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Good morning everybody. Today we will discuss about the plasticity part during the 

application of the mechanical load, so far we have discussed the elastic behavior and then 2 

dimensional stress state, 3 dimensional stress state and how we can find out the principal 

stresses in case of 2D and 3D. Now we will shift to the plasticity part, so we will start from 

the very basic things, that in this case the continuum plasticity, specifically the theory of 

plasticity and when you apply the (())(1:06) material and how I can predict the in-surface 

when it is subjected to 1 dimensional load or if it is 2 dimensional case, or maybe in general 3 

dimensional cases.   
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So first we will start with the 1 dimensional plasticity model and what is the effect of 

different (())(1:31) mechanism or here we will try to incorporate how the effect of (())(1:37) 

can be better explained but just by simply looking into that stress strain right now of a 

specific material. So first we will cover the plastic deformation intentional compression, what 

is the Bauschinger effect, what is the yield for the during the mechanical behavior of the 

material and finally we will try to discuss the different plasticity model and followed by the 

an isotropic model we generally use to predict the deformation of the material due to the 

application of the mechanical load. 
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So first we will look into what do we mean by plasticity, so specifically when we use the 

plasticity theory, it is a mechanical behavior in the large scale strain formation operation 

where the elastic component is very small and mostly we can represent the deformation of the 

material throughout in the plastic (())(2:43). So first objective to represent the yield point 

when it is small dimensional load or maybe yield surface when there is a 3 dimensional load 

or 2 dimensional load. 

Then normality condition or material stability mathematically we will try to derive from the 

nature of the stress state analysis of a specific material, then what different flow curve are 

used to model or to predict the plastic deformation of the material and finally the strain 

hardening mechanism, how we can incorporate mathematically and simply just looking into 

the stress strain behavior of our specific material when it is subjected to either one direction 

load or when it is subjected to in general the 3 dimensional loading condition. 

So flow theory of plasticity, basically plastic deformation of the material, what is the 

sustainability of the deformation during the application of the load that generally is discussed 

because based on the incremental strain mode and that incremental strain depend on the shear 

state. So basically the flow theory of plasticity is generally explained in that way, but during 

the plastic deformation you can revive the total deformation into small part and we try to 

apply the theory based on the small incremental strain part and according we can predict the 

stress state at that point. So this is the one type of approach we can follow in the plasticity of 

theory. 

And another way you can directly use the deformation theory that actually directly the 

indicate the total strain to total stress. But in this case probably the path of the plastic 

deformation is more important and this path generally follow in the north in very linear way, 

specifically it follows the non-linear path. So we generally try to follow the first approach 

where the non-linear path of the plastic deformation is decomposed into small small joints or 

small small parts and we will try to update each and every state, what is the state of the 

plastic strain and accordingly we can predict the stress also at that point.  

So it is like that stress induces strain rate basically which is analogous to the pressure and 

velocity so similarly we can equivalently we can say that it is really very similar to the stress 

and strain like pressure and velocity. Basically the pressure difference actually induces on 

velocity when you try to analyze the flow through a pipe. So similarly here stress actually 



induces with the strain based on this approach, we will further discuss the plasticity theory 

applicable for one dimensional case. 

(Refer Slide Time: 6:01)  

 

In general there are several important comments or points before starting the theoretical 

analysis of plasticity, I like to mention all this points, the theory of plasticity actually is 

concerned with the number of different types of problems, so behavior of materials at strain 

where Hooke’s law is no longer applicable here, because we know that Hooke’s law you can 

apply only for the plastic analysis because the stress and the strain within the plastic limit 

follow some linear relationship. 

But in this plasticity theory or plastic deformation of the material that path is completely a 

non-linear. Plasticity is concerned with predicting the safe limits for use of the material under 

combined stresses that means the maximum load which can applied to a boy without causing 

excessive yielding, fracture and flow. So this way we try to uhh predict what maybe the 

maximum load or what may be safe limits of the materials. So plasticity actually deals with 

that, safe limits and maximum load. 

Third plasticity is understanding the mechanism of the plastic deformation of the metals so it 

deals with the plastic deformation of the metals. Fourth is plastic deformation is not a 

reversible process and depends on the loading path. The most important thing is that 

plasticity actually depends on the loading path by which the final state is achieved. So it is 

very very different to predict at a once single step  what is the final state of the plastic 

deformation by looking into the initial if we do not follow the path of the deformation. 



Fifth is the plastic deformation there is no easily measured constant relating to the stress and 

strain with Young’s modulus for elastic deformation. For example in case of elasticity we can 

easily measure the Young’s modulus by simply looking into the slope, but when the that path 

is, the stress state path is basically a non-linear then it is not easily to determine all the 

constants involved in the plasticity theory. 

Finally the phenomena of the strain hardening, plastic anisotropy, Bauschinger effect cannot 

be treated easily in the theory of plasticity, uhh but we will try to see how mathematically we 

can predict or we can use all these constant in the overall explanation of the plasticity theory.  
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So looking into that several important points, plasticity theory, we just try to shift on the what 

are the loading path on specific to plastic deformation when it is subjected to universal 

loading condition. First we will look into this figure, here you can see that this is actually true 

stress-strain curves for a ductile metal. We have already discussed that true stress-strain curve 

and what is the difference of the true stress-strain curve from the engineering strain-strain 

curve during the mechanical loading of a material. 

