Fundamentals and Applications of Dielectric Ceramics
Prof. Ashish Garg
Department of Materials Science and Engineering
Indian Institute of Technology Kanpur

Lecture No. — 22
Frequency Dependence of Dielectric Constant
Welcome again to the new lecture of this course, fundamentals and applications of dielectric

ceramics.
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Let me briefly recap the previous lecture. In the previous lecture we talked about frequency
dependence in real dielectrics and there we defined dielectric properties in terms of complex

behavior. So, we defined the k™ as:
* ’ 7N
k =k —ik
So, the first term in L.H.S is the real part and the second is the imaginary part. So, basically,

this real part represents the charging current and this imaginary part represents the loss

current.

Basically these are frequency dependent components. In addition, you will have frequency
independent components which is separate. And the ratio of these tan 9 :

tanézk—

!

So, the ratio of these two is tan d. So, for a lossy system we will have high tan 6.



Basically what it means is that if your system has high &" which means it has high frequency
dependent loss current. So, high &’ will mean high frequency dependent loss current and

what this would also mean is that your power loss will also increase. So, for dielectric

"

materials you have ¢’  which represents the actual dielectric behavior, whereas &’

represents the loss behavior of a dielectric. So, these are taking the frequency dependent parts

into consideration.

On top, you might also have ohmic losses. So, the total losses have to be calculated by
combining ohmic losses plus the non-ohmic frequency dependent losses. So, this is what we
have done in the last class and we determined the framework to do that.
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Now, what we will look at is the frequency dependence at the microscopic scale. So, we saw
earlier that your dielectric constant varies like this. So, you have frequency, you can write ®
or f, then we have &.. Now that we know it is real and imaginary part we will plot the real part.
This is what we plot here. So, initially we just plot the scalar part but here we know that it is a

real part. So this varies in this fashion.

So, at high frequencies your dielectric constant is one, at little bit lower frequency your

dielectric constant iS &' (electronic)- At lower frequency than that , it is &’ gonic. And here
anything on top of one is this, and this becomes & @ipolar). And then we have interfacial.

That is what we said earlier. Now, we see some interesting features here.



The interesting features are that at high frequencies when you transition from one to &/

(electronic) there is a resonance kind of peak. What is the reason of this resonance? Similarly, as
you transition from electronic to ionic you see again a similar resonance kind of peak.
These are the peaks also encountered in mechanical oscillators. When you have a resonance

you have these kinds of resonance peaks.

So, we will model this ionic and electronic polarization on the basis of basically harmonic
oscillators. So, these are two, we will call them as resonance peaks, and we will see how they
come about. And then, when you go to lower frequencies you do not see resonance peaks as
well, but what you see is a slow decay of dielectric constant. This is called as a relaxation

because here at the molecular level there are statistical events in response to time.

Basically, when you have electric field applied and when you have certain frequency of it, the
dipoles as you go from lower to higher frequency or higher to lower frequencies they take
time to align themselves in the direction of applied field. This is because the dipoles are
heavier. They have certain, you can say, if you like you can call it friction in the lattice and

they have to go from one stable state to another stable states.

As a result, there is energy barrier to be crossed. So, as a result, they slowly relax from one
position to another position and that is why it is a time taking process and this process is
called as relaxation. So, we will look at these three phenomena. We will not go into details of
interfacial. We will look at mainly dipolar relaxation and resonances related to ionic and
electronic polarisation considering simple harmonic oscillator model.
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So, let us do that. This is basically the first thing, it is the ionic and electronic polarisation at
microscopic level. First what we do is we assume that the charged dipoles behave like a
linear harmonic oscillator. This is the assumption that we make to begin with. So, if they do
that, then they also follow the equation of motion. So, now we have to write what is the

equation of motion in response to a force:

q,L=m; XTm;y, Xx+—ma, X

So, you have applied force. As a result, they will have certain acceleration, they will have a
damping component and so on and so forth. So, let us say, in this case, the force applied
basically you can say is due to applied electric field which is equal to, let us say g;E. This F is

nothing but the giE. So, qiE is the force applied. This is equal to the mass of entity, that is, m;.

It could be electrons with respect to the nucleus or it could be ions in the case of ionic

polarization. So, this is basically mass of the particle you can say, it could be charges, or ions,

all right? Mass multiplied by acceleration which is x . Then we write m;" into Yi into X

And what is this x? Here, we write x as a displacement from equilibrium.

