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Good morning and welcome to this next lecture on sound and structural vibration. We are 

discussing sound structure interaction in cylindrical geometries and we started just looking at the 

cylindrical vibration. So, we have come so far where we let me see showed the three equations of 

motion in the 3 directions using stress resultants.  
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And the stress resultants can be further written in terms of displacements or other midplane 

displacements because it is a thin shell and once you do that then you assume this form because 

this form is suitable to the equations. So, this is the wave number in the 𝑥 direction or propagator 

in the 𝑥 direction and this is the circumferential description. Once you substitute that then you get 

that is matrix sorry, I should do this and you get 

[
𝐿11 𝐿12 𝐿13

𝐿21 𝐿22 𝐿23

𝐿31 𝐿32 𝐿33

] {

𝑈̃𝑛𝑠

𝑉̃𝑛𝑠

𝑊̃𝑛𝑠

} = 0. 

Where  

𝐿11 = −Ω2 + (𝑘𝑛𝑠𝑎)2 +
1

2
(1 − 𝜈)𝑛2, 



𝐿12 =
1

2
(1 + 𝜈)𝑛(𝑘𝑛𝑠𝑎) = 𝐿21, 

𝐿13 = 𝜈(𝑘𝑛𝑠𝑎) , 

and then  

𝐿22 = −Ω2 +
1

2
(1 − 𝜈)(𝑘𝑛𝑠𝑎)2 + 𝑛2, 

𝐿23 = 𝑛 = 𝐿32, 

and  

𝐿33 = −Ω2 + 1 + 𝛽2[(𝑘𝑛𝑠𝑎)2 + 𝑛2]2 

the whole set of equations is now non dimensionalized.  

 

So, 𝜈 is the Poisson’s ratio then we have Ω the non dimensional frequency given by 
𝜔𝑎

𝐶𝑙
′  , 𝐶𝑙

′ is the 

speed of the longitudinal wave in the material as a plate √
𝐸

𝜌𝑠(1−𝜈2)
 , then 𝛽 is another non 

dimensional parameter which is 
ℎ

𝑎√12
 and ℎ is shell thickness. Now you can see that you look at 

the diagonal terms which is has Ω2 , 𝐿22 has Ω2, 𝐿33 has Ω2, so it is 6th order in the frequency.  

 

And if you look at 𝑘𝑛𝑠 right here, it is square and square, so 4th order then you will get a square 

from 𝐿11, you get a square from 𝐿22 so it is 8th order in 𝑘𝑛𝑠, it is 8th order to the power 8 in 𝑘𝑛𝑠.  
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So, if you take for a non-trivial solution of this equation, this particular equation if you do not want 

𝑈̃𝑛𝑠, 𝑉̃𝑛𝑠, 𝑊̃𝑛𝑠 to be simultaneously 0 then the determinant of this must be 0. Nontrivial solution 

the determinant must be 0 and determinant has a polynomial in 𝑘𝑛𝑠, (𝑘𝑛𝑠)8 + [  ]𝑘𝑛𝑠
6 … . [  ]Ω6 =

0. So, this is the dispersion equation.  

 

So, for a given an Ω you will have 8 waves and 8 values of that means 8 values of 𝑘𝑛𝑠 and what 

will they be if you have a shell and let us say I am locally exciting here this shell is going to infinity 

in this direction. Then I will have 4 waves, 4 waves going this way 4 waves going that way. So, 

that symmetry holds those are the 8 values and typically you will have a propagating flexural wave, 

you will have a decaying flexural wave, you will have a propagating longitudinal wave and a 

propagating torsional wave same on this side 4 waves and those are the 4 waves typical.  

 

Now for 𝑛 =  0 I am not going to present all the details here. So for 𝑛 =  0 that means if I put 

𝑛 =  0 here why is that important? One more thing this shell this 𝑛 here has to be an integer it is 

no surprise has to be an integer. So the reason will be 𝑛 is an integer. The reason is that if you go 

around the cylindrical shell once as you come back to the same point the displacement should be 

continuous. So that means what cos 𝑛𝜃 = cos 𝑛(𝜃 + 2𝜋) . So, this is possible only when 𝑛 is an 

integer.  

 

So, this will be equal to cos 𝑛𝜃 cos 2𝜋𝑛 − sin 𝑛𝜃 sin 2𝜋𝑛. Now, if 𝑛 is an integer then you will 

get 0 here you will get a 1 here then cos 𝑛𝜃 on both sides if 𝑛 is not an integer that will not happen. 

So, 𝑛 has to be an integer so, if 𝑛 is an integer first let me describe that also for 𝑛 =  0 what sort 

about displacement can we expect we can have let us say that transverse dominated displacements 

let us describe transverse dominated, again what do I mean by transverse dominated.  