So here we see that this is a true stress-strain curve for a ductile metal and Hooke’s law is 

followed up to the yield stress sigma 0, and beyond sigma 0 the metal deformation 

plastically. This is very typical deformation behavior of the material, we assume the behavior 

of the metal is elasto-plastic in nature. So very first part up to sigma 0 that is the elastic part 

and afterwards which cross the elastic limit just interest to the plastic deformation. 



And at point A if you see that when you remove the load at point A it will come back to the 

position, at this position so that position actually with some elastic recovery part so this 

amount is the elastic recovery part in this case that means Epsilon 2 to Epsilon 1 that 

difference is the elastic recovery but from origin to up to Epsilon 2 that amount actually 

represents the permanent deformation of the metal. 

So this is the typical elasto-plasticity behavior of a material. Now if we look into that right 

hand figure it represents the same stress-strain diagram but except it shows that what happens 

during the unloading and reloading. So up to point A we will say unloading sorry, point A is 

the application of the load up to point A then release of the load, basically unloading and it is 

following some arrow path and it come backs to the strain axis cross again we reload to the 

same sample, it follow the different path.  

But this unloading and reloading path differences may not be very high so that gap is very 

small in this case, but this difference in a loading and unloading path is basically for this 

stresses, so this curve is not be exactly the linear and not exactly parallel to the elastic portion 

of the curve. This is the typical behavior we observe in the material that if that gear indicates 

some properties of the material, some damping properties of the material.  

If that gap remains very high that indicates that the damping property of the material is very 

high. For example (())(12:28), I think very good damping properties, so specifically when we 

try to notice the stress-strain diagram from (())(12:34), that amount will be very high. But in 

specific strain probably that it will be more less almost equal to the reloading and unloading 

path, so in that case the damping properties of the material are very less, so this is the 

indication of the stres-strain curve. This specific phenomena is called the stresses. 
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Now looking to the similar other model of the plasticity model, of the different metal, if you 

look into that left hand side figure as well if we see when the application of the load at point 

O and it is followed certain path reach up to this point and it will change the loading 

condition from tensile first part is showing due to the application of the tensile loading, and if 

you change the loading condition that means if you put the compressive load and it is follow 

the part below the negative side and it is come back to some other point. 

So here the important point note is there, initially that yield stress in tension in sigma A here 

it is indication and yield stress in case of compression that is sigma B, but it is not necessary 

that if stress in tension should be equal to the yield stress at the compression. There is a 

material in this actual, there is a difference of the stress-strain tension and yield stress at 

compressive load so that difference in tension is greater, so the yield stress in tension is 

greater than that of the yield stress in compression. So this specific phenomena is called the 

material is having Bauschinger effect. 

So that is Bauschinger effect is very much significant when material is subjected to some 

kind of (())(14:34) loading condition that means specific cyclic loading whether the tesnion is 

compression kind of loading, so in that sense the Bauschinger effect is very significant to 

consider further plasticity analysis of a specific material.  

If we look into the right hand side there are other models also exists. First one is the rigid 

ideal plastic material, if we see that with respect to the strain the stress is always constant so 

this kind of metal behavior is called Rigid but ideal plastic material. If we look into other two 



models also, third and fourth model as well, then third model indicates the ideal plastic 

material with elastic response. 

And here if you see that there is the elastic part is there up to sigma 0 is the end point here, 

and afterwards that yield stress is constant over the deformation, so this type of specific 

material model is called the ideal plastic material with elastic component. Final one is that 

Piecewise linear, sometimes we represents the elasto-plastic behavior of the material in terms 

of the two slopes, that is sometimes it is called bi-linear isotropic material. 

So there is a two linear path, the first linear path actually represents the elastic limit or elastic 

zone and second linear path actually represents the plastic path. So that is second path is 

there, since it is not a constant uhh with respect to the strain like previous two models so 

there is a variation of the stress value specifically the there is a increment of the stress value 

over the strain in the plastic job, so this type of behavior is called the strain hardening 

material.  

So that means strain level of the metal is increased with the further straining, that means with 

respect to the strain the stress values increases. So this type of specific model is frequently 

used that is called bi-linear isotropic hardening. 
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Apart from the several models, plasticity models, now we come to that point a true stress-

strain curve actually frequently called also the flow curve. And we have already discussed the 

true stress-strain curve also mostly frequently or more significant for the plasticity analysis. 



So if therefore we are focusing on the further analysis of the stress-strain that means by 

default we consider that is the true stress-strain curve.  

But sometimes it is called flow curve because it gives the stress required the plastic 

deformation of the material so mathematical equation, we open or most commonly used to 

discuss the stress-strain relationship, is the powered expression of the form that sigma equal 

to K Epsilon to the power n, that K is a constant and that is called strain coefficient and n is 

basically called the strain hardening coefficient. 

So this is very useful or most commonly used the stress-strain relation that is called the power 

law of relation used but the stress-strain components are represented in terms of the true 

stress and true strain. Now for the specific equation if we try to plot this specific equation in 

logarithm scale then we can find out that logarithm sigma equal to logarithm of K plus n 

logarithm of Epsilon. 

