as shown / -

in Figure. If any point P on the | [
surface of the sphere is joined (

to the south pole S and the line |

PS cuts the equatorial plane at VRS ~— [
p, then p is the stereographic \ B i
projection of P.

If ZNOP =0, then ZOSP = 8/2 and Op = rtan(8/2) | .\

The ray which connects our eye to this pole cuts the equatorial plane at some particular
position. So, this distance O P if you look at it on the equatorial plane, it is given by the
formula R is the radius of the sphere into tan theta by 2, what the angle which this point
P makes with respect to the s (Refer Time: 18:07) axis. So, essentially using this
relationship all the points which are there on the sphere can be represented on the
equatorial plane. If this point P rotates around this pole making an angle theta it will be a
circle and the projection of it will be nothing but this O P will take a rotation you take it

a circle. So, it will generate a circle.
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Polar stereographic Projections
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Similarly, you take this particular this one longitude this longitude all the points on this
longitude the final projection will be nothing but it will be a line passing through the
center this will be clear from this particular slide this slide here. If you look at it these are
called as the great circles are nothing but in the geography if we look at it we call it as
the longitude this longitude, essentially you can see that all these projections pass
through the center and this is a line which passes through this is nothing but a diameter
and these circles which are the latitudes their project, it has a concentric circles if you
assume that on the surface of the sphere we have marked at every 1 degree 2 degree or 5

degrees.

So, some specific angular separation latitudes and longitudes and then view it from the
south pole then how will it look like we will be generating projection this projection is

called as the polar projection.

(Refer Slide Time: 19:38)

Polar projection

The circle represent latitudes and the lines passing through the centre the
longitudes on the surface of the sphere in this projection (graduated in 2°)

[

In this projection if | consider this particular one it makes an angle thirty degree these are
latitude which it represents. So, if | take any particular position, if I fix the coordinates x
y and this will be the normal to the screen is there e z coordinate now we know that if |
mark a particular position, | know what is the position of this on the surface of the
sphere. So, essentially all the angular relationship in 3-dimensions are projected in this 2-
dimensional (Refer Time: 20:19) we essentially for stereography projection this is the



polar projection which is used this is, but only thing which is important which we should

and which we should note is that if we consider.
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In this particular projection if we consider any point on the sphere if it is on an equatorial
equator where will it get projector it will get projector onto the circumference of the
equator correct, if it is going to be anywhere on the top hemisphere the projection will be
inside the circle equatorial plane. So, that is essentially and when we consider in a space
lattice if we consider any planar directions it is going to be in 3-dimensions. So, anything
that is in a 2-dimensional lattice when we considers only the equatorial projection which
you have to consider that is why the motifs are always placed on the circle here since it is

a 3-dimensional case the motifs are all kept right inside the circle.

So, if you take a motif like this here if a mirror operation is there we put a mirror along
this x axis then it will be getting reflected and this is how the mirror will be reflected in a
3-dimensional projection in a 2-dimensional projection this point would have been put
here and this point would have come here that is all the difference is mirror
perpendicular to it if it is there. Now we can see that the circumference of the circle is
made thick to show that this is a mirror if it is an inversion operation that is the points on

the upper hemisphere invert it through the center it will come into the lower hemisphere.

So, anything which is on the lower hemisphere when we show in the projection the

closed circle represents always motifs on the upper hemisphere and the open circle



shows motifs on the lower hemisphere. So, in an inversion operation this is how it will
take place and if it is a 4 fold rotation. Now we can see that a motif which is being kept
here a 4 fold rotation this is how in a stereogram their various types of rotation and
reflection and inversion symmetry operation could be are rotation and a mirror which is
perpendicular to it all these can be represented all the examples are present here in this
slide.
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Transformation matrix for rotational symmetry

Arandom point xyz is transformed to xyz by 1fold rotation

Arandom point xyz is transformed to -x-yz by 180° rotation.