So, x mean basically acceleration or you can say this is:

) ..
! %tz -

The second thing that will happen is every system harmony accelerator will feel friction. As a
result, there will be a friction coefficient yi and this is nothing but y; into m; multiplied by
velocity which is dx /dt. This is from classical mechanics. And then, we have another term

which is essentially m;" multiplied with w?,.x.

And the third term is basically if it is a simple harmonic oscillator where the charges are
connected through a spring, there will be a restoring force, all right? So, there will be
acceleration, there will be restoring force, and there will be damping. So, the first term
basically is due to, you can say this term is because of acceleration. The second term is

because of, you can say damping or frictional force.



And the third term is because of restoring force. So, essentially, this is nothing but k.x. So,
we have converted this into m®?x.  So, here o, is the natural frequency of the particle. So,
Wwe can say o, or ®io 1s natural frequency of the particle 1, and x is the displacement. So, we

can write this equation. Alternatively you can write this as:

L d’x . dx x 2
q,E=m, —tmy,—+m@, x
dt dt ’

This is the equation of motion which will be in this. So, you will have applied force. In
response to apply force you will have acceleration, every particle will feel acceleration, and
then you will have damping, and you will have a restoring force because of the spring
through which it is connected to which we assume. So, this field is basically the field that we

actually apply, that the molecule will feel, or the system will feel.

It will be a local field that is there at present, and the local field in dielectrics could be slightly
different as compared to the applied field, but for the sake of simplicity we will take it as
applied field itself. So, we can assume that you have a system, just like a gas in which there
are n atoms per unit volume and you consider them to be non interacting. So, if the dipoles
were interacting, then the field would be different, but we assume that dipoles are not
interacting, and as a result, the field is same as applied field.
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So, we can say that system is non interacting system. So, as a result, we will have local field

which is same as applied field. So, now, you consider two cases. The first case is you apply a



dc field and then switch it off at a given moment. What will happen when you switch off the
electric field which is d.c, the restoring forces will pull back the charges to equilibrium. So,

basically you will have restoring forces.

They will establish equilibrium by pulling the charges back to their original positions and if
there is no friction in the system and there is no damping, as a result, there will be no
damping of oscillations. And if you have friction in the system, you will have damped
oscillations. So, depending upon friction we will have damped oscillations or not. This is the
case of dc field which is not very interesting because we are not interested in dc field and we

know that in dc field there is no frequency dependence there.

So, we will have something like ohmic losses in the system. And now, the second case that is

there is when field is like this. So, when field E:
_ iot
E=Fye
It is sinusoidally varying field. So, if you have field which is sinusoidally varying, then it is
likely that the displacement will also vary sinusoidally. So, the x displacement is also

expressed as:

it

X = X,e

So, if you ignore the transient terms, students who are more interested they can go through
the solution by themselves by substituting x = xeexp(imt), but for the sake of simplification,

for the sake of saving time, we just write the solution as:
it
q,Eqe
* 2 2 .
m, [(a)o,i —w")+iy,0]

x(t) =

This will be the solution of the equation that we have just written in the previous pages.
Assuming that field is sinusoidally varying, if the field is sinusoidally varying, it is likely that
the response will also be similar. Responses is the displacement. So, displacement is also x
is equal to exp(iwt). If it has this form, then you substitute this in the above equation, solve

the equation, ignore the transient terms, and you will get this kind of solution for x.



Now, x will vary as shown in the equation above. This will what you will observe.
(Refer Slide Time: 17:07)

Now, what is the induced dipole moment if this is the case. The induced dipole moment is

equal to:
q; Eye™
* 2 2 .
m; [(@5; —0") +iy,0]

H, =(q;.X =

and what is u? We know that:
U=a.lk
That is the polarisability multiplied by electric field. This can be also written as:
_ iot
M =a ke

So, the o term what we have just derived here is basically the polarisability. So, this is o; of

an 1 kind of species is equal:

2

— el
- oml(@y, —@)+iyo]

This could be electronic or ionic. The change will be in the charges, the charges will be

different for electronic system and the ionic system.



The mass will be higher for ionic system than for electronic system. As a result, the
polarisability of ionic systems will be lower as compared to that of electronic systems.
What you also have here is you have the term (w? -®?) when ® = @; for this corresponding.

So, this we,i will mean you will have either electronic or ionic.

