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Welcome again to the new lecture of fundamentals and applications of dielectric ceramics, so let

us just briefly see what we did in the last lecture.
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From the last lecture, we wrote equations in the vectorial form for pyroelectric effect, where we

described quantity Pi which is nothing but change in spontaneous polarisation vector upon

change in the temperature, so:

T
P

p is
i 


 ,

pyroelectric effect is very useful effect as we will see later on in terms of various applications

and then we also looked at would we called as the electrostriction which is very similar to

piezoelectric effect which again correlates the strain as:

lkijklij EEMx ..

So, this is again, change in the dimension or strain generated as a function of pyroelectric field,

the proportionality constant is the electrostriction coefficient which is a fourth rank tensor and



this is sort of related to piezoelectric effect, so but it is present in all the materials and respect to

their symmetry, so even a piezo, non piezo electric material will show this effect, so that is why

there is a distinction between the two.

Because one occurs in non-centro symmetric materials which is piezoelectric effect, whereas this

effect purely occurs in the; this effect occurs in all sorts of materials and then we looked at; we

started looking at the thermodynamic basis of how these properties are coupled to each other,

and that is very important to understand if you want to make; if you want to evaluate them and

make measurement in a correct fashion.
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So, what we wrote was the change in entropy, dU was:

iiijij dDEdxXTdSdU 

and then we wrote the free energy expression:

iiijij DExXTSUG 

and then we differentiated this function to calculate the to work out the differential dG and this is:

iiiiijijijij dEDdDEdXxdxXSdTTdSdUdG 

So, when you put in now, dU in the expression, so we get dG as:



iiijij dEDdXxSdTdG 

So, from this equation we obtain a few things and what are those few things?
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We first obtain entropy, S and what it means is that when you take constant stress and constant

electric field which means these two terms will vanish and we can correlate entropy as:
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Similarly, when you have temperature as constant, electric field is constant, then we can

calculate the strain and the strain is nothing but:
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so that will give you the strain at constant temperature and constant electric field. At constant

temperature and constant stress, what we will obtain is the surface charge density or charge

density:
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so using these expressions, we can obtain S as:
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so all these subscripts are basically constant parameters. Second we obtain for strain that is xij
and this xij can be written as:
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at constant temperature and electric field. And third we can obtain is the charge density, Di which

can be written as:
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at constant temperature and stress, so these are partial differentials of free energy at with respect

to temperature or stress or electric field at other two parameters being constant, which are related

to; which depict the entropy, the strain and charge density and you can also write the total

differential form.
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So, to express entropy in terms of all the three parameters, you have to write the total differential

form, so let us say first, we write for entropy, so dS is equal to:
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Now, what is this term, (∂S/∂T)? It is C, what is the C? You call it, this is heat capacity. What is

this (∂S/∂X)? This is called as a change in entropy upon change in the stress, this is called as

piezocaloric.

So, this term depicts piezo caloric effect, this term is change in entropy upon electric field, this is

called as electro caloric effect. Now, if you look at the strain in total differential form, we can

write:
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Because elastic properties are different as compared to entropy. So you have to take the coupling

and measurement and the response in an appropriate directions otherwise, it will not be right, so

what is strain versus temperature?

What is the parameter which is of K-1 value or dimension that is thermal expansion, what is

strain divided by stress, elastic compliance and what is this, there is sort of indirect piezoelectric

effect, converse piezoeffect.
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And when you write the similar expression form for the charge density, we can write dDi to be

equal to:
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This is change in surface charge density as a function of temperature.

What is the change in surface charge density as a function of stress? Direct piezo, and what is

this change in dielectric? surface charge density as the function of electric field? This is just an

electric effect, plane linear electric effect, so these are basically, each partial derivative is

basically a physical phenomena as we see each of them, all nine of them show one or other kind

of physical effect that we have just seen in past few lectures.

And many of them can be also correlated using various other arguments for example, if you now

want to express dijk at constant temperature and stress, so how can you write this:
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this becomes dT,Ekij, so basically what it says is that thermodynamically speaking, indirect and

direct effect are nothing but the same, this is sort of equivalence of direct versus indirect piezo

electric effect although, they are manifested in different forms.

Thermodynamically speaking, they are nothing but the same whether you see you know pm/V or

whether you see pC/N, the manifestation is different but the effects are the same. So, this is what

it is, you can correlate other properties as well which we will be not going to do here. In reality

in practice, they are represented in slightly different forms.
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So, for example, let us say commonly expressed forms for, so basically if a small, you can say

these are for small changes in ΔS or ΔE or Δx, very small changes. So, for these small changes

we see ΔS as:
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If you look at it now, we wrote earlier dS as heat capacity into dT, piezo caloric coefficient

multiplied by dxij, electro caloric coefficient multiplied by dEi and the form in which we are

writing them now is this, so this is the small change in temperature, stress and electric field and

these are the coefficients, so this is CX,E /T.