Using appropriate transformation matrix co-ordinates of point generated
by a particular symmetry operation could be determined

xyz to xyz by one fold rotation [(1, ? g Transformation
00 1 matrix
-1 0 0
xyz to -x-yz by the rotation 0 -1 0| Transformation
around the z axis 0 0 1 matrix
3
One of 4 fold rotation changes R 3
: : 1 0 0| Transformation
xyz to —yxz around z axis (anti
0 0 1 matrix

clockwise)

Using transformation matrix, co-ordinates
of different points generated by symmetry
operation could be found out.

| See International union of
crystallography table 2 for details

So this is about a symmetric representation, but when we have to find out the coordinates
associated with any one of them all the motifs which are generated if we are given a
coordinate x y z, we should know what is the transformation matrix which is associated
with it each of this symmetry operation and then we can find out because of using the
formula which | had given earlier, in the last class one can generate various types of a a
points. All the corresponding symmetry related points could be generated whether it is
for a rotation or whether it is for a reflection or whether it is for inversion here for

different operation, this is for a 1 fold rotation, the matrix.

This is the matrix which will be there if it is one which is a 2 fold rotation then this is the
type of a transformation matrix which we will using; if it is a 4 fold rotation that this is
the sort of a transformation matrix which you have to (Refer Time: 24:22), but on also

we have to define that whether it is a clockwise rotation and anti crosswise rotation that



is also very important with these what we have looked at it is what are the various types

of rotations which are possible and how they are represented.
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Combination of rotational symmetries
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Table 1.2 Permissible combinations of rotation axes in crystals

180° 180° 60° 90° 90° 30° Hexagonal
180° 120° 120° 70.53° 54.74° 54.74° Cubic
180° 120° 90° 54.74° 45° 35.26°  Cubic

Axes o B Y u v w System
A B C
2 2 180° 180° 180° 90° 90° 90° Orthorhombic
2 3 180° 180° 120° 90° 90° 60° Trigonal
2 4 180° 180° 90° 90° 90° 45° Tetragonal
2 6
2 3
2 4

2
9
2
2
3
3
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Now, can we have a combination of this just the rotation itself axis suppose | take a 2-
dimensional 3-dimensional lattice like for example, I have taken a orthorhombic
structure in this along each of this axis along this axis or along this axis or along this axis
all these axis we can have a 2 fold rotation. So, what is being done is that if I represent a

2 fold axis on the surface of a sphere because this is the origin o.

So, around this direction or around this direction around this direction along 2 directions
| find out some sort of a rotational symmetry what is the third direction in identify an
another third direction where what is the type of symmetry which exists these are all the
combination of symmetry elements which are possible. So, if | take that is 2 and 2 and
then you find the some other direction | find the 2 fold rotation then what is going to
happen is that between the 2 axis which have 2 fold rotation all the axis each of them
taken separately 2 at a time we find that angle between them is ninety degree and then

that structure is orthorhombic.

Suppose the 2 operations it is there in another direction you find that a 3fold then the
crystal system becomes their trigonal one then the angle between the 2 axis 2 fold will be
ninety degree and the other one is turning out to be 60 degree this way various

combinations are possible on that basis we can have different types of crystal structures



also this is one way in which various types of crystal systems could be classified. So

essentially, what means that these are all the unique combinations, which are possible by

combination of just rotation alone?
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Axes o B Y u v w System
A B C
2 2 2 180° 180° 180° 90° 90° 90° Orthorhombic
2 2 3 180° 180° 120° 90° 90° 60° Trigonal
2 2 4 180° 180° 90° 90° 90° 45° Tetragonal
2 2 6 180° 180° 60° 90° 90° 30° Hexagonal
2 3 3 180° 120° 120° 70.53° 5474° 5474° Cubic
2 3 4 180° 120° 90° 54.74° 45° 35.26°  Cubic
System Symmetry Conventional cell
Triclinic No axes of symmetry ~ a zhecazfzy )
Monoclinic Asingle diad azbhzgua=y=90°< [}
Orthorhombic ~ Three mutually azbzca=p=y=90°
perpendicular diads .
a=b=¢a=p=y<120™
Trigonal Asingle triad { 3=brc a=B=90°, y=120%
Tetragonal Asingle tetrad azbzga=p=y=90°
Hexagonal One hexad a=bzca=p=90° y=120°
Cubic Four tnads a=b=c¢a=p=y=90°

“Rhombohedral un
*This is also the conventional cell of the hexagonal system.

Crystallography and crystal defects by A. Kelly and K. M. Knowles, Wiley

it cell

Now, in this particular slide, what | had shown here is essentially that the different

crystal systems based on how they are defined based on symmetry and what is the

minimum symmetry which is necessary for this Bravais lattices and also the for a

conventional cell if we consider what are the relationship between the angle between the

axis and the translational vectors this all of you have studied also earlier itself you are

very well aware of it.
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Inversion Symmetry

xyz to -x-y-z (Part of translational symmetry) -1.0 0
Considered as 2fold rotation plus perpendicular mirror 0 -10
) 0 0 -1

In 2D lattice, it is just 2-fold rotation

Is it a translation or combined operation ?

