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Welcome to this lecture on sound and structural vibration.  Last time we had started looking at 

the model problem. We had posed it and we decided to look at the uncoupled part of the 

problem and the uncoupled part looked like this. 
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We were desiring  

𝑣(𝑥) =
−𝑖𝜔𝐹

2𝜋𝐵
∫

𝑒𝑖𝑘𝑥

𝑘4 − 𝑘𝑝
4  𝑑𝑘

∞

−∞

. 

Here we decided to use principles of complex variables and I told you about the contour 

integration. So now we are going to integrate this using principles of contour integration so let 

me show you the contour and the singularities of this function. 

 

This now 𝑘 becomes complex 𝑘 enters the complex domain so far 𝑘 was real but now 𝑘 enters 

the complex domain. So, what are we trying to do so now what we have for the integral is we 

have a contour integral  ∮
𝑒𝑖𝑘𝑥

𝑘4−𝑘𝑝
4  𝑑𝑘 , 𝑘 is now complex. This is now what we are going to do 

but I have excluded the constants in front we will add them later. So, this is going to be equal 



to the integral we want from minus infinity to infinity on the real axis plus there will be portion 

from a contour. 

 

And it is going to equal to 2𝜋𝑖 times the sum of the residues at whatever singularities we have. 

∮
𝑒𝑖𝑘𝑥

𝑘4 − 𝑘𝑝
4  𝑑𝑘  =  ∫ [

∞

−∞

    ]  + ∫[   ]
𝐶

  =  2𝜋𝑖 ∑ 𝑅𝑒𝑠(𝑘𝑖). 

 So let us look at these singularities of this functions once k has become complex that means 

where does it blow up that means zeros of the denominator. It is not very difficult to see that 𝑘 

= ± 𝑘𝑝 are singularities and ± i 𝑘𝑝 are also singularities. 

 

So, if I plot those I have  −𝑘𝑝 I have +𝑘𝑝 I have +𝑖𝑘𝑝 and −𝑖𝑘𝑝 so these are the singularities.  
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Now the problem is deliberately is very symmetric so if I am going to just describe the problem, 

we have an infinite plate and we have a line force acting at x= 0. So, it is very symmetric so 

there will be a propagating wave that way and a decaying wave that way a propagating wave 

that way and decaying wave that way. That is why we have 4 groups 4 singularities that are 

why we have 4 roots. 

 

And therefore, which are the once to include we have 𝑖𝑘𝑝 here we have 𝑘𝑝 here we have  −𝑘𝑝 

here −𝑖𝑘𝑝  here. So, there is an x greater than 0 solution there is a x less than 0 solution that 

are going to be symmetric. So, we are going to attempt x = 0 solution and therefore we have to 

choose 2 of the roots you have to choose 2 roots. So let us see my displacement let us say some 

amplitude A it has −𝑖𝜔𝑡 time dependence. 



 

Then let us say it has +𝑖𝑘𝑥 now k here is anything a certain wave number so I am going to 

substitute each of this. 

𝐴𝑒−𝑖𝜔𝑡+𝑖𝑘𝑥 . 

 I am going to substitute first 𝑘𝑝 this means a forward propagating wave in the positive x 

direction one should know this sign flip is the indicator.  

𝐴𝑒−𝑖𝜔𝑡+𝑖𝑘𝑝𝑥. 

Once you have the negative here and a positive here that sign flip is an indicator for forward 

propagation.  

 

Now so 𝑘𝑝 we have looked at now suppose we look at −𝑘𝑝 so I have 

𝐴𝑒−𝑖𝜔𝑡+𝑖(−𝑘𝑝)𝑥. 

so, which means what this is  

𝐴𝑒−𝑖𝜔𝑡−𝑖𝑘𝑝𝑥, 

this is a negative propagating wave that means in the negative x direction. This wave is going 

leftward this wave is going rightward starting with x = 0 my source or line force is at x = 0. 

 

So, this one represents a wave moving positive x and this one represents a wave in the negative 

moving x. So −𝑘𝑝 is not to be chosen +𝑘𝑝 to be chosen should be part of my contour even 

within the mathematics some physical aspects coming our judgement comes in blindly we 

cannot do the mathematics. We have to choose a contour and choose the roots such that 

meaningful results come.  

