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So welcome again to the course fundamental and applications of dielectric ceramics so we will 

start with the new lecture today again let first recap the previous lecture.  
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So in the previous lecture we learnt about the polarizability which is µ which relates with the dipole 

moment with the electric field so alpha is polarizability and we did analytical treatment of 

electronic polarizability and ionic polarizability and here we found that it is proportional to R cube 

which means bigger the atom is more polarizable it is and here it is inversely proportional to 1 

over y which is the elastic constant. So more stiff the material is more the bond energy is lesser it 

is able to polarize which makes sense some in stronger materials do not get polarize very easily. 
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So today what we will do is that we will take a case of what we call as dipolar polarizability which 

is essentially a material which if contains for material which contains dipolar polarization let us so 

basically this treatment is valid from materials which are polar in nature which means molecules 

contain a finite dipole moment. So, this would be valid for examples like example would be H2O 

molecule it is also to some extent valid for tends like zinc oxide which is the non-centro-symmetric 

structure. 

 

So any solid which is polar in nature will have this is valid so the reason so what happens when 

you have this polar molecules on polar molecules sorry polar molecules is that when temperature 

is finite and electric field is equal to 0 then let us say that dipole moments are all over the place so 

these are the molecules which are present in the system and as a result of randomization. 

 

So you have basically random dipole distribution and you can sum it as if these dipoles are pointing 

in such a manner so that µ is∑ 𝜇 = 0. So, although each of the individual molecule as a finite 

dipole moment the system does not have dipole moment to show for because of thermal 

randomization lead to 0 dipole moment. Now what happens is that when you apply electric field. 

 

So, let us say when you such a system and when you apply electric field so when you apply electric 

field to such a system now. So, let us say electric field is pointing from positive to negative which 

means dipole moments have to align so this which means dipole moments are from negative to 



positive okay. So, this positive of this has to align the negative of electric fields so if you have a 

parallel plate capacitor so negative charge will be in the plates and then positive charges will have 

to align with itself. 

 

So, these have to now sort of tilt towards the applied electric field okay so this is already aligned 

this will come closer to be in. and so on and hence so forth. So basically the electric field will pull 

them towards some finite so that you have net dipole moment now in so now when E is not equal 

to 0 the Mu net is also not equal to 0 what it means is that in such a state your dipole moment in 

this direction is bigger and the dipole moment in this direction is smaller. 

 

So, this is µ let us say E direction and this is µ, which is -µ right in this direction so this so let us 

not E but just say so µ so let us say positive negative. So, µ positive being greater than µ negative 

will give you net dipole moment. So, this is basically you will have to overcome so field strength 

in this case as to such that so that the field is able to overcome the applied the thermal energy. 

 

So basically, you need to now find how much energy is required to orient this molecule to 

overcoming the thermal energy. So basically, this is a process which is thermally driven process 

so you need to apply sufficient amount of electric field to overcome this thermal randomization. 

So, if this is the case basically what it means is that we need to minimize the free energy of system 

and free energy consist of enthalpy and entropy terms so we need to balance out enthalpy and 

entropy but what will is such a system entropy is little difficult to calculate. 

 

So instead of banking on the entropy we will take the help of Maxwell distribution Maxwell 

Boltzmann distribution to find out what is the probability of aligning certain number of dipole with 

certain amount of energy in the direction of applied field. So, we will in fact rely more on 

distribution function than on the entropy aspects of it.  
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So let us say we have a picture like this so we have a dipole we have an electric field which is 

pointing like this from positive to negative then we have a dipole which is pointing from negative 

to positive okay this is your µ this is E this µ is attracted towards E so this is the angle theta between 

the 2. So basically, the internal energy of a dipole can be written as let us see U and this U basically 

is written as𝑈 = −𝜇 ∙ 𝐸. 

 

So, if you take E in the opposite direction as we conventionally take then you have to write it at 

+𝜇 ∙ 𝐸 because then 𝑐𝑜𝑠𝜃 will have so basically this will become 𝜇 ∙ 𝐸𝑐𝑜𝑠𝜃. So, in this case when 

the 𝜃 is minus 𝜇 ∙ 𝐸𝑐𝑜𝑠𝜃 when 𝜃 is equal to 0 degree then 𝜇 ∙ 𝐸 would be thus U would be negative 

𝜇 ∙ 𝐸 that is minimum okay. Alternatively, if you take the electric field direction opposite just 

talking about the do not represent these charges then you have to take it as +𝜇 ∙ 𝐸. 

 

So, you have to be careful with the sign as to how you applied the field and how you depict the 

field. So basically, the orient this U is basically you can see the function of theta okay so we are 

saying now we have multiple dipole in the system and we have the electric field applied. So 

basically, we can depict them as if we have let us say this direction so let us say this is the direction 

of E for what basically will mean is that we will have in 3 dimension a cone of dipole’s. 