Two fold rotation + perpendicular mirror = ?
Two fold rotation + inversion =?

Now, about reflection | had already explained. So, I will not go into the details, now let
us look at the inversion symmetry so far, | am not talked about the inversion symmetry
there is if we take with respect to the unit cell where or the crystal lattice if you take any
point r by an inversion the r will become minus r. So, the all the coordinates will become
the x y z will become minus x minus y minus z. So, for this the operation the
transformation matrix which will be is this particular type of a transformation matrix

which has to be used.
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Point group symmetry operations in 3-D lattice

Rotation
Reflection

Inversion

Combination of rotation
Rotation and inversion (roto-inversion)

Rotation and reflection (rotation and mirror
perpendicular to rotation axis - inversion)

Right handed and left handed objects are called enantiomorphous objects




So, essentially if you now look at it, what are the types of point group symmetry
operations which are there in 3 D lattices rotation which you have considered reflection
which we have considered inversion is one then we can have a combination of rotation
its possible then rotation and an inversion, we can take that combination rotation and
reflection also we have considered right that is either that rotation axis is there the mirror
is a reflection is parallel to it or perpendicular to it that combination can be chosen then
we can have a rotation and a reflection that is rotation and a mirror perpendicular to
rotation axis that gives rise to inversion that is why sometimes inversion is called as is it
a new operation or is it a combination of 2 operations of a rotation and reflection then in
these things what we have to look at it is that if we take only a rotation what is going to

happen is that.

Suppose | take this object by a rotation it will come like this it will go like this always it
creates one particular type of an object that is if | take a right hand | rotates it like this all
the directions its only the right hand gets rotated, but during this rotation operation right
hand motif can never become like a left hand reflection and inversion of the operations
where that enantiomorphic structures where the by this operation the right hand is

generated into a left hand operation this has some significance.
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In the behavior of the material which | will not go into the detail because that is not

particularly for the defection material one does not have to bother about it.



So, as | have mentioned using stereography projection, we can represent it, here all the
basic symmetry elements especially the point group symmetry elements or. So, the
combination of a rotation reflection and inversion and Roto inversion these together
constitute the point group symmetry. So, this can be represented in a stereography
projection in this it is for 1 fold and then 2 fold that symbol which is used to indicate that
it is a 2 fold rotation and the 3 fold rotation we can see that a motive which is being

placed here that a 3 fold rotation it generates like that various symbols are being used.

I will not go into details of any of these symbols because a internet in our
crystallography table if you look at it all the symbols are explained very nicely and in
many of the books which | had mentioned earlier also in those books also all these
symbols are explained essentially what we can make out is that these are all the just pure
rotation and this corresponds to Roto inversion this layer and this layer if you look at it,
it is mirror which is parallel and the another is perpendicular then this is just a simple

inversion.

So, these are all the basic operations and various combinations which we can choose of
all of them then you can imagine how many combinations which we can have generate
many, but how many distinct ones finally, we find it like in the case of 2-dimensional
lattice we did the exercise then we find that only ten are going to be there point groups
correct plane or point group similarly here it is going to be only 32 distinct point groups
are possible.
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Point groups

The symmetry elements (rotation, reflection and center of inversion
consistent with translational symmetry) and their combination is called
point groups.

Many combinations are possible but can be arranged into distinct groups
and each group is called a point group.

The operation of these symmetry elements pass through a single point
and this point is unmoved.

32 distinct space groups only exist for space lattice

Why point group study important ?

Macroscopically measured properties like thermal expansion, electrical
resistivity, elastic constants, optical properties show a symmetry and can be
understood without reference to translational symmetry of the lattice.

The rotation, reflection and inversion are called macroscopic symmetry
elements since their presence can be confirmed by macroscopic experiments.

So, essentially what is point group is essentially the various a symmetry operations like
rotation reflection and center of inversion consistent with translational symmetry and
Roto in the and their combination Roto in the combination is called as a point group
symmetry many as | mentioned many possibilities exist, but distinct ones are only thirty
2 why do we require a study of this point group symmetry or why it is very important
this is because when we look at the properties of the material change in different

directions are on different surfaces.