 

So, you can see that having −𝑘𝑝 does not give a meaningful reason for meaningful results for 

positive x. Similarly, if I choose 𝑖𝑘𝑝 if I put 𝑖𝑘𝑝 for 𝑘 what do I get? I get  

A𝑒−𝑖ωt+𝑖[ik𝑝]𝑥, 

this gives me 𝐴𝑒−𝑖𝜔𝑡−𝑘𝑝𝑥 what is this? This is a wave decaying in the positive axis as I move 

in the positive x direction it decays away.  

 

So that is what I have drawn here it decays away which is possible so 𝑘 = 𝑖𝑘𝑝 should be 

included. The last choice is what 𝑘 = −𝑖𝑘𝑝 so that gives me 

𝐴𝑒−𝑖𝜔𝑡+𝑖[−ik𝑝]𝑥. 

 So, I get  

𝐴𝑒−𝑖𝜔𝑡𝑒𝑘𝑝𝑥. 



So, this starting at x = 0 blows up to ∞ at x = ∞ this is not as admissible. 

 

Such results are not physical so it is not as admissible so what is admissible? 𝑘 = 𝑘𝑝 is 

admissible 𝑘 = 𝑖𝑘𝑝 is admissible. So, any contours I choose these are the 2 routes that should 

be included. So now the contour I choose is I come from negative infinity I comes slightly 

above. I cross over here I include +𝑘𝑝 in my contour then I go around I go off to infinity at 

infinity I take a semicircle I come back and meet. 

 

Now this is one way of looking at it by taking contour that is slightly above the real axis here 

and slightly below the real axis here. The other way typically done in engineering is that every 

route as a little bit of damping. We are doing undamped analysis in my plate equation or 

acoustic wave equation there is no damping. But all systems have some damping that means 

the routes are damped that means they will have imaginary portions. 

 

So, this 𝑘𝑝 can be you know given an imaginary portion such that it moves into this. This 

−𝑘𝑝 can be given an imaginary portion such that it moves downward. So, then I move straight 

away along the real axis there automatically my +𝑘𝑝 is within the contour −𝑘𝑝 is outside the 

contour. And they have been given a very small 𝜖 damping then after the answer is computed 

I send 𝜖 to 0 do it that way also. 

 

So, in anyway what is included is +𝑖𝑘𝑝 and +𝑘𝑝 for computing answers in the positive x 

direction and this is the shape of the contour. So, what has happened is that the portion I wanted 

minus infinity to plus infinity is included however I have ended with a contour on a semicircular 

arc. So that has to be evaluated otherwise you would not get the full answer. So, we need some 

theorems now from complex variables so let us see. 

(Refer Slide Time: 15:16) 



 

So, one theorem is the Cauchy residue theorem so I will just write it here for a function 𝑓(𝑧)  

analytic everywhere in the complex plane except at a finite number of points 𝑧1, 𝑧2 through 𝑧𝑛 

lying inside a closed contour 𝐶0 the following relation holds. What is that?  

∮ 𝑓(𝑧)
C0

dz  =  2πi ∑ 𝑅𝑒𝑠 [𝑓(𝑧)]|𝑧=𝑧𝑛
. 

That is one result we will need the other result is called Jordan’s Lemma it says that if 𝑓(𝑧) =

𝑔(𝑧)𝑒𝑖𝑎𝑧 with 𝑎 > 0 , a being a positive number. Then further if  𝑔(𝑧) uniformly tends to 0 on 

a circular arc as the radius tends to ∞. Then 

∫ 𝑓(𝑧)𝑑𝑧 = ∫𝑔(𝑧)𝑒𝑖𝑎𝑧𝑑𝑧 = 0.
𝐶𝐶

 

So, these are the 2 theorems we will need so now let us see we have   

𝑣(𝑥) =
−𝑖𝜔𝐹

2𝜋𝐵
∫

𝑒𝑖𝑘𝑥

𝑘4 − 𝑘𝑝
4  𝑑𝑘

∞

−∞

. 

Here 𝑘 from if we want to take Jordan’s theorem 𝑘 plays the role of z and x positive plays the 

role of 𝑎. So now we are as I said earlier, we will keep the constants outside for the moment 

we will think about this integral. 

 

So, we are going to replace it with a contour integral let us keep the same variable, but 𝑘 has 

become complex decay. So that is going to involve the real portion of the integral which I want 

plus an integral over a contour whose radius tends to infinity.  