 



So, this is the cone of dipoles at an angle theta with these respect to E so this is µ this is E so this 

is basically a cones of dipoles at different θ will be present now. So, this is one cone of dipole at 

one θ you might have another cone of this is another θ let us say this is θ 1 and so on and hence so 

forth. So, what you basically will have in 3D you will have if you put it vertically you will have 1 

cone you will have an another cone and so on and hence so forth and this will also be true in the 

other direction okay. 

 

Because not all the dipoles are going to be orientated in one directions so you will have this kind 

of situations as well. So basically, you if you now consider these multiple cones together it will be 

as if you have the spherical surface created by these cones putting put altogether so which means 

you need to carry out integration from all the angles alright. So now let us consider in such a 

situation a spherical case so where we have the situation like this.  
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So, we draw a okay right so this is the vector E so this is let us say the first cone at certain angle 

theta and then you have another cone let us say an angle dθ okay. And so, you have these first cone 

here so this is what is let us just put up it all and then we have another cone here okay this angle 

would be the angle d theta and if you now project it on a surface of a sphere. So, it was if you make 

it little 3 dimension in nature. 

 

So basically, you will be projecting a sort of now zoom this up so let us zoom this up on the surface 

of this sphere okay. So on this surface of this sphere we will have an element like this okay which 



will have these lines connecting right and so this is let us say one direction this is let us say one 

direction from so let us say this angle is θ this is dθ but in this plane in the horizontal plane here it 

will have projection let us say we will have one line here and another line here so this angle will 

be φ and this angle dφ okay. 

 

The 2 lines that will be coming from top so this angle is dφ this angle will also be dφ okay. So now 

if you take the projection this distance will become rsinθ so this will become rsinθ into dφ and this 

will be rdφ. So, the solid so dA for this small element will be 𝑑𝐴 = 𝑟𝑑𝜃 ∙ 𝑟𝑠𝑖𝑛𝜑𝑑𝜑. So, what is 

the solid angle going to be? So solid angle will be 

𝑑𝛺 =
𝑑𝐴

𝑟2
 

 this will be  

𝑑𝛺 = 𝑠𝑖𝑛𝜃𝑑𝜃𝑑𝜑 

okay. 

So, this is the distance 𝑟𝑠𝑖𝑛𝜃𝑑𝜃 this is the distance 𝑟𝑑𝜃 take them together a product of these 2 

consistent that small element is square in size or rectangle in size the area of that will be 𝑟𝑠𝑖𝑛𝜃𝑑𝜃. 

So now a basically what we are going to do is that this is the case where we need to consider the 

number of dipole first we need to consider so this is the schematic diagram that we have drawn 

here. 
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Now we need to consider first number of dipoles at an angle θ which are equal to N(θ) and they 

will also be carrying some energy. So, these are the number of dipoles at an angle θ carrying some 

energy corresponding to that angle because angle is energy is angle dependent right. So, because 

we have seen it µEcosθ so basically, we need to integrate them all the angles starting from 0 to 

180 degrees. 

 

So this will give us the total internal energy so total internal energy will be for all dipoles line 

between θ = 0 degree to 180 you take from the south pole and go to the north pole right and this is 

for all the so this is for basically n theta into u theta so this is for 1 set of angles and then you need 

to integrate it from 0 to 180 to carry out to get the all energy completely. So now let us use the 

Boltzmann statistics which allows us to basically minimize the free energy using a distribution 

function. 

 

So, this allows this gives the distribution functions and what is this distribution function basically 

this distribution function is at a given temperature at a temperature T. Number of dipoles with 

energy U will be 𝑁[𝑈(𝜃)] so this will be, 

𝑁[𝑈(𝜃)] = 𝐴 ∙ 𝑒𝑥𝑝 (−
𝑈(𝜃)

𝑘𝐵𝑇
) 

, 𝑘𝐵𝑇 which is thermal energy and these are so this is basically probability of having so many 

dipoles of energy 𝑈(𝜃) with respect to 𝑄(𝜃)okay.  

 

So, A*exp of so if this is a case so A is the constant here and rest is you know kB is Boltzmann 

constant so this Boltzmann function so this equation will provide the number of dipoles within a 

given cone N number of dipoles with energy 𝑈(𝜃) at an angle θ. So now let us calculate the 

component of the dipole moment that is parallel to the applied field for this we will have to use 

the solid angle we have just calculate that is dΩ if you consider sphere as a unit is sphere as the 

angle range θ to θ +dθ and then we integrate it from 0 to 180 degree for θ degree θ value.  