If you look at it, if a crystal grows you find that it grows with some particular
morphology earlier all the point group symmetries where found out by looking at the
morphology of the crystals similarly electrical conductivity thermal expansion all these
are and different directions can change depending upon the crystal structure they are
related to a point group symmetry how experimentally we can find out is by measuring
these properties in different directions we can determine what are symmetry elements are
associated with it are essentially the point group symmetries can be done, but the space
group symmetry if we look at it which involves others like a screw axis which | will
come shortly it is going to be externally. It is very difficult to see because it is only
associated with that only a translation which is very. So, the translation it will not shows

a change in property in a particular direction.



So, what is important is that study of point group symmetry is important because that
gives information about the properties in various directions in crystal structures in short
what we can have is that 32 point groups symmetries just the combination of all the
symmetry elements which consider they are eleven are there Roto inversion gives
another 5, then combination of proper and improper rotation axis, if you consider

altogether, another 16 so in short 32; our generator.

(Refer Slide Time: 34:35)

3-D point groups

Pure rotation is called operation of first kind. (It cannot bring a right handed
object in coincidence with left handed object)

Inversion and mirror are called operation of second kind (they bring right
handed object in coincidence with left handed object)

Various combinations of 1,2, 3,4, 6 and -1, -2, -3, -4, and -6
generate 32 point groups or crystal classes.

Operation of proper rotation and their combination constitute 11 classes. (firstkind)
Roto inversion another 5.

Combination of proper and improper rotation axes another 16.

Point group - Representation of symmetry of a motif around a point

(Refer Slide Time: 34:47)
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In this slide, 1 am just showing how they are in a stereography projection, they are
represented, | will give some assignments, one can work it out how to generate given the
point group symmetry which is given how these a stereography projection they are
generated the how they look like then one will understand, how this has been generated

actually and presented in various books.
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I-a 4mm (001) or (00T) Elementary crystallography by M.J. Burgers

Now, we will be going to the international in our crystallography table if you look at it

one a stereography projection which is being given this is the case which is considered is



4 mm point group. In this particular one in addition to giving this position of the motif
the general motif what are other positions if the motif we keep it also the same symmetry
element will be a can be represented like for example, if | put one at that center that has
got a 4 fold symmetry.

So, | do not require 4 motif to present them only one at the center is good enough that is
how what is being essentially explained here like the way | explained earlier for 2-
dimensional lattice here also what is the side symmetry associated with it then the
Wyckoff position and the multiplicity corresponding to the particular side symmetry and
here it is not represented in X y z, it is given in terms of a planes because most of the
symmetry elements earlier pin when the plane groups point group symmetry if try to
look at it some directions we are looking at it the planes which are perpendicular to them
that is what its being represented.

So, the symbol which is used to represent is planes then in this side what | had shown it
is that for the general one position exactly if we put one motif around it how the other
motifs will be generated for this particular point group symmetry one 4 fold rotation
which is taken here that is this point is rotated from here it comes here then from here
now from here to here to here to here it comes and then what we do it is that put the
symmetry elements mirror symmetry you consider it, then you find that that gets
reflected. Suppose on the symmetry axis on this if | place it only 4 points have to be
placed here, still that 4 fold symmetry and mirror all the symmetry elements, if | place it
around this axis the symmetry element mirror symmetry elements which are there then |

have to place at only 4 positions if | place it at the center only at one position.

So, this is essentially what is being given one this is corresponding to general this is
corresponding to one mirror this is corresponding to another mirror how the various

planes will come this is corresponding to the third one 4th one.
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Boxes with light pink background gives point group of Bravais lattice

These various 32 crystallography point groups, they correspond to seven crystal systems
which are there we can route them. So, triclinic has got one and one bar monoclinic if
you look at it is 2 m and 2 by m. These are all the point groups which are associated with
it, in this if you look at here, what is essentially is being given here is the minimum
symmetry elements in this side, what is marked with the pink color shows the lattice
which will have the maximum symmetry elements, that is how | have just identify

marked it.

