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So welcome again to the new lecture of the course fundamentals and applications of dielectric 

ceramics. 
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So, in the previous lecture let us just recap the previous lecture so in the previous lecture we talked 

about we started our discussion on dipolar polarizability. So basically, alpha d so where we take 

the case that you know if you have electric field line like this then dipoles are making a cone at an 

angle θ with respect to applied field so this is first cone you might have another cone at another 

angle. 

 

So basically, all these dipoles then need to be so this is an angle θ1 so you need to basically calculate 

the average dipole moment which is basically total dipole moment of the system divided by 

number of dipoles. That is what we did so we took a slightly angular analysis considering the solid 

angle and then we also took help of Boltzmann distribution function which allows us to get the 

minimum free energy. 



 

Because Boltzmann allows function says that number of dipole moments of energy [𝑈(𝜃)]will be  

𝑁[𝑈(𝜃)] = 𝐴 ∙ 𝑒𝑥𝑝 (−
𝑈(𝜃)

𝑘𝐵𝑇
) 

So, this avoids the calculation of entropy which may be a little trickier so from this we calculated 

what is the average dipole moment. So, the average dipole moment was calculated as 𝜇 ∙ 𝛽 ok and 

this beta sorry. And this 𝐿(𝛽) was basically Langevin function and Langevin function at low value 

of β so β will be equal to here 
𝜇𝐸

𝑘𝐵𝑇
.  

 

So, at low beta that is low field or high temperature we approximated 𝐿(𝛽) = 𝛽/3 and from this 

we got 𝜇𝐸 which is equal to 
𝜇2𝐸

3∙𝑘𝐵𝑇
 ok. So, from this we determine what is dipolar polarizability 

which is  

𝛼𝑑 =
1

3
∙
𝜇2

𝑘𝐵𝑇
 

So, what it means is that basically dipolar polarizability decreases as you increase the temperature 

this is the analysis that we did and this is dependent on temperature unlike the other two 

polarizability is that at electronic and ionic in polarizabilities. 
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So for example if you do it for a system such as if you take for HCl for example so imagine that 

electric field is equal to about 100 MV/cm. Dipole moment is about 10-29 coulomb meter then at a 



temperature of 300 K we get beta of about 2.24 which is sort of ok because we considered beta to 

be small than 1 so this sort of validates analysis that approximation was not wrong. 

 

However, if you do for example at a temperature like 30 K then this increases the β value to 2.4 so 

that is sort of invalidates our analysis. But the but what happens is that at 30 K HCl so at this form 

HCl is liquid right. So, all the dipoles are randomly oriented but here HCl becomes solid so 

basically in solid form if you have this kind of situation the dipole tends to cancel each other. 

 

It becomes basically you have ionic polarization only that contributes so as a result the dipolar 

polarizability is not valid at lower temperature. It is only the ionic polarization that contributes for 

the HCl because it is in solid form so sort of NaCl structure it makes. So now let us what we have 

done just to summarize. 

(Refer Slide Time: 04:58) 

 

Now you so you have three polarizabilities you have ionic polarizability putting everything 

together which is α(electronic) which is basically proportional to R3. But is not a function of 

temperature sorry electronic then we have ionic polarizability (αi) so this is electronic polarizability 

is true for every system because every system will have atoms. Ionic polarizability is only for ionic 

solids where we have cations and anions in the solid form. 

 

There we consider αi and this is proportional to 1/Y but again it is not a function of temperature. 

Electronic and then we have dipolar polarizability this is for polar molecules only where molecules 



have dipole moment there, we defined this as αd and this is proportional to 1/T. So, this a function 

of temperature and it decreases as the temperature increases which means you need to apply larger 

field to polarize the system ok. 

 

So that is why you will see in every system now polarization decreases as you increase the 

temperature in whether it is a ferroelectric system piezoelectric pyroelectric system or any other 

system the thermal randomization takes over as you increase the temperature that and as a result 

you have decrease in the polarization or the dipole moment of the system. 