 

So, φ is within the plane of the sphere which is from 0 to 360 degree that is 2π whereas θ goes 

from 0 to 180 degree from one side to another side. So, let us do that now so what we do is now 

number of dipoles, number of dipoles between θ and θ +dθ, are = 𝑁[𝑈(𝜃)] ∙ 𝑑𝛺 this is the solid 

angle right. So, the total dipole is moment is now is equal to ∑ 𝜇 which are pointed along the 

direction of E so let us see how do we do that.  
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So, this µE we know is equal to which is aligned in the direction of applied field is  

𝜇𝐸 = (𝑁𝑑𝛺) × (𝜇𝑐𝑜𝑠𝜃) 

and so this is for one particular angle now we average it out. Now the average let us say 𝜇𝐸̅̅ ̅ this 

𝜇𝐸̅̅ ̅ is calculated as,  

𝜇𝐸̅̅ ̅ =
∫ 𝑁[𝑈(𝜃)] ∙ 𝜇𝑐𝑜𝑠𝜃𝑑𝛺

𝜋

0

∫ 𝑁[𝑈(𝜃)] ∙ 𝑑𝛺
𝜋

0

 

So, this is the total dipole moment for all that dipoles divided by the number of dipoles that will 

give you the average dipole moment so this is again from ∫ 𝑁[𝑈(𝜃)] ∙ 𝑑𝛺
𝜋

0
. 

 

So now what is solid angle? Solid angle we have just said is equal to 𝑟𝑠𝑖𝑛𝜃 sorry 

𝑑𝛺 = 𝑠𝑖𝑛𝜃𝑑𝜃 ∙ 𝑑𝜑.  

Now if you, 𝑑𝜑 is basically if you notice 𝑑𝜑 is going from it is this incremental angle now if you 

consider the whole cone what is the θ will become? This theta will become equal to 2π so this will 

be considered as 2π for the whole cone so for whole cone I can consider  

𝑑𝛺 = 2𝜋𝑠𝑖𝑛𝜃𝑑𝜃 

I mean you can also integrate for phi from 0 to 2π it is a saying that you are integrating from 0 to 

2π which is will give you basically 2π right. 



 

 

So, considering for all the dipole this is the for whole cone  

𝑑𝛺 = 2𝜋𝑠𝑖𝑛𝜃𝑑𝜃 so if you now write this equation again this  

𝜇𝐸̅̅ ̅ =
∫ 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃𝑒𝑥𝑝 (

𝜇𝐸𝑐𝑜𝑠𝜃
𝑘𝐵𝑇

) 𝑑𝜃
𝜋

0

∫ 𝑠𝑖𝑛𝜃𝑒𝑥𝑝 (
𝜇𝐸𝑐𝑜𝑠𝜃

𝑘𝐵𝑇
) 𝑑𝜃

𝜋

0

 

we have made a mistake of sign somewhere so this is minus of U(θ) what was U(θ) we wrote 

earlier U(θ) is minus of 𝜇𝐸𝑐𝑜𝑠𝜃. 

 

So minus of 𝜇𝐸 minus-minus cancel each other so they will become plus okay so this is fine so 

now when you so this a little tricky to calculate sort of expression.  
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So in this case let us say to calculate we make an estimation first let us assume constant β, 

𝛽 =
𝜇𝐸

𝑘𝐵𝑇
 

 and we take 𝑐𝑜𝑠𝜃 = 𝑥 so if you take this 𝑐𝑜𝑠𝜃 is equal to work x this will become −𝑠𝑖𝑛𝜃𝑑𝜃 =

𝑑𝑥. So, if you make this substutions in the above equation we get  

𝜇𝐸̅̅ ̅ =
𝜇 ∫ 𝑥𝑒𝑥𝑝(𝛽𝑥)𝑑𝑥

−1

+1

∫ 𝑒𝑥𝑝(𝛽𝑥)𝑑𝑥
−1

+1

 

so accordingly, the limits will also change so they will go from +1 to -1. 



 

Now this is expressed by something called as  

𝜇𝐸̅̅ ̅ = 𝜇 ∙ 𝐿(𝛽) 

Where, 𝐿(𝛽) is called as Langevin function. So, this integration is little involved so we are going 

into details of Langevin function but Langevin function is defined as 𝐿(𝛽) is defined as  

𝐿(𝛽) = cot ℎ(𝛽) − (
1

𝛽
) 

 So if you want to get into derivation of it you can look at a Langevin function yourself but the 

analysis deriving this into Langevin function is less important but more important to an understand 

implication of this.  