So, trigonal will have 3, but if you take us the trigonal as a lattice it can have 3 bar m that
is if we have a crystal at least you should have a one 3 fold axis is it clear and then
another is that here some symbols are being when we use m 3 bar m this is essentially is
a short form it actually corresponds to 4 by m 3 bar and 2 by m then the next question
comes is that what is the convention which is being used to represent these symbols is
there, any convention which is being followed otherwise we do not in one case we
triclinic use only one monoclinic we use 2 here 3 symbols are being used in which
directions are where which the direction along which the symmetry operations are

performed.
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Order of axes of symmetry elements in point group for crystal systems

W Primary Secondary Tertiary
[100) [010] [001)
Tetragonal [001] [100)/[010] [110]

Hexagonal/ [001] [100)/[010] [120)/[1 1 0]

[100)/[010)/ [111] [110]
{001)

Example: 422 - 4 fold along [001] direction, 2 fold along [100)/[010]
direction and another 2 fold along [110] direction

And that is given in this slide, triclinic if you look at it, we do not have any symmetry
operation there is nothing like a primary or a secondary if you take monoclinic always
that 010; the B axis is chosen, further show the 2 fold symmetry which is present there,

orthorhombic if is see A, B, C, all have got a 2 fold.

So, essentially what it represents is these are all the symmetry along various axis when
we say 2 mm; that means, that 2 fold along the a axis that is primary is a then secondary
is mirror along this direction then another is along this direction mirror. So, that will be.
So, 222 and here if we look at it tetragonal 001 is shown along the primary 1. So, the
first letter represents a 4th then the next one represents a secondary that is what is the
symmetry along 100 or 010 and the third one the third letter represents symmetry along
110, direction like cubic if you see it again that on the primary one represents the
symmetry which is along the x y are z axis and the second letter represents the symmetry
along 111 direction. And the third letter represent a represents the symmetry which is
along the 110 direction if you take 432; that means, that 4 fold along any one of the A, B

or C axis and 3 is along the 111 direction and the 2 fold along 110 direction.

So, from this one very clearly understand how what is the sort of coordinate system
which is being used to represent the various symbols which are given here for the 32
point groups.
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Space groups

Space-group symmetry is a combination of symmetry elements
such as rotation, mirror, inversion, screw axes or glide planes.

The determination of space-group symmetry of material is an
essential step in structure analysis since it minimises the amount
of information needed for the complete description of the contents
of the unit cell.

The number of permutations of Bravais lattices with rotation
and screw axes, mirror and glide planes, plus points of
inversion is finite: there are only 230 unique combinations for
three-dimensional symmetry, and these combinations are

known as the 230 space groups.

Having looked at this 32 point groups and their representation, how it is done in
stereogram if you try to generate a space group what we have to do it is that point group
is around a point which we are considering it space group with that around the lattice if
you are trying to put motifs having this sort of a point groups around each of them what
are the distinct types of a crystals which could be generated with having specific
symmetries associated with them is there here again the combinations if we try many are

possible distinctly finally, we find that only 32 space groups are possible.
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We will not be going into all of them, but before going into them. So, far we consider
only point group if we consider as a lattice or what we have not done is that we have
considered between rotation and reflection which is consistent with translation, but we
are not combined in translation we can combine rotation and translation. And we can
combine mirror and translation if you do it in the lattice they generate some special
symmetry elements. For example, if we combined rotation and translation it generates a
lattice which we call it the symmetry which it generates is called as the screw axis

correct.

For example, here if we look at it example if you take this is a 6 fold, you know that 6
fold means that 60 degree rotation has to be given and then a translation by some vector
or some pitch you that is you rotate it and then translate it along the screw axis by some
vector of magnitude you take tau or a pitch which is tau. Then after n rotations we should
be able to come back to original position what is the position which well be coming it
could be either equal to the lattice translation vector if it is t or it could be some multiple
of t that is what essentially return n rho equals P into t this is equivalent to; like a
example which we can think of in real life is spiral staircase when we go on a spiral
staircase that is a pitch with which its being the staircase it rotates and finally, afterwards

it will be coming back to original position again it rotates correct.

So, depending upon the how many times it gives we have different types of combinations
which are possible one here the pitch which is taken is if we take one sixth of the lattice
translation vector for a 6 fold, but after every rotation by 60 degree we move it by one by
6 of t. Then we find that after 6 rotations and a in combination with that translation. We
will be able to come back to identical position original lattice point we are able to reach
it, but it has been shifted by a lattice translation vector that is how it can be done.