 

So, can we I mean so basically this analysis should be reasonably correct if you have if you know 

the value of D and if you wanted to create certain sort of some sort of dipole moment. Then you 

can to some extent get a feel of what should be the electric field that you require to polarize the 

system to create some amount of dipole moment (µ) so I said, 

𝑃 =
𝑁

3
∙
𝜇2

𝑘𝐵𝑇
∙ 𝐸 

So, but this is not valid for nonlinear effects where you have interaction between the dipoles. 

So, here we are not we are assuming that dipoles are not interacting ok but if dipoles is start 

interacting then it is a different situation but to first approximation for system where you have non 

interacting dipoles you can do that. And in a normal solid you will also have a effect of grain 

boundaries as well as defects it is sort of complicate the scenario. But I mean it may give you an 

idea of what is that which is required to polarize the system. Now let us move on to so what we 

have done until now is that we have looked at the basic dielectric properties. 

 

What is polarization? What is the mechanism of polarization? What is dielectric constant? And 

what is the frequency dependence of dielectric constant as a function of under looked at in the 

context of various mechanisms which mechanism is operative in which frequency range and then 

we looked at a parameter called as polarizability and it is an analytical treatment.  

 

And we found that ionic and electronic polarizabilities are independent of temperature whereas 

dipolar polarizability for polar molecules is dependent upon temperature. So, what we are going 

to do now is that we are going to look at the frequency dependence of these dielectric properties 

in a little bit more detail. Because this is what is of interest practically speaking because most 

dielectrics are used in applications are requiring certain frequencies of electric field. 
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So now our discussion will be towards studying frequency dependence of dielectrics. So here I 

mean the first thing that we are going to look the some fundamentals so we will first look at the 

comparison between the ideal and real. So, this also so this gives you basically good information 

about how good you dielectric is how close are you to making a real dielectric. Basically, a real 

dielectric is something where dielectric by nature should be insulator so which means there should 

be no whatever you whatever electric field you apply to it, all the current all the electric field 

should be used in creating dielectric displacement that is a polarization and you should not lose 

any charges out from the system but systems are not perfect they have various defects and things 

like that. As a result, whatever current you produce should be charging current ideally but it is not 

charging current there is a component which is called as leakage current that is produced.  

 

And as a result, some of the charges that you polarize leak out of the system as a result you have 

loss of information or loss of anything and in terms of charges. So, this is what is important this is 

what makes it important to understand the frequency dependence of dielectrics. Because it gives 

you parameters which have which can be depicted in the form of frequency dependent behavior. 

So, let us look at first the behavior of a real dielectric alright so basically for most applications we 

do not require a static or dc field for most applications require an ac field ok.  

 

So, which means frequency is not equal to 0 it is finite and as a result so let us apply first let us so 

the field is a sinusoidally varying field. Let us say this field is  



𝑉 = 𝑉0 ∙ exp⁡(𝑖𝑤𝑡) 

and if we apply this voltage to a dielectric this leads to so apply it to a dielectric and this should 

give you what we call as charging current. And this charging current is basically the rate of change 

of charge basically dQ/dt. So this Ic is nothing but dQ/dt and we know that Q can be written as C 

into dV/dt. 

 

So, this will be equal to 

𝐼𝑐 = 𝑖𝜔 ∙ 𝐶𝑉 

 and if you now do a little bit of so this is  

𝐼𝑐 = 𝜔𝐶 ∙ 𝑉0 ∙ exp⁡(𝑖𝜔𝑡) ∙ exp⁡(𝑖
𝜋

2
) 

ok. So, this will become I can write this as  

𝐼𝑐 = 𝜔𝐶 ∙ 𝑉0 ∙ exp⁡[𝑖 (𝜔𝑡 +
𝜋

2
)] 

What does this mean? This means that this term π/2 basically means that the current charging 

current in a dielectric leads the voltage by an angle 90 degree or π/2 in a perfect dielectric. 
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So, for a perfect dielectric if you know make the phasor diagram as we call it if this is the voltage 

vector then the current leads the voltage by an angle 90 degree and this is ok. This is what is the 

simple current voltage relationship for a perfect dielectric so this is for a perfect dielectric where 

the current leads the voltage by 90 degree. So as long as the current is at the certain angle at a 

voltage 90 degree it is perfect dielectric. 



