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Good morning and welcome to this next lecture on sound and structural vibration. We are looking 

at this topic of cylindrical shell waves coupling to internal fluid. So, far we have looked at how 

shell flexural waves behave. So, we have to now bring the fluid aspect in it. So, suppose we have 

a rigid walled cylindrical shell wall does not move it is a rigid pipe kind of. Then the solution to 

the cylindrical wave equation has this form let us say  

𝑃𝑚𝑛(𝑟, 𝜙, 𝑧) = 𝑃̅𝑚𝑛
𝑐𝑜𝑠
𝑠𝑖𝑛

 (𝑛𝜙) 𝐽𝑛(𝑘𝑟
𝑛𝑚𝑟)𝑒−𝑗𝑘𝑧𝑧 . 

 

So, this is the solution for the 𝑚𝑛th mode. Normally it will be a summation over 𝑚 and 𝑛. Now 

how 𝑘 is related? The 𝑘𝑧
2 + (𝑘𝑟

𝑛𝑚)2 = 𝑘2. So, now you are aware of how the wavenumbers add. 

So, at a given frequency I have a 𝑘2 this is equal to 
𝜔2

𝑐2
 . So, at a given frequency in the shell I have 

a 𝑘 the shell goes up to infinity I have a 𝑘 in some direction.  

 



That shall be equal to the 𝑘𝑧 in the 𝑧 direction versus 𝑘𝑟
𝑛𝑚 in the radial direction. So, that is what 

this equation is saying. So, now ideally, we are looking at the rigid walled to understand. 
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The cut-ons the cylindrical acoustic cut-ons. So, now at the wall the displacement is 0 the normal 

displacement is 0 which means in the radial direction 𝑟 =  𝑎 we will have 𝐽𝑛 the Bessel function 

first kind 𝑛th order derivative at 𝑟 = 𝑎 shall be 0.  

[𝐽𝑛
′ (𝑘𝑟𝑟)]|𝑟=𝑎 = 0. 

Now because Bessel function is like a transcendental function there are several 𝑘𝑟𝑎 values that 

will satisfy this condition. Even for a single so let me draw the Bessel function.  

 

So, I will just draw 0 or the 𝐽0, 𝐽0 behaves like this. It is like a decaying sinusoid. So, this is 𝐽 at 0. 

So, you can see its derivative goes to 0 here, its derivative goes to 0 here its derivative goes to 0 

here this 0 here goes to 0 here goes to 0 here. So, this is kind of the radial direction. You can put 

this kind of the radial direction. So, this is how the circumference of the shell should go. So, you 

are trying to find values of 𝑘𝑟 such that 𝑘𝑟𝑎 lands here, 𝑘𝑟𝑎 lands here, 𝑘𝑟𝑎 lands here, 𝑘𝑟𝑎 lands 

here.  

 

Why? That is where the 𝐽0 derivative goes to 0. So, for a single 𝑛 there are several values of 𝑚 

where this happens. So, if I just draw a table now 𝑚 values are in this here. Then 𝑛 values 0 and 

0, 𝑚  0, 1, 2, 3, 4 etcetera so, 𝑚  values. For 𝑛 =  0 the first-time derivative goes to 0 is for 𝑚 



value 0 and the value of the wavenumber is 0. So, that means 𝑘𝑟𝑎 is 0 so, here are 𝑘𝑟𝑎 values some 

𝑘𝑟𝑎  values. So, because for 𝐽0 you get a derivative 0 at 0 value.  

 

So, the next value where derivative goes to 0 is 3.83. That is the 𝑘𝑟𝑎 value 𝑘𝑟𝑎 =  3.83. So, if a 

is known you can find out the actual wavenumber value. Then the next time it goes to 0 at 7.02 

these are tabulated. So, these are Bessel functions tabulated. Then for 𝑛 =  1 the first fellow is at 

1.84. Second is 5.33. Third is 8.53, 11.71 and equal to 2 it is 3.05, 6.71 etcetera. So, these are the 

cut on frequency or where 𝐽𝑛
′  goes to 0.  

 

So, now what we have is we have 𝑘𝑧
2 + (𝑘𝑟

𝑛𝑚)2 = 𝑘2. Now 𝑘𝑧 is of course equal √𝑘2 − (𝑘𝑟
𝑛𝑚)2. 

This is figured out from the table on the left. So, when 𝑘𝑧 goes to 0 that is my cut-on condition 

which means my 𝑘 or  
𝜔

𝑐
=  

𝑘𝑟
𝑛𝑚

𝑟
. So, 𝜔 is that cut-on frequency. So, if we put it in non-dimensional 

form so we have 𝜔𝑎 so, I have to do 𝜔𝑎 by 𝑐 this is speed of sound is 𝑘𝑟
𝑛𝑚𝑎.  