So, this basically, you can say, is the characteristic frequency at which you will have anomaly
here. The term will go to infinity. If you ignore this term, the right term, this will go to
infinity, and this is where the resonance will occur. So, when your omega is equal to wo, for
electronic and for ionic polarization, that is where you will have resonance.
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So, here you can consider m; could be either mass of, you can say, electrons. This will be for
electronic polarization, right, or it could be mass of ions for ionic polarisation system.
Generally for ionic polarisation we consider what we say is reduced mass of the system
which is given as:
g
M- MM or 1 _ 1 N 1
M"+M~ M M"™ M~

So, M and M- are cationic and anionic masses. Similarly, q; will be as appropriate, that can

be easily determined, and the mo, will be natural frequency of electronic or ionic polarisation.
And this is why you see when you plot them. The plots will come later on. So, let us write

now the polarisation, what is the polarisation going to be? The polarisation is nothing but:

l)i* =N.u,



We know that we can just multiply the number of dipoles. Now, we know that, since here we

have complex terms, we know that susceptibility was equal to:

*_L_ r_l-rr
X ¢ E X —IX

*

Now, the susceptibility also becomes a complex quantity because your p is complex quantity,
as a result, your P is complex quantity, as a result, your susceptibility will also be complex

quantity.

If you now segregate the terms, that is, we used what we call as equations, let just see, let us
go back to some previous equations, so, basically similar equations. Similarly, you will have
to resolve the P into real numbers and complex numbers.
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Ble Edit View lnset Actions Tools Help
Ndde " [FEZ2-+-5+ i/ AGEEEEEE | E®
-
» Nge § L
Liw = 2 { (e AlE “’)j
kﬁ"‘ %U- = £“' _ll
% NT-:- '
= Sy e —
& i . ) DR
= e.(l—- l-‘éf(l‘I
2 ko
elechowc polarval=hs
\t'-"l' Lt w.“,_:. lolb Jﬁ
: la ypakien
Iﬁ( L@l e f' 3
Wies o DRI

2
S e e e e e e = x]

So, you do the resolution that you can do yourself, that is a simple exercise. After resolving

the real and imaginary, first we get the complex quantity itself. The complex quantity is

*

X i,o0 .Star means it is a complex quantity first of all. So, that is why we write polarisation as

a complex quantity. Infinite is a term which is written basically. These are the susceptibilities

or dielectric constants below natural frequencies.



Since we will see we will have a resonance like this, so when you measure them below the

natural frequency it means it is susceptibility 1 infinity. So, that is a nomenclature thing. So,

*

basically X i,co can be written as:

. N.ug’ 1
Zioo: QZ

B

2 N
me, |(@y; —0")+iy,0

It is nothing but P/goE.

The E and E will cancel each other. As a result, we will have this term. And from this we can

determine &r. We know that:

So, £y will be equal to:

2
g*:1+N.ql. 1

r

2 2N, -
mg, |(@; —@")+iy,@

As it turns out, for electric polarisation, me,iis of the order of 10'° s or you can say Hz.

And for ionic polarisation, these are approximate numbers, mo; is approximately 10" s! or
Hz. And you can see that for the calculation of susceptibility and dielectric constant you have
to use the frequencies which are lower than the natural frequency for electronic polarisation
assuming that the damping term will be very small, negligible. So, from this you can also

determine what is &r.

So, that is equal to:

"
r

[} .
E=¢g —ig
Now, you have an i term here. So, what you will do is that you will separate these variables

into real and complex parts.
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When you do the separation into real and complex parts you will find &, for ionic and

electronic as:

2 2

g —1+NQi Do — @ <
r, 2 212 )
m.é&, (a)O,i o) tyw

N.g? \

o = g, ya g
r,oo 2 2N\2 2 2
me, (o), —o") +y o

It is simple separation of variables. So, when you plot this now, what you will obtain is
something like this. When you plot dielectric constant, so this is &er., as a function of
frequency. We will see it goes, we just expand it around this point. So, this will be your o
(electronic) - S0, this is for electronic or it could be for o onicy depending upon the masses and
charges.

And when you plot ¢, we will see at this point system shows there will be high loss. This

is the reason why we see those resonances in the dielectric constant plot. So, we will dwell
upon this a little bit more in the next lecture, but what we have established is the simple
framework to calculate the dielectric constant, the complex dielectric constant on a

microscopic scale for electronic and ionic polarization.