 

In reality what you see is that in reality the current does not lead the voltage by it leads the voltage 

by a angle theta. As a result, there are 2 components 1 is this component which is in the charging 

current direction and then you have another component sorry just I can draw it here maybe. So, 

this component is a charging component and this component is within the direction of voltage is 

the loss component. 

 

The ohmic loss component because for a ohmic loss when the current is in the direction of voltage 

which means it is a ohmic current and the current is in the direction perpendicular the voltage is 

the charging current. So total current has now 2 components for real dielectric and that is what we 

will see how it comes about. How do you have so anyway so for a perfect dielectric basically the 

current leads the voltage by 90 degree. 

And this is total current and this all of this current is basically charging current ok and what is the 

now in such a dielectric what is power dissipation. So, power dissipation in such a dielectric would 

be so instantaneous power that is drawn by the dielectric is basically Ic*V ok. So, the time averaged 

power now that is Pavg  

𝑃𝑎𝑣𝑔 =
1

г
∫ 𝐼𝑐 ∙ 𝑉 ∙ 𝑑𝑡

г

0

 

ok. So, this is the time averaged power (г) where time period is given as 2π/ω ok so ω is the 

frequency of applied field. So, for an ideal dielectric so I can probably write it here just to save 

some space so this is given as 2π/ω so for an ideal dielectric with no loss of charging current 

basically ideal dielectric there is no loss of charging current no charges are lost. So basically, the 

current you have is only charging current we do not lose it in some other form. 

The power dissipated must be equal to and what is it this is 

𝑃𝑎𝑣𝑔 =
1

г
∫ (−𝜔𝐶) ∙ 𝑉0

2 sin(𝜔𝑡) cos⁡(𝜔𝑡) ∙ 𝑑𝑡
г

0

= 0 

that is equal to 0 ok. You can write it in exponential forms whatever you want but this is so if 𝑉 =

𝑉0sin⁡(𝜔𝑡) then you can calculate Ic from this, that will be sin⁡(𝜔𝑡 + 𝜋/2). As a result, you will 

have sin 𝜋 2⁄ cos 𝜋 2⁄  factor sin⁡(𝜔𝑡) and cos⁡(𝜔𝑡). 

 

But you can also write this in the form of exponential form and you will get the same answer so 

this power loss this power average power dissipated in an ideal dielectric should be equal to 0. For 



a so what it means it that during the first cycle when you charge the capacitor completely the 

second cycle discharges the capacitor without any loss of charge. So, during the first cycle so if 

this is the cycle you have this is the first cycle the charging cycle and the discharging cycle. 

 

So, the charge in is equal to so Qin = Qout there is no loss of charge that is what it means by a so 

basically it is like a perfect oscillator you know the swing or a spring whatever there is no damping 

in the system there is no loss. So, there is no loss in the system which means it is a perfect dielectric 

but life is far from being perfect there is no dielectric which is perfect. As a result, you have losses 

in the in every system and so when you have losses in every system how do we depict it. 

 

Anyway, it was necessary to show how a perfect dielectric would look like so that we have 

something to something ref as a reference. 
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But let us see now how that it behavior of real dielectrics look like so real dielectrics now so real 

dielectrics under alternating field. So, as I said in real dielectrics generally what will happen is that 

as I so if you make a phasor diagram let us say and these phasor diagrams are very useful. So let 

us say this is real this is imaginary ok so we draw a voltage in this as we said that for a real dielectric 

for a ideal dielectric the I must equal to I must be perpendicular to V. 

