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Okay, so, welcome to this new lecture of fundamentals and applications of dielectric ceramics.  

Let us just briefly recap yesterday’s lecture. 
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So, we learned about the concepts of lattice; what a lattice is, basically point lattice.  And then 

we also looked at the concept of motif which is basis which could be an atom, group of atoms, 

molecular unit, etc., and when you combine point lattice and motif you will make crystal lattice.  

And then we also briefly looked at what a unit cell is, what symmetry operations are in space, 

and when you put the constraint of the symmetry operations you derive what we call as crystal 

systems. 

(Refer Slide Time: 00:56) 



 

So, just to briefly recap.  You have seven crystals systems.  Out of these seven crystal systems, 

first one is cubic which must have four 3-fold rotation axes.  This is the minimum symmetry 

requirement and the lattice parameters are defined as a = b = c and alpha, beta, gamma are all 

equal to 90 degrees.  If you distort this a little bit along c axis, then c lattice parameter goes 

different.  So, a is still equal to b but both of them are not equal to c, but alpha, beta, gamma 

are again 90 degrees. 

 

So, because of change in lattice shape, now, the symmetry requirement has changed.  This 

structure is called tetragonal.  It must have one 4-fold rotation axis which is along perpendicular 

to c-plane or perpendicular to 001-plane.  Then, if you distort it further, when a is not equal to 

b is not equal to c, but again angles remain 90 degrees, then it becomes orthorhombic and it 

must have three perpendicular 2-fold rotation axes.  So, three axes perpendicular to every face.  

So, these are all orthogonal systems.   
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Then, we have non-orthogonal systems where we have rhombohedral where a, b, and c are 

equal but α, β, γ are equal but not equal to 90̊ and the minimum symmetry that you require for 

this is one 3-fold rotation axis and 3-fold by default is along [111] axis.  Then, we have this 

hexagonal system.   

 

So, this should be not equal to c.  In the hexagonal system, you’re 𝑎 = 𝑏 ≠ 𝑐 and 𝛼 = 𝛽 = 90°  

and 𝛾 = 120°.  So, γ is the angle between a and b, whereas α and β are angle between b and c 

and a and c.  This must have 6-fold rotation axis as you can see that if you rotate it by 90°, you 

will repeat the unit cell.   
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And then, the other two are monoclinic and triclinic.  Monoclinic you have one 2-fold rotation 

axis minimum symmetry requirement, but a, b, c are all not equal.  Two of the angles alpha 



and gamma are equal to 90 degrees but they not equal to beta which means beta is not 90 

degrees.  As a result, it has a 2-fold rotation axis.  Then, we have triclinic where a is not equal 

to b is not equal to c and alpha is not equal to beta is not equal to gamma.  It does not have any 

symmetry element. 

 

It has just 1-fold symmetry which is considered as no rotational symmetry at all.  So, this is the 

basis of defining various shapes into seven crystal systems and the basis is symmetry.  So, for 

example, if you look at the cube.  I will just give you this example, when you say cube must 

have four 3-fold rotation axes, so this has 3-fold rotation, four of them along body diagonals 

which is called as 111 axis in the Miller indices form.  But if you put an atom, for example, 

here and here, then you lose the 3-fold rotations. 

 

So, it does not remain a cube.  Even though it looks like a cube it does not remain like a cube.  

So, instead, it converts into a tetragonal unit cell.  You can make a smaller tetragonal unit cell 

like this and there will be one on the other side.  So, this is how you will make a smaller 

tetragonal unit cell with 4-fold rotation.  I am not going through details of this as I said you can 

look at the other course which is nature and properties of materials, structure of materials part 

one for details of crystallography and symmetry. 
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So, these crystal systems are further divided into, now that you know the concept of primitive 

and non-primitive lattice; primitive lattice is the one with one lattice point, non-primitive lattice 

is the one with more than one lattice points.  You can define them into several primitive and 

non-primitive shapes and this is mainly because of symmetry considerations, because 



sometimes what happens is that non-primitive shapes they have higher symmetry as compared 

to primitive shapes. 

 

So, the cubic can be divided into three categories.  One is simple cubic where you have lattice 

points only at the corners, and if you put a lattice point at the center of the unit cell, then it 

becomes body-centered cubic.  It is represented as I in the crystallography notation.  So, motif 

for this would be 000 and I means there will be one lattice point at 000, another will be at half 

half half, by default it means. 

