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So welcome again to the new lecture of this course, fundamentals and applications of

dielectric ceramics. So let us just recap what we did in the last class.
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So in the last class we looked at detail little bit further into impedance spectroscopy and this

is a very useful tool to determine the dielectric characteristics of the materials. So many

materials show non ideal behaviour and as a result their description is incomplete by a circuit.

So as a result you would like to evoke other electrical circuits to model them and for this it is

useful to measure properties such as complex impedance.

Complex impedance contains real and imaginary part which are basically, calculated by

measuring Z and θ. So θ will also allow you to measure that loss tangent and from this

modulus electrical impedance you can determine modulus and by combining temperature

dependent, temperature and time dependent measurements, time means frequency right. One

can determine things like Ri, Ci, i means certain entity.

So resistances and capacitances, you can also calculate what are the time constants and from

these temperature dependence of these one can also determine what is activation energy and



then one can look into mechanism of electric materials, mechanism for conduction etcetera,

so you might have vacancy, you might have interstitials, you might have impurity atom so far

and so forth.

So different things will have different entities will have different time constants and they will

have different temperature dependence and frequency dependence as a result you can look

into different mechanisms a little bit more clearly and by combining this impedance and

modular spectroscopy the difference become more amplified you can say clear. So this is one

way to characterize electric materials in a very useful way.

And then we looked the dielectric breakdown and dielectric breakdown is basically, when the

dielectric materials become conducting or they will stop functioning as the dielectric and this

could be because of increase in electron temperature or certain conductivity or because of

thermal build up, temperature build up again makes materials conducting and it could also be

because of defects in the material such as porosity, grain boundaries etcetera.

So there are multiple mechanism that we briefly discuss, we did not get into details of this,

but if you want to get into details of dielectric breakdown, you can read this book, Principles

of Electronic Ceramics by Hench and West. So this is a very nice book which gives you a

good insight into dielectric breakdown. So now what we are going to continue about in this

lecture is we will look at, we will now continue our discussion into what we call as nonlinear

dielectrics.
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Okay and nonlinear dielectrics we mean, by this what we mean is that when you apply

electric field at say polarization, so we saw in case of linear dielectric that:

 EP r .10  
so basically, this polarization increases as a function of electric field linearly. So when the

field is zero, the polarization is zero. So as a result you have a linear variation of polarization.

This is what is the linear dielectric, but in case of nonlinear dielectrics especially at higher

fields, you might have different effects. So for example, a ferroelectric material will show

loop polarization switching loop like this. It has certain linear part at low fields, but the linear

part is limited, but rest of the places the curve is pretty nonlinear. So this is a non-linear

dielectric.

So these nonlinear dielectrics have special characteristics and generally we classify them in

three categories, one is called as piezoelectric, second is called as pyroelectric and third is

called as ferroelectric and these have crystallographic basis of distinction as well as

thermodynamic bases to understand these. So what we will do is that to begin with so far

what we did earlier, we looked at the properties of a dielectric in mostly in scalar form.

But to understand ferroelectrics, piezoelectric and pyroelectric, it is important to invoke the

tensor form of these properties. So what we will do is that, first we will introduce the formal

notations for these properties in the tensor form okay.
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So what we will do first is that we will look at the properties relevant to these materials in

tensor forms. So assuming that you have some knowledge of tensors and matrices and you

would also have some knowledge of thermodynamics. If you do not have knowledge of these

subjects then look at other MOOC courses or other books. So for example, for looking a

tensor properties of crystals, J.F Nye is recommended.

This is a very nice book on tensor properties of crystals and let me give you one or two more

references. So this is basically, you can say physical properties of crystals. Physical

properties of crystals by Nye J. F. So this is first book and then to learn about

thermodynamics you can read, A modern course in a statistical physics which is by L. E.

Reichl.

And third recommend book is Principles and applications of ferroelectrics and related

materials. This is by M. E. Lines and A. M. Glass. This is a classic book on ferro-electricity,

which goes a bit into phase transitions and thermodynamics and things like that. This is more

about the statistical mechanics, thermodynamics. This is more about tensor properties of

physical properties of crystals.

So these are some books, otherwise there are lot of other books you can also look at them. So

let us begin with some discussion on this.
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So our discussion will remain on basically, we will use system will be, co-ordinate system

will be Cartesian and so we will use x, y, z coordinates and then z will be considered as



perpendicular to the plane of the film or plane of the substrate or plane of the paper. So let us

first begin with the tensor definition of properties okay. So first let us begin with the

dielectric permittivity.