So basically this relation represents the linear relations on the logarithm scale. Now n actually 

represents the slope at the logarithm scale. So lets us see how that strain hardening coefficient 

can be defined. 
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Copper and brass, the strain hardening coefficient is only 0.5 and can be given the large 

plastic strain before fracture as compared to the steels that means for steel the strain 

hardening coefficient is 0.15 as compared to copper and brass as 0.5. What physically the 



significant these things that means with the same deformation the n is more in the slope in the 

stress-strain diagram specifically I am talking about the plastic jump. 

Slope is very high, so when the slope is very high with the same deformation the stress level 

of the material actually increases very high when there is having high strain hardening 

coefficient but in case of steel having low strain hardening coefficient, so in this case with the 

same amount of the deformation or same amount of the strain the increment of the stress level 

is less as compared to forward contrast.  

So other way that large drastic strain can be given to the copper since it is having the strain 

hardening proportion is very high but low amount of the plastic strain or plastic deformation 

can be observed by the steel also. When the true stress is less than one, the smaller level of n 

dominates over the larger value of n. Since n actually represents in terms of slope from the 

logarithm scale.  

So though logarithm sigma by logarithm n this is the stress by strain in the logarithm scale 

that actually represents the slope and we are representing here that n in terms of the at fix  

standard and fix temperature. Since the plastic deformation having the (())(21:35) or it 

depends on the strain rate or temperature. We will discuss the effect of the strain rate and 

temperature on the plastic deformation later on.  

But for the time being if we see that what are the typical values of n that means strain 

hardening coefficient and the (())(21:53) for the different materials. The values of the 

different materials, the values of the different n and K indicates that for copper is having very 

high values of n that is 0.54 but the Quenched and Tempered steel is having low value of 

strain hardening coefficient that is 0.4 but if you see that strain coefficient is very high in case 

of Tempered steel that is 1570 but it is low as well as annealed copper. So in this case if you 

see that strain hardening coefficient n and K strain coefficient are, there is a that follow some 

vice-versa relation. 
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Now we will try to see two stress-strain (())(22:49) on there we will try to represent the how 

we can define different slope, I can say the different parameters which is analogous to the 

stress-strain diagram in the plastic deformation jump. First we define one typical stress-strain 

diagram and if we consider very small part of the diagram that is corresponding to strain is d 

Epsilon and stress is correspondent to d sigma. 

So here we can define the several slope for example the slope for the stress strain curve, 

absolute value of the stress-strain curve actually represents the slope at this point, it is like 

that, so that slope we can say simply d sigma y, di Epsilon but since this is a material 

behavior is like elasto-plastic in nature so we can decompose the total amount of the strain is 

consist of the elastic part as well plastic part. 

And elastic part separate out the elastic part is related to the elastic modulus and plastic part 

we can say related to the plastic modulus, but how we can correlate between all these slopes, 

so E here is define the, I think E is the slope for the stress-elastic strain curve so that 

specifically represents the d sigma y, d Epsilon e that is the difference to the elastic 

component of the stress. 

H is define that slope for the stress and plastic strain curve so individually if we derive or 

define all these three different slopes then we find out the correlation right assuming the 

elasto-plastic behavior of the material and by decomposing plastic part, and here if you see 

using all these definition of the slope, if we put it here you can find out 1 by ET 1 by E plus 1 

by H, so finally you can find out H that means slope for the stress and plastic strain curve. 



So I can say simply, simply we can say only for the slope for the plastic component that is the 

ET E divided by E minus E slope, this would be E raise to power T. So that is the slope of the 

plastic component, so this is the simplified way, we can find out the slope of the different if 

we consider PO elastic, consists of the PO plastic and when it is subjected to the elasto-

plastic. So ET in terms of stress and the total strain curve that we can easily measure from the 

diagram itself and E for the slope of the stress strain curve that also we can measure which is 

different as the specifically the initially slope. 

So looking into that two part we can roughly estimate what is the H in this case, so this is 

some mathematical treatment we can find out or we are dealing the (())(26:31) to estimate the 

different slope of the path, then you can easily find out. So this calculation is specifically 

useful when you try to do some mathematical modeling using some (())(26:42) analysis. 
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During the plastic deformation normally after the point stress there is a (())(26:55) 

deformation up to certain point but when it reaches some optimum point in the typical stress-

strain diagram so at that point there is a competition between the work hardening and further 

reduction in the cross sectional area.  

So the instability of the plastic deformation actually starts from that point so that typical point 

consider as necking point, so that is corresponds to the point of the maximum load if we 

consider the load deflection curve of a typical material, so specifically the necking starts with 

the localization of the stress so at that point of beyond that point actually stress no longer 



remains in the single dimension so Triaxial state of stress actually exist and (())(27:51) 

happen may be from the point of the defect exist within the material itself. 

So it is necessary to analyze the plastic instability condition at that point specifically at the 

necking point beyond which there is a random reduction of the cross sectional area and 

finally when you reach to a certain point where the fracture of the material happen, so how 

we can establish this plastic instability condition at that necking point. 

So necking is we consider at this point, there is a competition because with a application of 

the load there is a reduction of the cross sector area but at the same time there is a increment 

of the stress level so that is called increment of the stress level due to the work hardening or 

due to the strain hardening. 

