
Fundamentals and Applications of Dielectric Ceramics
Prof. Ashish Garg

Department of Materials Science and Engineering
Indian Institute of Technology Kanpur

Lecture No 24
Debye Equations for Dipolar Relaxation

Welcome to the new lecture of this course, Fundamentals and Applications of Dielectric

Ceramics.
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So, let us briefly recap. Earlier, we talked about the microscopic details of treatment of ionic

and electronic polarizability in which we saw that, when you estimate the polarizability, and

when you plot the dielectric constant, the dielectric constant shows a, sort of, resonance at a

frequency ω. And this is the difference that you create. So, if ωτ is 1, this would be

ɛ(electronic) and this would be ω0,e for instance.

And at the same time you will have a peak in r  . So, this is r  . So, this is where ωτ = 1. So,

this is what we saw and we also started with a simple model for our dipolar relaxation or

dipolar polarizability.
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Where we said that, we are going to treat, so for dipolar polarizability or polaziation, we

started with the bi-stable model, where we assume that you know you have a molecule let us

say, like this. And this molecule, so it is connected in this fashion and this more molecule

transverses to another position, which is, like this, let us say. So this atom is basically moving

to this positions, from position one to position two. So you might consider this as a rotation

of, let us say a molecule.

So, this could be a different atom altogether. So, basically what is happening is that if you

plot the energy landscape, the molecule is shifting from one stable position to another stable

positions. So, this is position one, this is position two. And it has to overcome energy barrier

Ea or Qa, let us say. So, this is energy and this is, let us say, distance or position. So it goes

from one position to another position, and this happens by hopping.

And when the dipolar relaxation happens, basically when you plot polarization as a function

of time, the evolution of electronic plus ionic component is almost instantaneous, because it

happens at a frequency, which is below 1011 Hz. So, basically, timescale is the order 10-11

seconds and this happens extremely fast. So, your electronic and ionic polarization develops

almost instantaneously and then dipolar polarization develops slowly.

Until it saturates and reaches a polarization called as saturation polarization that is Ps. And at

any given point of time, this is represented by P.dt, the time dependent dipolar polarization.

And this is what is dependent upon a model that we will discuss.
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So, let us say, we so we were talking about the probabilities of jump. So, when you have zero

electric field, then probability of jump from one to two will be equal to:
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Qa is basically energy barrier. It being Arrhenius process and this is the thermal energy kBT.

So, you might have similar and so for one to two this is the frequency. Similarly, for two to

one, the jump probability will be:
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And these will be sort of equivalent at equilibrium. So, when there is no field, then

1221   FF
So, there are equal energy barriers from both sides as a result. So, and when you apply a field,

upon application of a field E, the potential energy of two sides changes. So, this changes the

ΔQ amount. So, what will happen is that, this energy barrier on one side will become smaller

and other side will become larger.

So, let us say this is one this is two. So, on this side, you will have deduction from (Qa - ΔQ)

and from this side, you will have increase from (Qa + ΔQ). And this ΔQ will basically

correspond to:

 cos.. dEqEQ 



So, assuming that cos θ is equal to, they are co-linear. So, essentially we will say that this

energy is nothing but µE for complete alignment.

So this is the change in the energy that happens when you apply the electric field. So

assuming that, θ = 00. So if this is the case, let us build upon further.
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So assuming that we have, so first assumption is that we have total number of bistable dipoles

are equal to N per unit volume. And N is a small number so that type roles are non-

interacting. So, non-interacting means, there are no internal electric fields that set in. And

third is we assume that θ = 00. So, when θ = 00, then ΔQ = µE.

So, when you apply a field, then:
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And similarly, and if you just break it up, this will become:
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So when we have no field F will be same as the expression just above.

So basically, it is saying that the site where the energy barrier has lowered, the probability has

increased by the amount exp(µEKBT). So the flow to one direction has increased, but flow

from other direction will correspondingly decrease.
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So similarly, when you talk of F2→1
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So, from one side, there will be more diapers moving to another side, whereas from another

side, there will be lesser number of dipoles moving to the first side because of the increase in

energy barrier. However we say that µEKBT is sufficiently small and this is verifiable. You

can choose the values of µ, which is nothing but Q.D. So if you put in there some

approximate magnitude of µ, Q and D.