So among dielectric properties, the first thing that we know is the polarization right, which

we saw P, but in this case we determine as Pi, so i determines the direction right and the units

are coulomb per metre square. So when you apply electric field, vector, let us say electric

field is also Ei, it could be Ei, Ej, Ez, whatever. So again this is in volt per metre. So when you

apply electric field to a dielectric crystal, you generate a polarization.

And this polarization is written as:

jiji EP .
So this is your basically, applied electric field vector EJ and this is the polarisation Pi and so

you apply the field in J direction and you measure the field in i direction, polarization i

direction and this χiJ is known as susceptibility, tensor. So just like we have magnetic

susceptibility here we have dielectric susceptibility.

So this is dielectric susceptibility tensor, this is Farad per meter and as you can see this is the

second rank tensor. So basically, χiJ you can write as:
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 

So this relation however, is valid only for linear dielectrics or the linear portion of the

nonlinear dielectrics. So when you make polarization versus electric field diagram for a

nonlinear dielectric you can apply this relation only to the linear region of that plot not to the

other plot.
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So now let us see what is the total surface charge density. So total surface charge density

which is essentially dielectric displacement when you apply electric field. So we can write

this as:

iii PED  0
So here ɛ0 is permittivity of free space which is 8.85 x 10-12 F/m and Ei is the basically, you

can say the field and Pi is the polarization that is generated.

So now if you combine the, so let us say if you write this as equation number one and if you

write this as equation number 2, we can write this Di as:

jijii EED   0

which can be written as:

jijiiji EED   0

where δiJ is called as Kronecker’s delta which is equal to 1 if i = J and 0 if i  J .

And this particular thing is called as basically, you can write this as ɛiJEJ. So:

ijijij   0

and this is basically, the dielectric permittivity, that this is a dielectric, which we were earlier

writing in case of, in the form of scalar form.



And this for ferroelectric kind of material for the materials for which the susceptibility is

really large, for them for materials with you can say large susceptibility, you can say this is

equal to:

00, .. 



ijijrij

ijij

k



So when you say high K dielectric or low K dielectric, this is the kappa.

And which is also nothing but ɛr. So because this is what is the more useful term ɛr of k, then

ɛij. So you can see that here also that ɛij is a second tensor, so which means it has nine

components. Often we will see in many of these electric properties or other properties as well

of second rank and third rank and say fourth rank is that they although they, let just briefly

introduce what tensor is.
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So we know that tensor is defined by a rank by the formula 3n, so when n is equal to zero, it

has one component. So this will become a scalar, when n = 1, it will have three components,

so this will become vector. When n = 2, it will have nine components, then it will be second

rank tensor. So vector is a rank 1 tensor. So this will have nine components, so this is a tensor

of rank two. When you go to n = 3, you will have 27 components.

And then it will be a tensor of rank 3 and generally we will see up to n = 4 which is 81

components and this will be tensor of rank 4. So this is how these will be. So when you see



something like ɛiJ it is basically, tensor or rank 2. So this is what it will be, so when you write

for example, as we will see in case of stiffness if you write Sijkl, then this is tensor of rank 4.

It will have 81 components, but we are fortunate that crystal symmetry and thermodynamic

arguments reduce the number of component, but this is how it is this notation means. So this

is as we say is the dielectric and in case of dielectric permittivity we say that ɛij is this, so ɛij is

tensor or rank 2, so it will have 9 components, but basically, using the free energy arguments

this reduces to 6 independent components.

So you could have thermodynamic consideration, you can have crystal consideration and so

on and so forth. So 9 is reduced to 6 using thermodynamics considerations and 6 can be

reduced to even further if you have, so for example, if you take for a cubic crystal, it will

have lesser components. If you go for a monoclinic or tetragonal crystal it will have more.

So more asymmetric the crystal is, more the component you will have. More symmetric the

crystal is, lesser the number of components will be, so that is the general guideline. So these 9

components can be reduced to further lower number depending upon the crystal symmetry

and thermodynamics.
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So now let us look at the second aspect that is elastic properties. So in the elastic properties

let us first define the stress. So this is stress which is in N/m2, this is XiJ, so this is the stress

that is applied and then you measure the strain which is xiJ, which is strain, which is unit less.