 

So, let us say I pick a particular Ω and I get 4 waves I get a flexural wave, I get a flexural near 

field decaying like this, then I get a longitudinal wave, then I get a torsional wave. So, if I plug 

any particular wave number back into this matrix why because 𝑘𝑛𝑠 is the number I have then that 

determinant is 0. So, rank drops. So, I can compute 
𝑈̃𝑛𝑠

𝑊̃𝑛𝑠
 ,I can compute 

𝑉̃𝑛𝑠

𝑊̃𝑛𝑠
.  

 



And based on the wavenumber chosen I could have this to be a small value which means that 

wavenumber is speaking of a dominant transverse displacement. So, a particular wavenumber let 

us say 𝑘𝑛1  says that 
𝑈̃𝑛1

𝑊̃𝑛1
 will be very small. Similarly, 

𝑉̃𝑛1

𝑊̃𝑛1
 will be very small which means this is 

a transverse displacement dominated wavenumber it will not be only transverse displacement there 

will be a small component of axial movement displacement and torsional displacement because 

this set of equations are coupled. So, I am trying to say why I said as a dominantly transverse.  

 

So, if I have a particle then it will dominantly move up and down, but it will have a small part axial 

and will have small part torsional. So, 𝑘𝑛1  could be that sort of a wave whereas 𝑘𝑛2 could be 

dominantly axial so, that particle will be moving axially 𝑥 direction, but it will have a small 

component of transverse small component of torsion. So, it is complicated but dominantly axial. 

So, let us now look at transverse dominated displacements for various ends how they could be. So, 

𝑛 =  0 what happens is that you have the displacement oscillates.  

 

So, you will have a radius going up and down, like a breathing mode is called the breathing mode. 

So what I am saying is we have chosen let us say 𝑘𝑛1 here 𝑛 is 0, chosen 𝑘01  amongst these waves. 

So we have substitute 𝑛 =  0 already into that matrix. And we are looking at that particular 

wavenumber where transverse displacement is dominant. So for 𝑛 =  0 what happens is the radius 

breathes in and out previous breath in and out. So, the breathing mode we did that same thing for 

𝑛 =  1.  

 

Then I will draw it smaller. So, we will have the nominal radius and it will oscillate back and forth. 

This will oscillate back and forth the centre will oscillate back and forth, that is the kind of 

transverse displacement you will get. If you have 𝑛 =  2, you substitute 𝑛 =  2 and find that 

wavenumber which is dominantly flexural, then it will have this nominal radius nominal cross 

section, then it will oval, it will oval like this. This is exaggerated, but that will how it is breath. 

And if it is 𝑛 =  3, I do not have space here.  

 

So, if then 𝑛 =  3 the nominal cross section is like this and it will acquire the shape at some point 

in its vibration, it likewise is also exaggerated but and so forth. So, now, for 𝑛 =  0 we will have 



4 waves, 𝑛 =  1 will have 4 waves, 𝑛 =  2 we will have 4 waves 𝑛 =  3 you will have 4 waves 

and so forth 𝑛 =  3 and so, the 𝑛 kind of makes it orthogonal cos 𝜃 orthogonal to cos 2𝜃 

orthogonal to every sin 𝜃. So, it would be a logical to look at modes with 𝑛 as a standard number.  
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So, if we look at the waves in an infinite cylindrical shell for 𝑛 =  0 you have to have 4 waves. 

So, how will it look like there could be real wavenumbers this could be complex wave numbers as 

could be purely imaginary wavenumbers. So, this is the real, this is the imaginary, and this is a line 

where I say Ω =  1, Ω is what 
𝜔𝑎

𝐶𝑙
′  the non dimensional frequency and that is equal to 1 is some line 

here.  

 

Now below this I will have two complex waves with various alternating real and imaginary signs. 

You will have negative also and negative is also negative imaginary so you have two of those 

below this Ω =  1 frequency. And you will have two real waves so one is going like this let us say 

one is going at some angle and continues forever. The other let us say blue comes like this very 

sharply turns and then starts to behave like a flexural wave omega to the power half behavior and 

the other one beyond Ω =  1.  

 

This behaves as though it is continuing it behaves as though there is this continuity as though now 

as far as the imaginary so, now beyond Ω =  1 we have one real wave, two real wave, three real 

waves and we will have one purely imaginary wave so, be beyond Ω =  1 we can talk of a flexural 



wave this one is at torsion, this is a torsional wave this is again a longitudinal wave particles 

moving back and forth in the axial direction and this is the purely imaginary flexure decaying wave 

below Ω =  1 it is a little complicated.  