 

Similarly, you can have another form which is face-centered cubic where lattice points are not 

only present at the corners, but also at the face centers of the unit cell, and this is represented 

as F and here again the motif is at 000.  What it means is that automatically you have lattice 

points at half half 0, half 0 half, and 0 half half.  So, that is automatic.  Similarly, in tetragonal 

you have only two options.  One is simple tetragonal and body-centered tetragonal.   

 

Simple tetragonal you have again at the corners, body-centered tetragonal you have lattice 

points at the corners of the cell as well as at the center of the cell.  You can see that there is no 

face-centered tetragonal here and it is an interesting exercise to work out why do not you have 

a face-centered tetragonal which we have discussed in more detail in the other course in 

structure of materials.  Then, we have orthorhombic system.  This can be classified into four 

Bravais lattices.  So, one is simple orthorhombic with lattice points only at the corners.   

 

Then, we have body-centered orthorhombic where lattice points are at corners as well as body 

center.  Then we have base-centered orthorhombic or C-centered orthorhombic as we call it 

where one lattice point is present at two of the opposing faces, but four of the faces do not have 

any lattice points.  Finally, we have face-centered orthorhombic as well which is presented as 

F.  You can see that these are nine Bravais lattices.  There are five more Bravais lattices based 

on other systems. 
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So, we have rhombohedral.  There is no other Bravais lattice.  It is only primitive rhombohedral 

that we have.  Again, in hexagonal system also we only have primitive hexagonal.  In 

monoclinic not only we have simple monoclinic which is primitive P, but we also have a base-

centered monoclinic which has a lattice point at the center of two of the faces and this is 

basically a,b face or a,b plane. 

 

And then we have triclinic.  It does not have any other variant.  It only has simple primitive 

triclinic as its variant.  So, these are 14 Bravais lattices.  You might ask questions why do not 

you have 15 or 16 or 17?  But then, it remains an interesting exercise to work out why do not 

you have more than 14 Bravais lattices.  Partially, the answers are given in books as well as in 

the other MOOC course on structure of materials. 
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So, this sort of brings us close to the essential crystallography that is needed to understand the 

structure of dielectric ceramics.  The other thing that you need to know is the planes and 

directions.  Planes means you need to have a mechanism to identify various faces on a crystal 

and they are generally depicted by these indices which are h,k,l for a given plane.  And if you 

these round brackets, which means it is for a plane. 

 

And if you have these curved brackets, it means they are for identical set of planes. Identical 

set means they are crystallographically identical planes and that depends upon the crystal 

system.  For example, for a cube, (1 0 0) is equivalent to (0 1 0) is equivalent to (0 0 1) and 

you can write all of them for a cube (1 0 0), (0 1 0), (0 0 1), all of them can be written as (1 0 

0) because they are identical.  But for a tetragonal system (1 0 0) is not identical to (0 0 1) but 

is identical to (0 1 0).  So, you cannot write (1 0 0) as (1 0 0) for all the three planes.   

 

So, that is why there is a distinction.  So, you cannot use it loosely, you have to use it very 

carefully.  Crystallographically speaking, if you have a plane in a crystal that satisfies this 

equation where 

ℎ

𝑎
𝑥 +

𝑘

𝑏
𝑦 +

𝑙

𝑐
𝑧 = 1 

and basically these ℎ 𝑎⁄ , 𝑘 𝑏⁄ , 𝑙 𝑐⁄  are the intercepts of the plane on x, y, and z axes, a, b, c are 

unit cell lengths, and h, k, and l are just integers. 
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We will just look at one or two examples of how to determine or draw a plane.  Directions are 

essentially vectors, they are atomic directions, and they are written as u, v, w for a direction.  



Again, in the triangular brackets, if it is u, v, w in the triangular brackets and identical set of 

directions.  So, again, as I said, for a cube, [1 0 0] direction, [0 1 0] directions, [0 0 1] are all 

identical for a cube and you can write them as <1 0 0>.  But for a tetragonal system [1 0 0] and 

[0 1 0] are identical but they are not identical to [0 0 1] and hence [1 0 0] you write it as like 

this <1 0 0].  So, this will imply 1 0 0 and 0 1 0 only, okay?   
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Now, how to draw the planes and directions, I will just give you a brief example.  So, let us 

say you make a parallelopiped, let us say this is our x-axis, this is our y-axis, this is the 

convention to draw x,y,z.  Let us say, I want to determine this plane, the one which is there.  