So since that engineering tension diagram actually represents that point as the maximum 

point but low deflection with low deflection curve that point represents the maximum point 

which is like that… 

So this maximum point actually try to predict the plastic instability condition so 

mathematically we can say since that is the optimum point in the sense that d of applied load 

so f is the applied load here and so df equal to zero, this is the typical condition for the plastic 

instability. Now f can be, load can be represented by stress and cross sectional area, sigma 

into A and then d of sigma n equal to zero is the typical condition during the instability of the 

plastic deformation actually starts when it is subjected to Uniaxial loading condition. 
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Now let me give you the further analysis or further expression of this plastic instability 

condition, we can find out that though D of sigma into A can be decompose into this two 

parts, A of d sigma plus sigma of DA, that is equal to 0. So from here you can find out d 

sigma y sigma equal to minus dA by A and finally what is the values of dA by A here, that 

also we can find out the volume in compressive of, assume there is a no change of the follow 

during the plastic deformation that means delta of equal to 0, DV equal to zero here. 

Now again V equal to, volume equal to cross section area into length, if we put it d of A here 

it becomes A to download, or plus l dA equal to 0. So from this point we can find out dA by 

A equal to minus dl by l that actually represents d Epsilon dl by l, that is d Epsilon is two 

strains for the l, so we can say dA by A equal to minus d Epsilon if we put it we get this 

relation and finally sigma by d Epsilon equal to sigma. So this is the plastic instability 

condition, uhh generally used for the Uniaxial (())(31:49) conditions. 

So uniform elongation will happen when this sigma y, this d Epsilon is greater than sigma. 

We have to explain graphically that the typical condition of the uniform deformation or 

(())(32:04) deformation. But with this plastic instability condition if we try to use this 

condition for the Power law, so the Power law means this is the typical representation of the 

ordinary, we can say the relation between the stress and strain for the most common 

materials. So what is material we will try to predict the instability condition here. 

So if sigma equal to K Epsilon m then we can find out that this sigma y d Epsilon equal to K 

n Epsilon, Epsilon to the power n minus 1. Actually this would be like this, Kn Epsilon to the 

power n minus 1. So this is comes from d Epsilon by d sigma and that is equal to sigma what 

you use the, so that is equal to sigma, sigma is given here so that sigma comes from the 

power relation and from here we can find out Epsilon equal to n, this is the typical instability 

condtion when we consider the typical stress-strain relationship by the Power law. 
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Now condition for making the graphical representation of the first graph represent the true 

stress-strain, this represent the typical true stress-strain diagram and this sigma by d Epsilon, 

this line actually indicates the d sigma that means this line slope the d sigma by d Epsilon. 

Now if we see the when they are crossing point that means, crossing point actually represents 

the d sigma by d Epsilon that is the slope, this is one curve crossing when it is equal to sigma 

that is correspondent to this point. 

So this point actually indicates the necking, graphically this point indicates the necking but 

this sigma by sigma is greater than sigma before necking so this jump represents the before 

necking and this joint represents after necking jump. So before necking jump it is obvious 

that at any point we consider at any point, this is the value of the sigma and this is the value 

of the corresponding slope d sigma by d Epsilon. 

So basically before necking the d sigma by d Epsilon is always greater than that of sigma, but 

after necking just reverse, this sigma by d Epsilon will be less than sigma after necking. So 

this is the condition of the necking is made when the true stress strain equal to the slope of 

the true stress strain curve, so this is the graphically representation of the plastic instability 

condition. 
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Now we can prove the further analysis of this plastic instability condition for a different kind 

of (())(35:39) condition. For example is that if for the Power law that makes Epsilon to the 

power n, this is the Power law, so what maybe the maximum load in this case, actually 

Epsilon equal to n, when we put it here it becomes K, since Epsilon is equal to n so n to the 

power n, represents the maximum load, from where the necking starts.  

So before necking this is the amount of the stress, the material can sustain that when the 

plastic instability condition and when we are using the Power law relations between the stress 

and strain, so other parameters can also (())(36:51), so what maybe the engineering strain for 

the optimum conditions that means about to start the necking so engineering strain can also 

be represent the true stress by 1 minus Epsilon to power t that we have already derived. 

So here we put the condition Epsilon equal to n, so we have to put it we are getting the sigma 

T exponential for minus 1. So engineering strain in terms of E true stress and in terms of 

strain hardening coefficient. Find out similarly we can find out also the uhh directly that in 

other way the K what will be the engineering strain here, so first sigma t equal to this is the 

true stress K Epsilon to the power n but Epsilon equal to n here so K n to the power n 

exponential minus n, this is the further calculation for that. 

Now K n to the power n, n to the power minus n we can find out this is the value. So here the 

engineering strain in terms of the strain hardening coefficient n and the strain coefficient that 

can be obtained when following the plastic instability condition for a specific metal, basically 

at the necking point what will be the engineering strain. 



Now we can also find out what maybe the work per unit volume so we know over the stress-

strain diagram if we consider one element d Epsilon then generally we represent y dx the area 

of the part, but here physical representation on the stress-strain come that is equal to the 

amount of work done per unit volume. So here which is equivalent to y axis that is sigma and 

x axis corresponding to Epsilon so that (())(39:03) form, actually this is amount of word done 

per unit volume with reference to the specific stress-strain diagram. 