 

Now this 𝑐𝑜𝑡ℎ(𝛽) is something you must be aware so ℎ(𝛽) can be written as  

cot ℎ(𝛽) =
𝑒𝑥 + 𝑒−𝑥

𝑒𝑥 − 𝑒−𝑥
 

So, we are not get into we are not going into detail of Langevin function but let us see the value of 

this Langevin function for our purposes lie between 0 to 1 and let us see what does it mean? What 

is the limit of +1? This is -1 plus into -1 so basically you had from o to π so for 0 cosθ will be 

equal to 1 for cos for π, cosθ will be equal to -1 sorry good that you reminded me now this should 

be -1 same as numerator.  
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So now when we plot Langevin function is plotted as so we plot 𝐿(𝛽) as the function of 𝛽 okay 

and you plot from 0 to 1 and the way this function goes is something like this okay. So, these 



values are basically we can say as asymptotic values okay so now let us see what is this function 

mean. So, for very large value of 𝐿(𝛽) that is β tends to be equal to 1 and what did we define β as 

β was equal to if you know 
𝜇𝐸

𝑘𝐵𝑇
. 

 

So for a given system U is constant, µ is cannot be very large, kBT is constant or given temperature 

it is basically what it means is that you have very large E so what it means is that when you have 

very large β when it is that large E okay what it could also mean is that very small it also means 

very low temperature okay. So, for a reasonably high temperature it could be very high field and 

for it could also mean very low temperature it could also be some combination of both of them. 

 

So, for these values we see that 𝐿(𝛽) is tending to 1 or 𝐿(𝛽) is closer to 1 whereas for very small 

that is β<1. So, these values basically so here it may be little so at the very low values you tend to 

have sort of very sharp chain and slow so here you draw the values 1, 2, 3 so generally 𝐿(𝛽) is 

taken greater than 1 because of small values you cannot use that function for the purposes that 

want to use. 

 

So, for beta less than 1 the that is for high temperatures we consider the slope as so in this line was 

drawn us for 1 the slope will be about 1/3. So this slope will be approximately it will be 1/3 for β 

tending to 0 and hence you are approximating this 𝐿(𝛽) as 1/3 beta. In general, we will consider 

beta which is much smaller than 1 but of course greater than 0 okay. 
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So as a result, from this we consider so we have this for general cases of 𝐿(𝛽)that is 

𝐿(𝛽) =
1

3
𝛽 

 somewhere less than 1 but greater than 0. So, L beta greater than 𝐿(𝛽) is equal to 1 over beta so 

𝜇𝐸̅̅ ̅ is now approximated as 𝜇𝐸̅̅ ̅, 

𝜇𝐸̅̅ ̅ = 𝜇[𝐿(𝛽)] 

So, this will be equal to  

𝜇𝐸̅̅ ̅ =
𝜇 ∙ 𝛽

3
=

𝜇 ∙ 𝜇𝐸

3 ∙ 𝑘𝐵𝑇
 

so this becomes, 

𝜇𝐸̅̅ ̅ =
𝜇2𝐸

3 ∙ 𝑘𝐵𝑇
 

 

So here this is the first time that we have seen that di and this equal to 𝛼𝑑 ∙ 𝐸 so alpha will be equal 

to 

𝛼𝑑 =
1

3
∙

𝜇2

𝑘𝐵𝑇
 

So here for the first time we have seen that the dipolar polarizability (𝛼𝑑) of the system is inversely 

proportion to the temperature. So, this is alpha E basically 𝛼𝑑 we can denominate it as 

𝛼𝑑 =
1

3
∙

𝜇2

𝑘𝐵𝑇
 if you have N dipoles in the system then this will become  

𝑃 =
𝑁

3
∙

𝜇2

𝑘𝐵𝑇
∙ 𝐸 

 of course, right N dipoles per unit volume. 

So, this will be P value so basically what it tell what this equation is valid for this equation is valid 

for smaller value of dipole moment as well as electric field and large enough temperature. It is not 

very high temperature but not very low temperature as you see there so that is why we say that we 

are taking this regime which is the regime where 𝐿(𝛽) is equal to β/3 and this basically what it 

means is that for β smaller than one it means your temperatures are large but not very large 

temperature or it could be in small electric field or µ the dipole moment. 

 

So, dipole moment for a given system will be for the molecule it will be fixed but your electric 

field will be smaller or temperature will be large enough to cause randomization. So, this is where 



the dipolar polarizability of a given system is inversely proportional to temperature and this make 

sense as the temperature increases that polarizability will reduce and basically you will have to 

spend more and more energy in the form of electric field to align the dipoles with the electric field. 

 

So, this is the first case where you have temperature dependence as against electronic and ionic 

polarizability. So, this is sort of a simple analytical treatment of a dipolar polarizability based on 

classical mechanics Boltzmann distribution. So, we will further develop on this in the next lecture 

so where we will just summarize it and then move on to the next topic thank you. 

 