So, this also if you take a 2 fold rotation its possible in a lattice because this is not
possible in a point group, but it is in a space group when we consider positions of atom
these sort of translations this sort of symmetry is also possible if it consider for 2 fold
there is only one is possible 2 1; that means, that 180 degree rotation and translation by t
by 2 3 fold, if we consider it there is 120 degree rotation and a translation then another
120 degree rotation. So, 3, it can be 3 1 or 3 2 there are many combinations which are

possible because | do not want to go into a detail of this one because if it has to be done



it should be done in a separate crystallography class where all these things could be

explained at length, but essentially these are all the symbols which are being used.

So, in this slide we can see that if it is just a mirror which is their 2 fold we can see that it
is a 7 which is getting just reflected this is how at different lattice points the motifs will
be kept. Now if we look at a 2 1 rotation, this 1 is rotated by 180 degree, it comes here
another rotation and a translation it is brought to that point similarly for 3 fold 3 1 as well
as 3 2 how a motif will be rotated and translated around the screw axis it is depicted in
this figure from this we can | understand that the 3 1 and 3 2 1. It will be a clockwise
rotation and a translation another is an anticlockwise rotation and a translation both of
them this is the difference between these 2 though the pitch remains that same the angle

of rotation is also the same, but the sense in which it is being rotated is different.

Glide if we consider it this has mirror plus translation which is their glide is nothing but a
mirror plus translation | had already explained glide, but what is essentially important is
that if the glide is along the a axis the symbol which is being used to represent in the
crystallography table is a and the translation which is associated with the glide is a by 2
B (Refer Time: 48:44) it will be B by 2.
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Glide = Mirror plus translation

Characteristics of glide planes
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Similarly, we can have a glide along the face diagonal are on the body diagonal which is
called as a diamond glide, if there are no translation which is involved then it becomes

(Refer Time: 48:57) a mirror operation, all these various types of operations and symbols



what is the translation vector associated with different types of glides is given in this

transparency.
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So, far what we have considered is different types of symmetry operations which are that
is glide and screw which are symmetry operations which involve either rotation and
translation or reflection and translation now like we have represented in planar lattice
how do we represent all these symmetry elements. So, first what we have to do it is that
some projection will be required suppose we take the example of an orthogonal the
example of a orthorhombic lattice how are we going to present orthorhombic lattice if
you look at projection of one particular plane that completely does not represent the
orthorhombic lattice right at least 2 projections are minimum required to complete it if it

is a cube one projection is good enough.

So, mono depending upon the type of crystal structure different projections are required
graphical projections are required to show that this is what essentially is the planar lattice
corresponding to that in a particular direction correct are the units corresponding planar
unit cell that is essentially what is being when we represent it how are we going to show
at, what position they are going to be there, and so that is what essentially is being shown
here. Like if we take in this particular one where it is nothing but a tetragonal lattice. In
this particular tetragonal lattice the projection if we see in this plane which we show the



atom at the next plane will be projected to the middle and the next plane is essentially

identical to this one.

So, this can be represented as having coordinates half, half, half are in this projection it
can be just shown at all these x y positions are there only that z position is half this way
also it can be shown. This is what is being generally used these sort of projection in the
case of space group symmetry when we represent it. Now just let us have a look at the
different type of how it is a space group is presented in the international union of
crystallography table.
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Representation of space group symmetry
Important ones in the context of course are only described
Space group Paint group Crystal system

Space group number

p222 22 Orthorhombic
No:16
P222 Patterson symmetry (Pmmm)
Pmmm mmm Orthorhombic
No:47 P2im 2Im 2Im P R
P2,m 2m Monoclinic
No:t1 P12/m1

One, if you look at the table at the right hand side, they will show what is the crystal
system then what is the point group symmetry which is associated with it then the show
symbol also will be shown which | have not just shown here, because that is the symbol
which we see the; this particular type of a space group symbol is essentially is the one
which is now conventionally adapted in crystallography, but still people who use crystal
chemistry they use the (Refer Time: 52:24) symbol because that is one easier to work

with when we consider it as different group symmetry operations.

Then that one number is given this gives the; what is the space group number and then
what is called as a Patterson symmetry which thought something about that diffraction it
is something related to a diffraction symmetry these are all the information which is

being given.
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Then next what is the information which is being given is essentially the unit cell and
this is the unit cell 1 projection and in this projection the what are the symmetry elements
this is for a P 2 means that only 1 2 fold rotation is there and the detail symbol if you
look at it P 2 is 121. That means that along x axis 1 fold rotation, 2 fold is along the y
axis and 1 fold along the z axis.