 

So this is I this is V, Ic ok is for a real dielectric so Ic = Itotal for an ideal dielectric. Alright now let 

us say for a real dielectric the situation is something like this. The current is at certain so and this 



angle is 90 degree by the way so for a real dielectric let us say this is your I total and this is at 

certain angle theta ok. So, it has 2 components the 1 first component that is parallel to so this is 

the Ic component and this is charging component and this would be the what we call as loss 

component. 

 

So, this is Il so it is made of 2 terms 1 is Ic + second is Il and this is I total and basically this is what 

is going to give you the voltage and this is what is going to give you the current on this side. So, 

let us see so basically what happens in real dielectric is in addition to so Ic will be the charging 

current Il will be the loss current and this loss is basically it happens because of various nature 

various things. 

 

It could happen because of ohmic conduction of charges in addition you may also have frequency 

dependent losses ok. So ohmic conduction means there is no frequency dependence because it is 

in phase so generally ohmic component of the loss is depicted as frequency independent 

component of loss. But in addition to frequency independent loss there is a possibility of frequency 

dependent losses such as you know dipole rotate in a system and the dipoles rotate in the system. 

 

They consume energy you may have traps in the system you may have defective charges in the 

system which may keep the dipoles bound. For example, if you have grain boundaries, grain 

boundaries have positive and negative charges they have certain defects. These defects may pin 

down the dipole the dipoles may require more energy to dominate to rotate or the amount of 

charges that you have stored. 

 

As a result of when you apply voltage you create the movement of charges but these defects the 

extra charges are there in the system. They may trap the charges that so you said that for a real for 

a ideal you know Qin this was equal to Qout during charging discharging cycle. But if this is not = 

Qin and Qout which means this sum δQ it could either get loss because of ohmic processes or it 

could get loss because of frequency dependent phenomena. So, you have both the components of 

loss current so that is what we will see in the in our analysis. 
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So, let us say we have both the current both the contributions so we have Itotal this will have Icharging 

Iloss some of this components will be frequency ohmic and some of this could be non ohmic and 

frequency dependent. So, this is frequency independent ok so our time dependent you can say Itotal 

so let us say if so the loss current in the system is given as what we call as 

𝐼𝑙 = (𝐺(𝜔)𝑎𝑐 + 𝐺𝑑𝑐)𝑉 

And since both of these are in phase with the applied field that this that is why it is called as loss 

current and this G is basically called as conductance. So, this is basically written in either mho or 

Siemens and this is nothing but inverse of resistance right. We know that V = IR so it is nothing 

but inverse of resistance ok the total current as a result IT is sum of charging and loss current and 

this is equal to 

𝐼𝑇 = (𝑖𝜔𝐶 + 𝐺(𝜔)𝑎𝑐 + 𝐺𝑑𝑐)𝑉 

This is what total current is and here this so this angle as we say this angle is often I have written 

theta you can also write as delta in some language and this is basically this delta is called as 

dissipation factor. So, you can see that if you look at this delta this will become 90-δ. So tangent 

of 90-δ will be equal to Il/I so basically you can say that this angle will be here you can say the 

loss angle. 

 

Higher the loss angle is more the loss current will be right so let us say if this was equal to some 

angle let us say sorry let us say we do not write it as δ. We write this as 10 – 90-θ let us say we 



write this as delta and then this tan delta will be equal to Il / Ic. And more the loss in the system 

higher the tanδ will be for that system or the more the power dissipated or lost charges are lost ok. 

 

So, we will do and if you have this as 0 which means there is no loss in the system. So, we will do 

more analysis of this in the next class we are now running out of time. So, this has this require this 

will give lead us to what we may expect is frequency dependent of permittivity as we will see later 

on ok thank you. 