This plane, as you can see, if you look at the intercept on x,y,z axes, for this the intercept on x 

is parallel to x-axis which means intercept for x is infinity, parallel to y-axis which means 

intercept on y is infinity. 

 

For z, this is equivalent to this plane, so basically, you can say that intercept is equal to 1.  You 

can keep your origin here.  Here, the choice is given to shift the origin.  So, you can shift the 

origin in a unit cell.  Since you cannot determine the intercept by keeping the origin here, you 

shift the origin here.  So, you keep the origin there.  This has the intercept of minus 1 along the 

z direction. 

 

So, if you now invert this, take the reciprocal of this, this becomes 0, this becomes 0, and this 

becomes -1.  So, this is (001̅) plane.  If you take this plane, this will be (001) plane.  Now, 

what about the plane which is here in the middle.  So, if I change the color, let us say, if I take 



this particular plane, this particular plane has indices of, so it is parallel to z-axis but it has 

intercept of 1 on x-axis, 1 on y-axis.   

 

So, intercepts are 1, 1, and infinity, right?  It is parallel to z-axis.  So, this is x, this is y, this is 

z.  Now you take the reciprocal, it comes (110).  I can take a little bit more difficult example.  

Let us say, I take an example of different colour.  So I choose a plane which is like this, okay?  

So, this is a A, B, C.  So, in this case, you can see, now it has intercept along z-axis in this 

direction, okay, so you cannot choose this as the origin because you cannot count the intercept. 

 

So, essentially, what you do is that, to count the intercept, you shift your origin to this point.  

Now, if I see the intercepts, I have one intercept along x-axis, one intercept along y-axis, and 

one intercept along z-axis.  But along the x-axis I have in the negative direction.  So, this is in 

minus x, this is in minus y because I am traveling along minus x in this direction, traveling 

along minus y, and I am traveling along this point to plus z. 

 

So, for A, B, C the intercepts are -1, -1 and 1/2.  And if I take the reciprocal, then this becomes, 

so minus is written as bar, bar 1 and 1.  So, this is(1̅1̅2).  That is how you draw the planes and 

that is how you determine the indices of a plane as well.  So, if I ask you to draw a plane, let 

us say(231) how will you draw (231)?  Let us say(23̅1), tough example, so what basically 

you do is that you first draw the reciprocal, ½, -1/3 and 1. 

 

And you have to look at the minus digit.  Minus digit means you have minus digit in the y-axis, 

which means you have to shift origin with respect to y.  So, what you do is that, let us use a 

different colour here, may be yellow is not the best one, but orange one, yeah, so instead of 

keeping the origin here I shift origin here because I can travel to minus y direction now.  So, I 

have an intercept along x which is half in this direction, I have intercept along -1/3 along y, 

and I have intercept long z which is equal to 1. 

 

I just connect these three points together.  So, this plane is basically (23̅1).  That is you draw 

the planes.  How do you draw the directions?  Let us just look at a brief example of directions.  

I am giving a brief overview because this is going to come handy as we see later on, especially 

non-centrosymmetric crystals.  So, if I have to draw direction [100] what it means is that if I 



take this as the origin, I travel one step along x, 0 along y, 0 along z, so that is basically direction 

parallel to x-axis is [100]. 

 

Similarly, [010] is parallel to y-axis, [001] is parallel to z-axis.  Now, what is this direction by 

the same logic?  One step in x, one step in y, so this becomes [110]. What about this direction 

from here to here?  So, to reach that point, now I need to do a bit of, I can see that it has an 

intercept, so I need to draw various possible options, okay?  So, I can travel to this point half 

along.  So, this is half, then I go 1 along y, and then I go half along z.  So, how much I have 

traveled for this, half along x, 1 along y, and then half along z.   

 

Now, in this case, you do not take the reciprocal, you multiply it the by an appropriate integer 

so that all of them become smallest possible integers.  So, this will become [121] direction.  

Again, you can choose the origin for negative ones.  So, let us say if you have a vector which 

is like, I do not know, if you start from this point, let us say you come to that point, okay?  So, 

your starting point is this point, end point is that. 