Now, this is the and then it is being marked O to a this is that the x direction and this 0 to
C B direction is perpendicular to it in this specific case and then not only this is being
shown in the other 2 directions also how the units cell looks like and the symbols which
are associated within, because this symbol which is being used is represents that there is
a screw axis and generally afterwards you show a unit cell how the atoms are place in
this particular case. Since it is only one fold axis is there the origin could be chosen
anywhere if different symmetry elements intersect origin gets automatically fixed like if
only 2 fold rotation is there where do you fix the origin; arbitrarily we have to fix it. So,
essentially the origin is fixed and done that the projection of that the; a unit cell is being

shown.

Now, when you place a motif, the motif is placed where is it being placed? At some
position above it; that is why it is being shown O plus, plus indicates that it is at some
particular value it is (Refer Time: 55:02) above this plane of the unit cell and from here

by around this axis is a 2 fold rotation. So, what is going to happen is that it gets 2 fold



rotation and these said it comes again o plus this is how the general position is being

shown this is how the graphical representation which is given for a monoclinic lattice.
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The circled ones correspond to four special positions and adjacent one general position

Then as we can see here there are many symmetry elements which are associated with it
what are the symmetry elements which are this point has a one unique symmetry this is
another one this is another one this is another one because from this point to this point it
is a lattice point. So, that is the identical, but these are all the new symmetry elements
which are generated in the unit cell. So, we can put atom or the motive is at this position
and this position or at this position. So, essentially that is what is being shown one this
corresponds to 0 y 0 is its being placed on this axis and another is 0 y half, half position,
this is corresponding to here and this one corresponds to no, this is.

Student: (Refer Time: 56:22).

These position and this corresponds to 1 at the; and this corresponds to coordinates
where the motifs are being placed with respect to a general point. So, this is the table
which is very important for constructing the crystal structures along with it we should
know what the lattice parameters are if this information is available we can construct the

complete crystal structure.
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If we consider in this one that is a screw axis also is possible that 2 instead of a mirror
rotation associated with there can be a translation. So, it could be a screw axis then the
symbol which is being used is this particular symbol again if you look at the symmetry
elements which are associated with it. It is an identical type of a symmetry element
which you see it. And in this particular case the symbol which is been general point that
is at where there is no symmetry is associated with it if you put a motive at a height,
some height y then after 180 degree rotation it will come at a position that, but it is
shifted up by plus half that is exactly what is being shown and then the coordinates. If

you see it here we can generate represent the coordinates this correct.
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the point (x, y, z) onto (-x, 1/2+y, z).

These coordinates also there is another representation in which it is being done in
crystallography table 1 will not go into the detail of it.
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Now, let us look at a P4Amm, here it is a 4 fold symmetry, 2 mirrors are also associated
with it, the way in which it is represented is that these are all the positions of a 4 fold
symmetry lattice points then here we have 2 fold then mirrors which are there the motifs,
these are all points if we keep your motive at this particular point it is lying on a mirror.

So, it is called a special position if you put it here it has a symmetry which is 2mm. So,



this is a special point. And if | put a motif here it is lying at a general point. So, each of
the position what will be the coordinates that is the information which is given in this

particular table.
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Using this table and essentially here again like as | mentioned for 2-dimensional lattice
what are the various positions at which the motifs will be kept for different associated

with different symmetry elements.
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General position in the unit cell is the one which has only 1 fold
symmetry.

Special positions in the unit cell are the ones associated with some
symmetry element or the other.

Motif or atom is kept at these positions to generate crystal structure.

These positions with respect to unit cell are shown in the last two
viewgraphs for Pdmm space group.




So, in short if you look at it, the general position where we put it has got 1 fold
symmetry, the special positions in the unit cell, there we have many symmetries which
are associated with it, depending upon that the multiplicity will change. So, the
crystallography table if you look at it, the graphical representation shows the unit cell,
associated with all the symmetries associated with it and then a general position which is
represented. Then in addition to it in another table all the positions of the special
positions and the general positions are also given. So, the later part of that information is
what is necessary for constructing a 3-dimensional crystal this | have explained it with a
few examples, but when we have to look for in the actual crystal structure, all these

things have to be specific positions have to be considered.

In the next class we will take some examples and explain how different types of
structures can be constructed using the information which is given in the space group
table.