 

But my non-dimensional frequency is what 
𝜔𝑎

𝑐𝑙
′ . So, I had to put 𝑐𝑙

′ then I put 𝑐𝑙
′. So, what is it?  

Ω =
𝜔𝑎

𝑐𝑙
′ = 𝑘𝑟

𝑛𝑚𝑎 
𝑐

𝑐𝑙
′ . 

So, 𝑐 is the speed of sound, sonic speed in that particular medium, 𝑐𝑙
′ is the speed of longitudinal 

wave in that medium in the structure. So, that is the cut on non-dimensional frequency now.  

 

So, once I figure out 𝑘𝑟
𝑛𝑚𝑎 from this particular table on the left the way to figure out the cut on 

frequency in terms of the standard non-dimensional number that we have been using for frequency 

is you multiply that by 𝑐 on top divided by 𝑐𝑙
′ dash on the bottom. So, now this is how I figure out 

my cut-on frequency value. I have figured out the cut-on frequencies for the structure. We have 

figured out after cut-on how these wavenumbers behave.  

 

So, below Ω = 1 they stay low close to 1 they start to rise suddenly. So, now how does this acoustic 

wavenumber behave? Suppose let me do one thing I need to put some labels. So, this is the Ω axis 

and let us say this will be 𝑛 = 0, this will be 𝑛 =  1 this will be 𝑛 = 2 and this is 𝑘𝑧𝑎𝛽1/2. 
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Now based on our table let us look at where the 𝑘𝑧 is cut-on. So, for 𝑛 =  0 and 𝑚 =  0 based on 

the table earlier 𝑘𝑟
00𝑎  was 0 which means 𝑘𝑟

00  =  0 which implies at the same time that the non- 

dimensional frequency Ω  is 0 . Then for 𝑛 =  1  and 𝑚 =  0  let us say for steel and air 

combination my Ω10 will be 1.84 into 𝑐 which is 340 divided by 5000. This is speed of sound in 

the air; this is longitudinal wave speed in the medium; this is about 0.125. 

 

Similarly, if we do for aluminium and air the Ω10 =  1.84. Similar values 340 by 5000 about 0.12. 

If we do steel and water then we have 1.84 into 1500 by 5000 which is 0.55. If we do 𝑛 =  2 and 

𝑚 =  0 steel water then we have from the table 𝑘𝑟𝑎 is 3.05 1500 by 5000 = 0.915. And if we look 

at 𝑛 =  0  and 𝑚 =  1 from the table 𝑘𝑟𝑎  value is 3.83  into 1500  by 5000 =  1.14 . Now 

circumferentially how do these 𝑛𝑚 values appear as?  

 

So, if I have this circle 𝑛 =  0  and 𝑚 =  0  looks like this 𝑛 =  1, 𝑚 =  0 how does it look like? 

𝑛 =  1 denotes the nodal diameter then 𝑚 =  0 is nodal circle so, nodal circles. So, we have a 

nodal 1 nodal diameters plus and minus. How does 𝑛 =  1 and 𝑚 =  1   look like? So, we have 1 

diameter 1 circle. So, we will have +  −  +  −. Lastly, we will look at 𝑛 =  3 and 𝑚 =  2. So, 

𝑚 =  2 gives me 1, 2, 𝑛 =  3 will be 1, 2 and 3. So, let us say we will do − +  −  +  −  +  +  −

 +  −  +  −  −  +  −  + − +.  

 



And we can plot these cut-ons along the frequency axis. So, we get 𝑘𝑧  on the 𝑦 axis and the 

frequency value here. So, we have 𝑘𝑧  = √𝑘2 − (𝑘𝑟
𝑛𝑚)2 . So, the 𝑘00  it cuts on straight from 

Ω equal to 0. So, it goes like this straight away. So, next we have the 𝑛 =  1,   𝑚 =  0  where the 

𝑘𝑟𝑎 value is 1.84. So, 𝑘𝑟𝑎 value is this is 1, 0 and this is 1.84. This is the 𝑘𝑟𝑎 value then we have 

2, 0 sequentially 2, 0. So, this is asymptotically go to plane wave.  

 

So, this value was 3.05. The next value is 3.83 the next value is 4.2 so, 3.83 is 0, 1 and 4.2 is 3, 0. 

There will be a corresponding Ω value from here. So, these are the 𝑘𝑟𝑎 values. Now for the 

structure the flexural behaviour in the circumferential direction looks like this. This is for 𝑛 =  0 

is a breathing mode where the shell radially expands and contracts. And for 𝑛 =  1 we will have 

a cosine theta type variations.  

 

So, the shell profile oscillates back and forth, left to right. So, it moves back and forth left to right. 

This is the nominal in a circle. It moves oscillates back and force then the 𝑛 =  2 is easier to see. 

It is the ovaling mode. So, if we take this as a nominal circle and it ovals. So, it in one part it goes 

like this the other half it goes like this so, it ovals this is 𝑛 =  2 then 𝑛 =  1. And let me say that 

coupling between fluid and shell is circumferential order based.  