And then the value of E, then this is smaller than:
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So, for all practical purposes, x is smaller than one. So, we can approximate exponential x for

smaller values, then we can write:
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So, as a result we can write:
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So this is the approximation that we make.

Now, under equilibrium, let us say, we have equilibrium conditions, that will mean that,

average population does not change with time, right. Average population at a given side will

not change with time.
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What will it mean is that, so outflow from 1 that is N1 F1→2. N1 is the population at site one.

F1→2 is the probability of jump from one to two. So this will be the number of dipoles or

number of atoms or number of species leaving the site one. This will be equal to N2 F2→1 and

this will be population at site, at two, whereas F1→2 and F2→1 will be the probabilities. So, we

can say that this is equal to:
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So, if we now do the mathematics, simple maths here:
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So, this is first relation, we get:
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Second thing the polarization can be written as, polarization Ps can be written as, change in

the number of jumps that is (N2 – N1), more have reached N2, few have reached N1 because

of change in the energy barrier. So, total number, which has shifted, change in the dipole

density multiplied by change in the number of dipoles per unit volume multiplied by the

dipole movement. So this will be equal to, basically you can say, let us take it at as this right

now.

Now let us see, so this is the another relation that we have:
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Now, let us work out what is the time dependence of P.dT. So let us say, first we want to

work out what is rate of change of dipoles, let us say on site one. This is equal to outflow

from one minus inflow from two. So, basically this is:
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So this is the rate of change of dipoles on site one. We also know that:

21 NNN 



which is constant.

So, if we now differentiate, so this is constant, but N1 and N2 are changing right.

So,

dt
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So, as a result we can write as:
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Now let us go back to our previous this thing, basically we are saying that:
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So, if you now do the, just some substitutions here, you will get:
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We have just changed the minus sign, just multiplied by a minus sign everywhere. Now, what

is this, this is nothing but one over, we said that:
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So, we replaced this, so, this becomes:
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So, one over and F is the jump probability, which is in per second, right, frequency.
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So this F can be approximated now as:
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So, now, writing this in terms of polarization, which is time dependent polarization. So,

among the polarization components if you see, the time dependent part is the dipolar part.

Whereas, the ionic and electronic parts are nearly time independent. Dipolar polarization is

time dependent. So, here we say, that at zero frequency, so, this is the expression that we get.

So, what is this NɑE, so we can see that this is the dipolar polarization, this is time variation

of bipolar polarization.

Which means, this should be the net polarization or saturation polarization that we should

obtain after sufficiently long times. So, here we define that, let us say, at zero frequency, we



achieve a polarization of Ps, right. When the frequency is very small, all the mechanisms are

contributing, then what we get is, let us say, static polarization. That is the maximum we can

obtain. And then we also define and then Pd is nothing but dipolar polarization.
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So, if we simplify these steps, so there so of course to solve this you need to do some

simplifications. So, let us say, that for ionic and electronic, your timescale is faster than this.

So, basically time scales are very fast. In fact, we can say timescales are smaller than this

actually. So, they are very fast time scales, hence for high frequencies we can write a

component:

ei PPP 

Correspondingly, so for high frequency polarization is this.

And we define a dielectric constant as ɛr,∞ .So, corresponding dielectric constant will be:
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So, this is the high frequency part. So, this is also complex. And at frequencies between 102

to 1011 Hz, which is now lower than this frequency, because this frequency is bigger than 1011

Hz. So, lower than this frequency, we have another contribution, which we call as static

dielectric constant, which is ɛ*r,s.

So, ɛ*r,s can be written as:
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This is the saturation polarization that you are going to obtain after the depolarization

saturates. And this is the contribution from higher frequency, which is from ionic and

electronic polarization. So, if you now replace the value of P*∞ here, you will obtain. So

replacing this value here, P*∞ and rearranging the terms:
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So, basically the saturation polarization that you will obtain because of saturation or dipolar

polarization is nothing but, the difference between the static dielectric constant and high

frequency dielectric constant.