Now if we put sigma equal to K Epsilon to the power n following the Power law and d 

Epsilon, we can find out this the expression of work done, so similar manipulation for similar 

expression can also be derived by using the plastic instability condition and when the relation 

between the stress-strain is actually known to us then we can use this condition then we can 

derive several expression from that. 
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Now simply the Power law depending upon the type of material that actually follow different 

types of expression or different type of relations between the stress-strain. That is for 

example some material follow sigma equal to y that means it is constant, this is the typical 

stress-strain diagram. Some material follow sigma equal to this y plus Ae so basically it is the 

straight line, linear relation and some material follow this complex relation between stress 

and strain or Epsilon 0 actually indicates the initial amount of the strain and some material 

follow these things. 

So depending upon the type of material, the stress and the strain relation can follow or can be 

represented by the different mathematical formulation. Now we look into one typical 



formulation, let us see the Uniform elongation in terms of constants of the following 

equation, so let us stress and strain actually follow this relation. 

So here this, this is the typical relation between stress and strain and we try to find out the 

plastic instability condition, so this condition represents actually plastic instability condition. 

This sigma by d Epsilon equal to sigma, but for this specific stress-strain relation we can find 

out, we can find out that from here this sigma by d Epsilon equal to A so here this is equal to 

A that equal to sigma, sigma is again corresponding y plus A into Epsilon. 

So this is d sigma by d Epsilon and this is actually sigma so from here we can find out 

Epsilon equal to 1 minus y by A and further calculation we can do we can find out the 

amount of work done per unit volume, similarly we can find out the engineering strain like 

this. So engineering strain can be represented in terms of the all under constant of y A in that 

way. 

So this at the typical application so we can actually we can apply the plastic instability 

condition for the different type of material behavior when the mathematical relation between 

stress and strain is (())(42:26) who asks for different types of materials. 
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But it is mention to that point that simple tensile testing we generally we conduct we keep 

temperature as a constant and we use the universal tensile testing method keeping the 

(())(42:48) as a constant probably in a very small speed we generally speed we generally call 

it a tensile testing specimen. But definitely the velocity at what velocity the cross rate is 



moving that is also important parameter, that actually influence the nature of the stress-strain 

diagram. 

So if it is very low, if it is very slow then probably it may not have any effect on that, but if 

we change the cross velocity then there may be significant change in the stress-strain 

diagram. So that means that cross rate velocity which is specifically equivalent to the 

mathematical term that is called strain rate.  

So in other we can say that strain rate is also having influence on the stress strain behavior of 

a specific material and at the similar way if we change the temperature apart from the root 

temperature then also stress-strain behavior also changes for specific material. Specifically at 

low temperature the materials hardens or metal becomes, so that means strain level of the 

material actually increases due to the work hardening or strain hardening mechanism. 

But at the high temperature maybe other mechanism the strain rate is more effective in this 

case. So definitely there uhh in the although we are showing typical stress-strain diagram, but 

this typical stress-strain diagram although evaluated over a constant temperature and constant 

strain rate, so practically this mechanical behavior of the stress-strain of a specific sample of 

specific material is specifically influenced by the temperature and strain rate.    

So we should not neglect the effect of the other two parameter for example strain rate and 

temperature, so in the variables of the plastic deformation it becomes 4, one is the stress, 

another is the strain, strain rate and temperature.  
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So let us see how these parameters actually effect the typical stress-strain diagram of the 

specific material. Now we know that Power law equation is mostly used while there is a 

effect of the strain hardening, even the equation, form of the equation indicates that we have 

the strain hardening coefficient n and the strain coefficient K. 

But deviation from this behavior are often observed for example austenitic stainless steel at 

low temperature, sorry at low strain specifically 10 to the power minus 3 and high strain, the 

typical behavior of the stress-strain that actually changes, if there is change of the strain. Now 

other forms of the power law equation can also be considered in the literature which already 

we have discussed that we can predict the stress-strain with a different formula. 

This is another form of the formula, deviation from the power law we can typically observe 

represents the stress-strain behavior of this specific material that is sigma equal to sigma y 

plus k Epsilon to the power n. So next point is that ideal plastic material, so ideal plastic 

material is that strain, stress value remains the same irrespective of the or with the further 

straining with the further deformation that way there is no strain value effect in this case.  

So it start yielding on the neck right on the onset, right to the bigger to the neck, right to the 

onset of the yielding, so just start of the yielding that yield stress limit becomes constant over 

the strain, but if we look into the physically that low temperature specifically the below 

recrystallization temperature are strain hardening is very much, significant meter to obtain the 

ductility. 

But during the tensile deformation instability in the form of necking localized deformation in 

a small region, now experiences the triaxial state of stress on the onset of the making of the 

specific sample. So these are the typical points or notes for the plastic deformation so that we 

can use this knowledge of the different plastic deformation which is physically justify to 

apply for the specific material.  
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Now we come to that point, separately analyzing the effect of the strain rate similar to the 

power law where there is a effect of the strain hardening, at high temperature specifically 

above recrystallization temperature where strain rate is the important parameter in that case 

instead of the strain a power law equation can also be written in terms of the stress rate so 

here we represents the power law relation such a way that sigma equal to c Epsilon dot to the 

power m keeping other parameters stress. 

So for (())(48:30) strain and fix temepreature. So similar kind of expression but here c is a 

contant similarly, but here m is the index of the strain rate sensitivity so physically when m 

equal to 0 the stress is independent of the strain rate that means stress strain curve would be 

the same for all the strain rates, but practically m equal to 0.2 for the common metals, but 

when m equal to very high say 0.4 to 0.9 so almost the material may exhibit superplastic 

behavior. 