∮
𝑒𝑖𝑘𝑥

𝑘4 − 𝑘𝑝
4  𝑑𝑘 =  ∫ [  ] + lim

𝑅→∞
∫

𝑒𝑖𝑘𝑥

𝑘4 − 𝑘𝑝
4  𝑑𝑘  =  2𝜋𝑖 𝑅𝑒𝑠[𝑖𝑘𝑝, 𝑘𝑝].

𝐶

∞

−∞

 



And what did we say the contour we are choosing is we now choose to go straight on the real 

axis you go on the real axis. I am drawing it separately so that you can see I go off to ∞ so my  

𝑘𝑝 is inside 𝑖𝑘𝑝 is inside. And I come I close the value close the contour at −∞. So, I have the 

portion I want the real integral here I have ended with extra portion over here. 

 

Now if you look at it this in the Jordan theorem this portion looks like 𝑒𝑖𝑎𝑧 and 
1

𝑘4−𝑘𝑝
4  looks 

like 𝑔(𝑧). And 𝑘 is the complex variable taking the role of z so as my semicircular arc goes to 

∞ its radius goes to ∞, 𝑔(𝑧) uniformly tends to 0 that is the Jordan’s theorem. If you recall 

𝑔(𝑧) uniformly tends to 0 on a circular arc as the radius goes to ∞. 

 

So that is true Jordan’s Lemma applies and this portion is equal to 𝑒𝑖𝑎𝑧. So therefore, this 

integral on the circular arc goes to 0 therefore the integral I want is simply the sum of the 2 

residues at 𝑖𝑘𝑝 and 𝑘𝑝. So let us just compute that and see we have just about enough time. 
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So, I have let me just recall I have this integral 

∫
𝑒𝑖𝑘𝑥   𝑑𝑘

(𝑘 − 𝑘𝑝) (𝑘 + 𝑘𝑝) (𝑘 − 𝑖𝑘𝑝)(𝑘 +  𝑖𝑘𝑝) 

∞

−∞

. 

 So, I need the residues at k = 𝑘𝑝 and k = 𝑖𝑘𝑝 so you should know how to find residues 

multiplied by the offending term or remove it. So, I have for k = 𝑘𝑝 I have to  

𝑒𝑖𝑘𝑥

(𝑘 + 𝑘𝑝) (𝑘 − 𝑖𝑘𝑝)(𝑘 + 𝑖𝑘𝑝) 
 evaluated at k = 𝑘𝑝. 

 

So that gives me let us see  



𝑒𝑖𝑘𝑥

(𝑘  +  𝑘𝑝) (𝑘  −  ik𝑝)(𝑘  +  𝑖𝑘𝑝) 
|

𝑘 =𝑘𝑝

=  
𝑒𝑖𝑘𝑝𝑥

2𝑘𝑝𝑘𝑝
2(1 − 𝑖2)

=
𝑒𝑖𝑘𝑝𝑥

4𝑘𝑝
3 . 

Similarly for k = i𝑘𝑝 

𝑒𝑖𝑘𝑥

(𝑘  +  𝑘𝑝) (𝑘  −  k𝑝)(𝑘  +  𝑖𝑘𝑝) 
|

𝑘 =𝑖 𝑘𝑝

=  
𝑒−𝑘𝑝𝑥

𝑘𝑝
2(𝑖 + 1)(𝑖 − 1)2𝑖𝑘𝑝

=
𝑒−𝑘𝑝𝑥

2𝑖𝑘𝑝
3(−2)

=
𝑒−𝑘𝑝𝑥

−4𝑖𝑘𝑝
3

=
𝑖𝑒−𝑘𝑝𝑥

4𝑘𝑝
3 . 

So, we have 2 residues now so the integral I want 

∫
𝑒𝑖𝑘𝑥

𝑘4 − 𝑘𝑝
4  𝑑𝑘

∞

−∞

 =  2𝜋𝑖 [
𝑒𝑖𝑘𝑝𝑥

4𝑘𝑝
3  +  

𝑖𝑒−𝑘𝑝𝑥

4𝑘𝑝
3 ] (

−𝑖𝜔𝐹

2𝜋𝐵
), 

so this is the inverse so this is equal to our 𝑣(𝑥). So, I will close the lecture here in the next 

class corresponding to this uncoupled plate vibration velocity we will find the acoustic response 

thank you. 