 

So, how do you go to reach that point, you travel half distance in x like this, you travel 1 

distance in y, along negative y, so you come this way half, this way 1, and then you go this 

way 1.  So, what is it?  We went positive in x, we went negative in y minus 1, let us say, and 

we went positive in z.  So, this direction will become [12̅2] all right?  This is what the direction 

will be. 

 

So, now let us say if you want to draw, let us say [420] direction.  How will you draw [420] 

direction.  4 means 4 distances, 4 unit lengths along x, 2 unit lengths along y, and 0 unit length 

on z.  Since you cannot go out of the unit cell, you divide it by 4, so this becomes 1, 2 by 4, 0.  

We will change the colour, these are all positives so you do not have to change the origin. 

 

So, if you keep the origin here, so you go 1 along x, half along y, and 0 along z, which means 

this is the vector that I have.  So, basically, [420] is nothing but [210], all right?  So, this is how 

you draw the direction.  You can look at the course structure of materials for details about it. 
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So, now, having completed some essentials of crystallography for dielectrics ceramic, what 

you need to understand is the type of bonding they have.  From basics of chemistry we know 

that there are three types of primary bonding that exists; one is metallic, second is covalent, 

third is ionic.  There are secondary bonds as well which are weaker and which are basically 

Van der Walls type of bonds that primarily exists in solids. 
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So, if you look at metallic bonding, metallic bonding is nothing but, you know, you have 

metallic core with a sea of electrons around them and metals such as, you know, nickel, iron, 

copper, gold, silver, etc., they all show this kind of bonding behavior.  So, basically, there is a 

sea of electrons.  The sea of electron provides malleability to metals.  So, basically, these are 

all sea of free electrons, right? 

 



You can say free electrons, and these are metal ionic cores.  And this provides basically 

flexibility.  So, that is why metals are malleable, conducting thermally as well as electronically.  

So, this is metallic bonding, I am not going to get into details.  You can look at any chemistry 

book.  For example, you can go to this website chem.libretexts.org, there is fantastic discussion 

on bonding of materials. 
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The second type of bonding that we encounter is covalent bonding and this is basically based 

on sharing of electrons.  So, for example, you can look at this CH4 molecule.  So, carbon has 

four atoms in the outer shell to complete its electronic configuration.  To come to low energy 

configuration it needs four more electrons.  So, when you pair it with four hydrogen atoms, 

hydrogen is also able to complete its configuration, carbon is also able to complete its 

configuration, and based on sharing this is called as covalent bond. 

 

There is a theory of covenant bonding that I am not going to go into details, but basically 

covenant bonding is based on valence bond theory as well as hybridization of orbitals.  So, in 

solids such as diamond and graphite and in methane, etc., there is a strong orbital hybridization.  

This orbital hybridization is necessary because the angles which are observed in these 

molecules cannot otherwise be explained. 

 

So, you can have sp hybridization, you can have sp2 hybridization, you can have sp3 

hybridization and so on and so forth.  These hybridizations give rise to certain molecules shapes 

which can be determined using a variety of techniques.  So, materials generally belonging to 



group 4 elements as well as compounds which are between silicon, carbon, germanium, silicon 

carbide. 

 

So, you can you can take silicon carbide, for example, similarly, zinc sulfide, etc., all of them 

show this kind of bonding.  And then silicon, carbon, germanium they are predominantly 

covalently bonded materials, and you have gases like methane etc., which are also covalently 

bonded. 
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Then, we have ionic bonding.  All of us know that ionic bonding is because of differences in 

the electronegativities of two ions.  So, for example, if you have sodium chloride, the best 

example that we learned from our childhood, is that sodium is electropositive element, chlorine 

is electronegative element. 

 

Sodium has a tendency to give away the electrons and chlorine has a tendency to take the 

electron, and because of this tendency and because of necessity to complete the electronic 

orbital configuration to put them into lowest energy configuration they form what we call as 

an ionic bond and this ionic bond is very strong bond because of this coulombic attraction 

between the two elements.  

 

Electron is donated by sodium to chlorine and electron is gobbled up by chlorine to complete 

its electronic configuration.  As a result, generally ionic bond has high bond energy.  It is a 

very stable bond and high bond strength.  It has high modulus and generally the materials with 

ionic bonding also are very brittle because one energy is very high and they are generally poor 



electrical and thermal conductors and that is why they are use for applications where you 

require them to be insulating. 