So uhh we will discuss, maybe this is not in our scope to explain the superplastic behavior. 

Next is the m equal to 1, in that case materials behaves like a viscous liquid, so this is a 

physical justification of different values of m if we use it, physically we represent all this 

phenomena, but in general we need to investigate the effect of the strain rate by using the 

similar kind of Power law equation simply by changing the coefficient here as compared to 

the strain hardening coefficient m. 



So but the effect of the strain rate is compared by performing the tests to a constant strain that 

means the effect can be, strain rate effect can also be considered if we compared the test 

keeping the other two parameters constant, for example strain and temperatrue. 
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This is the typical expression for the strain rate sensitivity effect that is (())(50:21) stress and 

strain rate, but how can correlate with respect to the other parameters here. Here m is the 

strain-rate sensitivity index, similar way we can represent the logarithm scale, so in the 

logarithm scale m actually represents the slope so that slope actually with respect to the 

logarithm of stress and logarithm of the strain rate. 

So if we compared the experiment at the two different strain rate for example, 2 different 

cross rate velocity using the simple universal tensile testing, in that case we can result that 

two different stress at two different strain rate and we can correlate by this relation, so sigma 

2 by sigma 1 equal to Epsilon 2 dot by Epsilon 1 dot and the effect. From here we can find 

out that m equal to this is the expression. 

So that upper side and lower side if we find out all these values (())(51:23) experiment then 

we can find out the strain rate sensitivity index for this specific case. Definitely in this case 

we are neglecting the effect of the strain hardening and we are keeping the temperature as a 

constant. So there is no temperature effect also here. Now this is the typical description, the 

graph actually represents that (())(51:49) theta stress-strain diagram typically, and two 

different cross rate V2 and V1. 



For example V2 is greater than V1 here so when you conduct the experiment at high strain 

rate or maybe at the cross rate velocity then we can expect this type of graph between the 

stress and strain, but when it is low the strain level actually lows in case of low cross speed. 

So it is obvious that if there is a change of cross rate velocity in the universal tensile testing 

so we can get the different stress-strain diagram. 

Now looking into that data, how we can find out that on the phenomena, or how can correlate 

the strain rate sensitivity index. There is other way also, for example strain rate can be 

represented by d Epsilon by dt in differential form. So again d Epsilon is the true strain that is 

dl by n by dt. So dl by dt, in differential form. So again d Epsilon is the true strain that is dl 

by l by dt. So dl by dt by 1 by l so we can say dl by dt, so length derivative that represents the 

velocity, so v by l. 

So in this if we consider the total length of the sample or total length of the cross head 

movement keeping as fixed, that is l2 equal to l1, that means l2 equal to l1 the it is simply 

that ratio of the strain rate is equivalent V2 by V1, so V2 by V1 we can easily measure, from 

the universal test machines, if we put it we can find out that sigma 2 by sigma 1 simply we 

can correlate in terms of the load, applied load V2 by V1 and Epsilon 2, the strain rate ratio 

can be easily put each of the velocity. So from here we can compare how we can evaluate the 

values of the strain rate sensitivity through experiment.   
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Now further analysis of the strain rate sensitivity indicates that the if some materials the 

necking is prevented by strain rate hardening, so when strain rate hardening mechanism will 



try to explain but here the explanation come from the mathematical basis which stick with an 

equitation this sigma equal to C Epsilon dot to the power m. From that equation we can 

further modify this thing, sigma equal to C Epsilon dot to the power m which is equal to load 

by cross section A.  

Then this is direct relation sigma equal to load by cross sectional area and from here you can 

find out the strain rate equal to simply rearranging this equation we can find out the strain 

rate here in terms of load constant and cross sectional area. But strain rate again can also 

represented by d Epsilon by dt, so it is like that 1 by dt, dl by l, so basically dl by, sorry dl by 

m can also be equal to the dA by A. 

So that actually comes from the keeping in mind that there is no change in the volume so 

from there here it is, so no change of the volume, so basically dV equal to 0, so here we can 

find out that dl by l equal to minus dA by A. So further convert this expression and finally we 

can find out dA by dt in terms of load at cross sectional area. 

Now by looking into this expression if you find out that m less than 1, that means the smaller 

cross sectional area, the more rapidly the area is reduces but when m equal to 1 the material 

behaves like a Newtonian viscous fluid and of course dA by dt, so change of the process in 

area with respect to the time, so that is the independent of the cross sectional area. So this is 

the physical justification of m when you try to analyze that how there is a reduction of the 

cross-sectional areal with respect to time here. 
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This is the physical graphical representation of this phenomena, so dA by dt, we are 

representing this thing, what are the rate of the interaction of the cross sectional area, the y 

axis represents that and x axis represents the simply cross section area. Now assuming that P 

by C 1 by m, sorry P by C as a constant of, to find out that for different values of the M we 

can draw different graphs, so for example this one M equal to 1 by 4, in this case m equal to 

half, in this case m equal to 3 by 4 and gradually when m equal to 1 it becomes a horizontal 

line. 

So what does it mean, so increasing of m is basically towards this direction, so if m is tensed 

to 1 then it becomes the Newtonian viscous fluid, but if m tends to lower value then we can 

see that there is a reduction of the cross sectional area is very high, m here is very low value 

and quickly there is reduction of the cross sectional area at the low value of the m as 

compared to the high value of the m. 