So if you apply stress on any elastic material within the linear region, within elastic limit you

apply Hooke’s law.

And what does this Hooke’s law say, it says:

klijklij Xsx .

So this is the stress, this is elastic compliance whose unit is N-1.m2 and this is strain. We can

see here that stress is a rank 2 tensor and strain is again rank 2 tensor, the elastic compliance

as a result in rank 4 tensor. So this is the proportionality constant basically, it turns out to be

rank 4 tensor.

So basically, you can say it is a and stress is rank 2, strain is rank 2 and so you can write

stress as:

333231

232221

131211

ij





 

So it has 9 components but by symmetry it will reduce to 6. Similarly, strain will also reduce

to 6 because these 2 are equivalent. This and that is equivalent and these 2 are equivalent. As

a result you will reduce them to 6 components because of crystal symmetry.

So this is the relationship between strain and stress using elastic compliance as a

proportionality factor. So this is equation number let us say, so you have to use numbering

system, so this is 1, this is 2, this is 3 and this is 4.
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And let us come to equation number, and the inverse form of the above equation, so inverse

relation will be:

klijklij xCX .

so this is strain, this is elastic stiffness or elastic modulus, this is again rank 4 tensor, this is

N/m2 and this is stress okay. So now that you have elastic, so this is let us say 4(a). So we

know that these two equations are related to each other, so as a result we can relate the

stiffness and the compliance using the relation.

So we can relate them as:

jnimklmnijklklmnijkl sCCs  ... 

δim = 1, when i = m and is equal to zero when i  m. Similarly, δjn = 1, when J = n and is

equal to zero when J  n and this you can write the matrix and prove it. It is not difficult to

prove it.

So this is the relationship between the elastic compliance and the stiffness and let us say this

is equation number 4(b).

(Refer Slide Time: 23:01)

So this stress and strain tensors are, so these are all as we said second rank tensor, but they

are symmetric in nature okay and what it means is that basically:

lkkl

jiij

XX
XX







so as a result the total number reduces to 6, so basically, 6 components and when this

happens as a result since you have a, there is a symmetry in stress strain this also reduces the

number of components and stiffness.

So for example, complies becomes Sijkl to Sjilk, so number of, similarly, you can write for C/S.

So for both together and compliance the number of components in a fourth rank tensor you

will have 81. So this 81 reduces to 36. So you can write the matrix and then you can use the

symmetry arguments and see which ones are similar because we are saying ij = ji and ij = ji

for a strain also, what is also means is that this kl will be equal to lk.

So when you make these combinations you will see that 81 component will reduce 36 and

crystal symmetry further reduces these components to 21. So when you apply crystal

symmetry because crystals are symmetric. So the crystal symmetry argument further reduces

these 2 lower numbers, such as 21 so, when you apply crystal symmetry plus

thermodynamics actually we should say both of them.

So both of these arguments reduce to 21 or lower. So we are fortunate that from 81 we get

down to 21 or even lower components and for symmetric crystals which we generally deal

with have even lower number of components, so it makes life easier. So this is tensor notation

for elastic properties. Now we do not look into plastic properties because dielectric materials

are ceramic materials as a result they do not have plastic deformation.

So we mostly deal with the elastic properties in these materials. So next we will look at what

we call as, we probably are going to run out of time.
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But next is what we called as Piezo electric properties. So let us first define piezoelectric

materials. Piezoelectric materials are those which are first of all non-centrosymmetric okay,

among crystal classes there are certain classes which are centrosymmetric, there are certain

classes which are non-centrosymmetric. Non-centrosymmetric means they do not have lack

of, lacking a centre of symmetry.

So for example, what does it mean? It means that let us say you have two points x, y, z and

another point –x, -y and –z. If you have a centre of symmetry, so if you have a centre of

symmetry then what you see, so if you do an inversion operation then x, y, z can be replicated

to –x, -y, -z. If you have a centre of symmetry, but if you do not have centre of symmetry

then x, y, z will not be equal to –x, -y –z.

This is a very basic definition of piezoelectric material. So piezoelectric materials by

definition have to be non-centrosymmetric that is the must requirement. So we are probably

going to run out of time now. So we will just briefly summarise this that we have discussed

about some tensor properties of materials, mainly right now looked dielectric properties and

elastic properties and we will further discuss the piezoelectric properties and other properties

of this nonlinear dielectric materials in the next few lectures.