ɑij is basically, you can say thermal expansion tensor and then this is PT,Xi, so this is for change in

entropy, similarly you can write for xij; xij can be written as:
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similarly, you can write for Di:
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So, these are basically sort of integrated forms that we write, for earlier we wrote the differential

forms now we have written what we call as integrated forms of these, and these are the



commonly written forms, so here we can see that alpha’s are all thermal expansion coefficients,

C is the specific heat, okay, S is elastic stiffness right or and S was is compliance.

And then we have pyro electric coefficient and then we have piezo electric coefficients, so all

these parameters written in these integrated and the superscripts in all the cases; XE, TE and TX,

they mean that these are the constant variables, they cannot be variable. So, in the first; you can

see in the first column, temperature is varied, stress and electric field are kept constant, in the

second column stress is varied, temperature and electric field are kept constant.

In the third column, electric field is varied and the temperature and stress are varied, now these

relations are basically for generally, linear materials only, when you go for nonlinear effects such

as ferroelectrics, then they consist of higher order terms which are not present here. So,

essentially these are valid only for linear dielectrics, linear effects, you can say non-linear effects,

dielectrics but we will say linear effects only in the linear region.

But with the moment, you go to non-linear region; they become slightly different, you have to

include higher order terms which we have not.
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So, these equations when you write in the matrix notation, for piezoelectric let us say these are

called as constitutive equation, so for piezoelectric, this strain:
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there are two notations you might be aware in the linear; matrix notation, the wide notation. So,

basically if we write them in the matrix notation, this is how you write them, so you can see that

instead of xij, you are writing xm, when i  j.

So, this was strain and then for dielectric displacement, you write this as:
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so basically you can see that if you want to have pure piezo electric strain, then you need to have

zero stress, so pure piezoelectric strain which is because of only electric field, then this

component must be equal to zero because you can see that strain here as stress term as well as

electric field term.

Whereas, we define it to consist of only stress, only electric feel by indirect effect, so if you want

to measure the pure piezoelectric strain which means the stress must be equal to zero, you are

only taking as if similarly, if you want to measure the charge; pure charge then the electric field

must be equal to zero and your stress must be finite. So, these are called piezoelectric

constitutive equations.

So, if you read any book on piezoelectricity, they will use these equations, so you can write them

in details, if you combine all the thermodynamic potentials, you can write various constitutive

equations, total of 6, if you include all the combinations of thermodynamic potentials etc., you

will get 6 more such equations, we have written just two which are of most importance but we

can write many others as well.

So, what we have done until now is basically to sort of provide you a feel of mathematical

framework in which these properties are expressed.
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So, we started with basically tensor notations and these tensor notations are basically, you need

to read little about matrix and tensors, so as said earlier, if you have a tensor is expressed as the

formula 3n, so n = 0 will mean it is a scalar, 1 will mean it is a vector, and greater than 2 it will

mean it will a it is a tensor, so of course the life becomes very difficult as you go to 9, 27, 81

components.

But things are made easier by thermodynamic considerations and symmetry considerations and

other factor such as stress and strain tensors being symmetric in nature, as a consequence the

total number of independent components in each tensor reduces substantially for example,

modulus which is the fourth rank tensor will contain 81 components, it reduces too much lower

numbers determined by symmetry and thermodynamic arguments.

Similarly, in case of susceptibility and piezoelectric coefficients, the numbers go down

dramatically because of for example, in case of piezoelectricity because of symmetry of stress,

the numbers go down from 27 to 18 and they can be further lower depending on the crystal

symmetry and thermodynamic arguments. So, essentially we look that as said various properties,

dielectric properties, then we looked at mechanical properties.



Basically, elastic properties, we looked at piezo electric properties, we looked at pyroelectric

properties and we looked at electrostrictive properties and in the end, we coupled them together

using thermodynamic arguments, right in the form of free energies and those equations are

partial equations that we develop, they are called as Maxwell equations, many of them, there are

total of 27 Maxwell equations, you can write, we have written just few of them.

Any book on classical thermodynamics will take you through 27 expressions, we wrote just a

few which will useful to us in the context of this course, it is far more difficult topic then we

have just in this case but we just want to you to get introduced to how they are written in exact

forms. So, in the next lecture, now we will continue with the discussion on ferroelectrics because

we have not discussed about them.

So, we look at what ferroelectrics are, what is the temperature dependence, what can be the

phase transition ferroelectric associated with, what is ferroelectric switching like, what is the

ferroelectric hysteresis loop, what is the effect of domains and things like that and then finally,

we will look at the applications of all the three materials, we will take up a few cases where we

will see how these effects are practically used in making devices.