But if you accumulate the different various materials, if we consider the in this thing the 

percentage of the elongation which is measure of the ductility also, the percentage of 

elongation if you see, and the typical m value is basically related to this diagram. So m is 

very high, so the percentage of elongation also very high, so m is very low the percentage of 

elongation also low. So this is the physical representation of the change of cross sectional 

area, when there is a strain rate sensitivity is there. 
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Now physically what we mean by n and m, because we have used two concepts n and m, uhh 

to explain the different plastic behavior of the material. So basically n actually represents the 



work hardening effect and that effect is more significant up to the uniform strain that means 

before start of the necking point. Up to that point n is very much significant to analyze in this 

case. 

But m is the strain rate sensitivity index that is more significant to analyze basically primarily 

the post uniform jump that mean the necking region. So we can say in general, n can be 

important parameter before start of the necking and m can be important parameter after start 

of the necking. Because m the plastic deformation, when you try to predict the flow stress 

that is more effectively represented when there is a effect of the velocity that means 

equivalent to the strain rate. 

But there may be the combine effect of the (())(60:15) and strain rate, so if we consider the 

combine effect of the strain uhh stress and strain rate then we can represent the, again modify 

the Power law like this. So K Epsilon to the power n and strain rate to the power m. So this is 

the typical expression of the stress while we are considering both the effect of the strain 

hardening and strain rate. 
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I am trying to explain the combine effect of n and m by looking in to this phenomena, if we 

see that different expression for that and let us look into that their significant of that. So first 

strain is a straight way Epsilon equal to m minus ln A by A0. So this is a straight forward 

calculation I am trying to represent and Epsilon dot actually represent the strain rate, which is 

length and cross sectional area is divided like that, sorry related to that like that. 



So cross sectional area and length is volume and change of the volume is equal to 0, so from 

here we can find the relation between the length and the cross sectional area. Here, now this 

is the further relation, what is d by dt, d Epsilon by dt, sorry so basically this is strain rate, d 

Epsilon by dt. So here we can find out simple law of the using the simple derivative and you 

can find out this is the relation. 

A significant point is there, similarly you can do the second derivative, the Epsilon double 

dot with respect to time, we will get this expression but constant velocity test, so basically we 

generate typical test of the uhh sample by keeping velocity as a constant. So in that case we 

can neglect the acceleration, so that mean l double dot will be 0, by considering this we can 

find out expression of the Epsilon double dot equal to this way. 
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Now if we see in general the stress is a function of strain and strain rate because we are 

considering the combined effect of the both strain rate sensitivity index as well as the strain 

hardening coefficient. So then in that sense while this is the stress so derivative sigma dot dl 

with respect to the time, so we can, sorry d sigma dl, we can find out that derivative here in 

terms of partial derivative form and we can use this using the previous relation, we can find 

out all this expression. 

But when you try to predict the plastic instability condition there is a change of the load equal 

to 0 or dp by dt equal to 0, in this case then you can find out the p dot equal to d by dt sigma, 

so accordingly we can find out this is the condition and we put it here and then we can try to 



find out sigma dot by sigma equal to in terms of other parameters, then we find out that 

Epsilon dot equal to this sigma by d Epsilon. 
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Now further this equal to 1 and here if you see that n equal to slope on the logarithm scale 

between the stress and strain and m is the slope on the logarithm scale between the stress and 

strain rate, simply putting this value we can reach this condition, sigma equal to n by m plus 

1. So this is also plastic instability condition while we are considering the combined effect of 

whole strain and strain rate. 

So this is the if m equal to 0 then E equal to Epsilon so this is, this condition actually for 

considerate criteria. So this criteria is often used and of course Epsilon equal to n and this 

criteria actually comes from when we are assuming the relation between stress and strain by 

the Power law. 
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If we see the typical effect of the strain rate on the stress-strain curve actually the increasing 

the temperature decreases the flow stress value because it actually initiate a slip process and 

the slip process is actually thermally activated process. Similarly increasing the strain rate is 

having the similar effect of the decreasing the temperature or vice-versa. So decreasing the 

strain rate and increasing the temperature also give similar effect. So we try to investigate of 

simply looking into what are the different type of material and how it (())(65:46) in respect to 

the temperature and strain.  

So first we look into this figure for BCC polycrystalline material, typically the stress-strain 

curve is like that, so stress and strain rate effect one specific, sorry, yeah specific strain rate 

and if we increase in the strain-rate then second curve actually represents the relation between 

the stress and strain. 

So if we see that if there is a increment of the strain rate keeping as a temperature as a 

constant, for BCC polycrystalline material there is a increment of the stress level and that 

increment actually follow almost uniform flow of the deformation stage. Similarly for the 

same material if we consider that effect of the temperature for a specific strain rate then we 

see that increase in the temperature decreases the strain level throughout the strain (())(66:56) 

that gap between two different temperature the stress level is almost constant. 

So in this case basically with respect to temperature delta sigma, so difference between the 

stress level throughout the deformation process is almost similar and that happens in case of 

BCC polycrystalline materials. But if you look into FCC polycrystalline materials if you see 



that having similar effect, so increasing the strain rate, the stress level actually increases but 

decrease in the temperature but increase in the stress level of vice versa increase in the 

temperature there is a decrease in the stress value in case of FCC polycrystalline material. 