So, basically Δɛ multiplied by ɛ0.E. And this is expected, right, this is what is dipolar

contribution that you get.
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So, this is the saturation you get. So, you can now modify our expression as:
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So, assuming now we know that E* has a relation:
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So since field is varying, it has a time dependence. We might expect the solution of P is also

time dependent. So, we can write a solution, so, let us say, we say that Pd star can be written

in the form:
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It has some sort of form, which is like this and we want to determine here what β is. So, if β

is like this, what we do is that, first if we say that this is the solution, we differentiate this

d(Pd) with respect to time and what we obtain is:
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This can be expanded using above expressions as:
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Now, what we get is, we can separate, the frequency dependent part and non frequency

dependent part on two sides. So this part will become:
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So, now since these two sides are equal to each other, they must be called to some constant

and it turns out that constant is equal to zero.

So, basically we make first for the real part:
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This is the first thing that we get. And now we do the same thing for imaginary part. So,

basically we have made them equal to zero. And imaginary part if we do the same thing,

then:
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So, if you say that, if:
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So, if you do the substitution, what we will get is:
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So, Pd* becomes:
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If you look at this expression, it is fairly similar.

Essentially, earlier we took dielectric displacement after inserting a dielectric, minus the

dielectric displacement without the dielectric that was equal to polarization, induced



polarization. Here also it is the same. So, here we are taking macroscopic values, maximum

dielectric constant minus one. One was when we did not have a dielectric.

ɛr was the one when you had dielectric. Here we are comparing two relative values, one is the

high frequency contribution, another is the low frequency or nearly zero frequency

contribution. Difference between the two is the dipolar part. So here, we are now not looking

at the total polarization, we are only looking at the dipolar contribution. Additionally what we

have in denominator is a term which is the frequency dependent term.

So, if you make ω = 0, this becomes basically 1. So, it becomes similar to what we have seen

earlier. So, there is nothing too magical here, it is just that now, we have done frequency

dependent analysis. Now, if we combine real and imaginary part, what we get is:
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This is the frequency independent term, this is the d.c term basically.

We can say time dependent dc term. So time dependent decay of, let us say, because this

exp(–t/τ), so how does the d.c contribution decays as a function of time. So time dependent

decay of nearly dc term. Basically you cannot say it is particularly d.c, because you have ɛr,∞,

there is a frequency dependence there, but it is at very high frequencies. For all practical

purposes, you can consider this to be frequency independent.

So time dependent decay of the independent term and then we have this another term which

is basically the ac behavior at low frequencies. So, this is basically the low frequency, this is

ultra-high frequency, which is nearly a constant term how it decays with the polarization.

So, essentially this contribution is going to be extremely small to dipolar polarization and that

is why most of the times we ignore that part.
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So, assuming that ionic electronic contributions as frequency independent. We can write

this:

*
0

*
*
,

*
, E

Ps
rsr 
  

So, what we have done is, we have just taken the frequency independent of polarization. So,

this becomes equal to essentially:
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So, if we separate the real and imaginary part, what we will get is:
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And tan delta will be equal to correspondingly:
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So this is what is the analysis that we have done and these equations are called as Debye

equations. So these are called as Debye equation. And when you plot this dielectric constant

as a function of frequency now, so r  .

Let us say first, so there is a frequency. So, let us say we plot log(ωτ). So, at a value of ωτ=1,

you have resonance that is occurring. So, this goes from sr ,  to ,r . And this is r  , it

undergoes a maximum. And the tan δ maximize, so this is for r  . The tan δ maxima has

shifted to slightly higher frequencies. So, for tan δ you can plot maxima like this.

And this occurs at:
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So, we can find out that easily, the maxima at which point. So, this is what dielectric

relaxation is, there is no resonance. There is a gradual change in low frequency dielectric

constant, that is static dielectric constant to high frequency dielectric constant, at a frequency,

at which ωτ = 1. So, this is also critical frequency.



So, this is ωτ = 1 at this point. And at the same point, we have a maxima imaginary dielectric

constant. Correspondingly, tan δ also shows a maxima at this frequency, which is close to the

peak of tan. So, this is what is the dielectric relaxation, which is basically about slow change

of dipolar polarization as a function of time. So, as a result, we do not see a resonance, we see

a relaxation of dielectric constant to smaller values as a function of time.