 

Circumferential order base that means 𝑛 based. So, the 𝑛 of the structure couples with the 𝑛 of the 

fluid. So, that means when the structural wavenumber of a particular 𝑛 comes close or crosses to 

a fluid wavenumber in same 𝑛 same circumferential order then coupling is good. 
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So, if we now plot both the pictures so what we are now going to do is plot both pictures. So, this 

is my ring frequency. So, let me plot a few structural cut-ons. The first one starts at 0 stays low 

𝑛 =  0 and then starts to rise rapidly and then it starts to bend like this. The next one maybe cuts 

on here and then also stays low and somewhere it starts to rise and behave like this. The third one 

starts maybe here and does some meandering etcetera.  

 

Now let us say that my plane wave line is going like this let us say plane wave line. The plane 

wave line goes like this or let me do one thing for clarity let me leave it. Let me say it has a higher 

angle, it does not matter. Now my acoustic cut on they will rise vertical. The acoustic cut on will 

rise vertically straight and then they will go. Based on the structure and fluid properties the number 

will be decided based on the thickness of the shell the shell wavenumbers will be decided etcetera.  

 

So, these fluids cut on rise vertically and as I said the coupling is n based. So, a particular 𝑛 of a 

structure let us say can intersect with a certain set of 𝑛’s maybe somewhere here. So, a particular 

structural wavenumber carrying a certain n with it will go and intersect all those cut-ons fluid cut-

ons which are the same 𝑛 and that is when coupling occurs strong. Let me say one more thing here 

that we are plotting uncoupled waves.  

 

So, that means what we have looked at structure as though it is in vacuum and plotted its waves. 

We looked at fluid and as though the structure is rigid and plotted its waves. This helps us get a 



picture, this helps us get an idea of what is happening. However actual waves are coupled. So, in 

actuality when both are present this is not the picture. So, I would like you to understand that. 

However, this picture of this way of plotting the uncoupled waves together gives us a physical feel 

for what is happening.  

 

So, we will continue with that. So, what I was saying was that a particular 𝑛 structural flexural 

wave cuts on and remains low in its value till Ω = 1. And therefore, along its path it intersects all 

fluid cut-ons with the same 𝑛. And this intersection is a kind of coincidence where the structural 

wave if it is vibrating will communicate with the fluid or if there is a lot of sound in the fluid it 

will communicate with the structure. So, these intersections are very important. 

 

Now for certain dimensions of let us say fluid pipes it so happens that a large number of 

coincidences happened around here. It is possible based on the structural material, the fluid 

material and the diameters and so forth. It is possible that you have a lot of coincidences. So, it has 

been observed that transmission loss drops in thin-walled cylindrical shells around ring frequency 

that is Ω = 1. So, now this is the picture in general.  

 

Now let me just give you a flavour of external radiation. Now you have structural waves that are 

staying low and then they rise very suddenly. And then they become dominantly flexural and so 

forth. So, this is what is happening. Now my non-dimensional wavenumber is 
𝜔𝑎

𝑐𝑙
′  whereas my 

acoustic wavenumber 𝑘 is 
𝜔

𝑐
. And therefore, Ω

𝑐𝑙
′

𝑐𝑎
. 

 

Or if I want 𝑘𝑎 then we will leave it as Ω
𝑐𝑙

′

𝑐
 on the omega axis. So, this based on the relative values 

of 𝑐𝑙
′  the longitudinal speed in the material and the speed of sound in the fluid the acoustic 

wavenumber line could lie here or it could lie here it could lie here like this. So, in terms of external 

radiation it is scenario 1. Scenario 1 is that the waves cut on supersonic. Why? Because 𝑘𝑧 happens 

to be below 𝑘 then around Ω = 1 the 𝑘𝑧 rises. 

 

And it becomes greater than 𝑘 subsonic. And then much later you will reach the critical frequency 

of the shell material considered as a flat plate. There the flexure again drops there the flexure drops 



and 𝑘𝑧 becomes less than 𝑘. So, that the shell is again efficient. Shell starts off as an efficient 

radiator, loses its efficiency and again becomes efficient that is 1 scenario. Just a minute before I 

change the page let me put the labels. So, this could be say 𝑛 = 0. 

 

This could be 𝑛 =1 this is let us say Ω axis this is 𝑘𝑧𝑎𝛽1/2. Similarly, this is Ω. Let us say this is 

𝑛 = 0, 𝑛 = 1, 𝑛 = 2. And this is 𝑘𝑧𝑎𝛽1/2. 
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The other scenario is it is possible that the ring frequency is above your coincidence frequency 𝜔𝑐 

where you consider the shell material as a flat plate. Then right from cut on the waves or the 

flexural waves are supersonic. So, this is for external radiation. I will close the lecture here we are 

running out of time. We will continue next class. Thank you. 

 