But in this case the increment of the stress throughout the strain value is not constant so there 

is a continuous increment on this thing. So this is the basic difference, the effect of the 

temperature and strain rate in case of BCC and in case of FCC materials. 
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This is the typical representation for BCC materials, there is true stress or we can say flow 

stress value or sometimes we can use the yield stress value with increasing temperature. So 

initially at low temperature the (())(68:22) is very high, but within (())(68:24) of the 

temperature initially there is a high heat of decrement of the its value where as the 

temperature difference, after what it decreases to very low value at very high temperature. 

But if you look into the for BCC materials effect of the strain rate would be seen that there is 

a constant improvement of the uhh yield stress value of true stress value in case of BCC 

material and BCC 290 Kelvin already so room temperature and this the low temperature, 

below room temperature 143 and 77 Kelvin. So in all the cases the increment of the strain 

rate that actually yield stress value in general decreases, sorry in general increases 

irrespective for a fix temperature value. But this effect is more when the temperature is high 

as compared to the low temperature, 77 and 143 Kelvin in this case. 
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Now sometime it was found that if can, pre-existence of some kind of localization of the 

stress or pre-existence of defect one specific sample that actually imitate the necking process, 

so sometimes initially we make the samples not from uniform cross sectional will be 

intention (())(70:02), low cross section for specific part so that we can ensure the necking 

should start and that actually facilitated the different experimentation of the plastic behavior 

of the specific sample. But mathematically how we can predict this necking phenomen or 

how can represent, what is the effect of this necking over the stress-strain diagram.  

Mathematically we can see the introduction of the small variation in the cross section area in 

the small region along the specimen length and observe whether this reaction actually further 

shrinks or grows with application of the load. Intersect that we say d A dot equal to 0 or we 

can say that d A dot by dA equal to 0. So here we are in terms of A instead of l that means we 

are representing in terms of aerial cross section instead of l.  

So physically we try to look into that what is the reduction of the area what is the change of 

that at that point. So we will investigate it then we can mathematically we will introduce the 

instability condition at that point. Suppose load is represented by this P equal to sigma into A 

so that uhh that sigma A assume there is a variation of the sigma, sigma plus delta sigma and 

there is a variation of the cross sectional area delta plus A. 

So from here we can derive that actually D sigma by sigma equal to minus dA by A and 

finally we can find out that this is equal to this sigma, that condition if we have already derive 

that consider as a plastic instability condition. So to ensure looking at a specific position that 



cross section is sometime reduced so it is necessary to analyze if there is a change of a cross 

sectional area actually how it influence to the stress-strain behavior. For example we consider 

one part having two different cross sectional area A and in between there is a cross sectional 

area b, so cross sectional area b is less than A. 
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Now the difference of the between the strains of the different regions depends on the value of 

the n, that means strain hardening effect here we will consider. If n is high the difference will 

be less than if n is low. So let us investigate is mathematically how we can do that. Assume 

that there is application of the load f in the part, so that f will be transmitter throughout the n 

section, so at section A this is the load and at section b this is the load. 

So that is the stress into at that time, at that point what is the cross sectional area and this is 

the stress and the cross sectional area at that point. Now uhh A Ad can also be expressed in 

terms of, suppose this is the relation that between the initial cross sectional area and some 

intermediate point what is the cross sectional  area when there is a continuous deformation 

for the process. 

So that relation we have already derived and it is connected with the true strain here. So 

similar expression we use A to, Aa 0, so Aa 0 actually represents the initial cross sectional 

area before the application of the load and Aa actually represents the current cross sectional 

area. So similarly we can do further for the cross sectional area b also then we can find we 

can use the relation stress relation using ithe Power law relation between the stress and strain, 

sigma equal to K Epsilon to the power n if we put it we can find out this expression. 



So here if we see that in terms of Epsilon A in terms of Epsilon B, so we can represent these 

things and where f is the ratio of the initial cross sectional area, F Ab0 by Ab0. So it is 

obvious that b0, section b will consider as the less cross sectional area as compared to n. So f 

is basically less than 1 and this we can do the sensitivity analysis in the sense if the ratio f is 

less than 1 if given f is 99 percent, that means we consider f 0.99. 

So the stress deformation behavior will be completely different from cross section A and B. 

Then we can do the further analysis by looking into this but here what is the, we need to 

evaluate Epsilon A or Epsilon B that is through numerical process. So simply (())(75:29) 

method we need to follow to find out the Epsilon A. 

Similar kind of treatment can also be done specifically at high temperature when there is a 

effect of the strain rate is more significant. So in that case we need to consider sigma equal to 

C Epsilon dot to the power m, we can do the similar or we can do the similar treatment so 

similar way we can instead of sigma A here, so we can use the Epsilon A dot to the power m, 

so in terms of m we can find out the similar kind of expression. 

So this is all about one dimensional stress-strain and what are the effect of the strain 

hardening coefficient at the same time what are the effects of the strain rate sensitivity index 

and what are the combined effect if metal behavior in such a way that both the strain 

hardening and strain rate, both are significant for the mechanical behavior of the material. So 

we can do all these analysis uhh from this expression what I have discussed just last, almost 

last one hour. 

So next class I will try to analyze the basis plasticity theory, yield criteria, how we can find 

out and that will be very specific to the 2 dimensional or 3 dimensional stress strain. So thank 

you very much for your kind attention.  

 