 

And this is what basically your dielectric ceramics are based on.  Most of the dielectric ceramics 

that we see they are predominantly ionically bonded materials.  So, materials like zirconium 

oxide, barium titanate, all of these dielectric ceramics they are primarily ionically bonded 

materials. 
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So, another example is lithium fluoride.  So, lithium as an atom it has three electrons, fluorine 

has nine electrons, so fluorine requires one electron to complete its configuration.  Lithium 

needs to give away one electron, and as a result, they form a very strong ionic bond.  So, another 

example.  So, most of the oxides that we will see as dielectric ceramics will follow this ionic 

bonding. 
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And then, of course, we have secondary bonding which can be because of fluctuating dipole, 

which can also be because of permanent dipole moments and so on and so forth.  So, basically, 

wherever you have this little bit of shifts in the electrons positive or negative charges that gives 

rise to formation of these secondary bonds.  For example, in polymers you have chains which 

are covalently bonded. 

 

So, along the chain you may have covalent bonding.  So, you can say polyethylene, right?  But 

attraction between the chains are secondary bonding.  Similarly, in graphite the carbon atoms 

between the graphite layers are also covalently bonded, but between the carbon layers you have 

secondary Van der Walls kind of bonding.  This is generally a weak bonding.  The energy 

scales are much lower. 

 

In the case of ionic and covalent bonding the energy scales may be as high as few hundred 

kilojoules per mole, whereas in the case of secondary bonding it may be just a few, may be 

about 0.1 to 1 or 10 kilojoules per mole, very weak bond. 
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Before we go to ceramic structures, we need to understand how atoms are packed in materials.   
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So, in materials, if you consider atoms as spheres, you can put the spheres in this fashion.  All 

of them can be arranged in this fashion.  Next layer can go directly on top of it and this will 

make what we generally call as a simple cubic structure.  You can see that this is not the closest 

possible method in which you can put the atoms together. 

 

However, there are certain structures in which atoms are packed in this fashion and this is 

basically simple cubic structure and the formation of these structures is dependent upon the 

minimization of energy.  So, whichever configuration gives you minimum energy based on 

electrostatistics will be the final structure.  You can have another configuration.  In this case, 

all the atoms are located at positions such as (0,0,0).  So, this is a simple cubic structure.   



 

There is a possibility that first layer will be the one in the red color, second layer can go in the 

positions which are middle of the first layer, and the next layer can go directly on top of the 

first layer.  This makes a structure which is called us body-centered cubic structure, okay, and 

this is again not the most densely packed the structure, but one of the structures which is found 

in many materials.   

 

And in this case, the atoms are placed at (0,0,0) and (1/2,1/2,1/2).  If you do it a little better, so 

if you calculate the packing factor which you can do easily, the packing factor of simple cubic 

structure is 52% or 0.52.  In the case of body-centered cubic if you take all identical atoms of 

course the packing factor will be 0.68. 
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You can also have closed-packed structures which is what many materials are based on, so you 

have one row of items, you put the next one.  The next one does not need to go right below it, 

but the next one can shift itself in such a manner so that it touches the maximum number of 

neighbors.  So, you can keep putting these layers together.  Now, you form this layer which is 

more closely packed as compared to the other two configurations that we just saw.  Now, the 

next layer how does it go? 

 

The atom in the next layer can sit on top of 1 or sit on top of 2 which has vacant places.  So, 

let us say it goes on top of 1 and that is how we keep making the structure.  So, the bottom 

layer is called as A layer, the next layer is called B layer, and if you keep following this AB, 



AB kind of stacking, you will make hexagonal close-packed structures.  So, this will lead to 

HCP, hexagonal close-packed structures. 

 

And if you do ABC which means first the one type of vacant space is covered, then the second 

type of vacant space is covered, and you keep going in ABC, ABC kind of fashion.  This gives 

rise to what we call as CCP, cubic close-packed structures, okay.  So, these are the three ways, 

generally, the atoms are stacked in solids, especially in metals.  And these are the structures 

also followed by many ceramic structures as we will see in the next lecture.  So, we will stop 

here.  We will look at the structural details of ceramic materials in the next lecture. Thank you. 