 

We have two composite complex waves and two real waves. Now, what is interesting here is that 

this is torsion it remains torsion and for 𝑛 =  0 it is uncoupled with the rest uncoupled it uncouples 

with other equations and other displacements you can see that here, so, 𝐿12 for 𝑛 =  0 you can 

have let us see, 𝐿11 survives 𝐿13 survives. So, 𝐿31 survives and 𝐿33 survives. Whereas, you have 

𝐿21 and 𝐿12 go to 0 and 𝐿22  alone survives. So, for 𝑛 =  0 this is 0 this is 0 this is nonzero and it 

is tied to this.  

 

And therefore, this is 0 this is 0 and these 4 values are tied. So, the actual displacement and 

transverse displacement are coupled together and torsion completely decouples. So, below this Ω 

=  1 frequency what did I say? we have two complex wave numbers and one torsion which is 

completely decoupled from the rest and this blue line it begins as a longitudinal wave and Ω =  1 

it very rapidly transitions to flexure it begins is longitudinal means what it is dominantly 

longitudinal. As I said all displacements are coupled.  

 

So, you cannot say purely longitudinal or purely flexure because the equations are coupled every 

type of wave having a dominant motion has other components other motions in it. So, the particle 

is dominantly longitudinal or it will have as its torsion is decoupled but it will have small transverse 

displacement. So, this dominantly longitudinal wave suddenly turns and becomes dominantly 

flexure and it again cuts on it or at Ω =  1 and it continues as longitudinal.  

 

And what is this Ω =  1, so, this is an observe behavior is a computed behavior experimentally 

observed behavior and numerically analytically computed behavior. So, what is this 
𝜔𝑎 

𝐶𝑙
′  =  1. So, 

which means 2𝜋𝑓 𝑎 = 𝐶𝑙
′ speed of the longitudinal wave in the material. So, twice 𝑎 I will put it 

as the diameter, so, I have 𝜋𝑑 =
𝐶𝑙

′

𝑓
 = 

𝑓𝜆𝑙

𝑓
 . So, this is equal to 𝜆𝑙. So this is the circumference.  

 



The circumference is equal to the wavelength of the longitudinal wave so, just at this frequency 

what has happened is that you have the circumference at just become equal to the longitudinal 

wave in the material and in the other direction in the axial direction the wavelength is actually 

infinity. So, what happens is that this is a cut on frequency of a wave which has infinite wavelength 

in the 𝑥 direction or 𝑘𝑥 give the notation is 0 or 𝜆𝑥 is infinity and the circumferential length or 

radius is equal to 𝜆𝑙 the cut on frequency of the 𝑛 =  0 mode.  

 

So, this is very important it just happens that below this frequency the shell is unable to acquire 

displacements and just at Ω =  1 the displacement start to open out the wavelength of wave is 

being accommodated in the circumference. So, this shell starts to vibrate kind of or explodes in 

vibration and therefore, this longitudinal wave suddenly transits and becomes a dominantly 

flexural wave. So, this is called the ring frequency this Ω =  1 is called the ring frequency. And it 

is very important parameter or physical frequency.  

 

This will feature very heavily in our future discussions. So, this is a description of just 𝑛 =  0 

waves 𝑛 =  1 waves are very similar beyond Ω =  1 but below Ω =  1, they get complicated. They 

have some peculiarities of their own. So there will be complex wavenumbers. I am just going to 

give you a picture not a detail. So, there will be complex wavenumbers which will arrive to some 

value and then they will purely become imaginary for some time in the frequency.  

 

And then they will start cutting on whereas you will have a flexure cut on at some frequency and 

torsion etcetera. So it is complicated. So 𝑛 =  2 again will have its own peculiarity below Ω =  1 

beyond Ω =  1 1 it is again very similar. So I have just given you how 𝑛 =  0 looks like. Now so 

we know about something about the type of waves that we are going to see. 
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Now we even know that there is a dispersion equation which comes from the determinant of that 

matrix let me call it be 𝐿 matrix. Now, we can arrange that dispersion equation that describes 

flexural waves in a particular form to understand their behavior now, let me just add one thing here 

that this set of equations are called Donnell Mushtari equations there are several shell theories 

maybe 30, 40 Shell theories with various terms added for various accuracies.  

 

So, each shell theory has its own specific aspects and the more one of the most basic or the most 

basic is Donnell Mushtari set of equations for a thin shell theory. Now, so, we can arrange the 

dispersion equation in a particular manner I should also mention that this entire portion I have 

taken from the book by Frank Fahy you can find it in that book it is known in structural vibration. 

So, this particular form of the dispersion equation for flexural waves I write here.  

 

Ω2 = (1 − 𝜈2) {
(𝑘𝑧𝑎)2

((𝑘𝑧𝑎)2 + 𝑛2)
}

2

+ 𝛽2 {[(𝑘𝑧𝑎)2 + 𝑛2]2 −
𝑛2(4 − 𝜈) − 2 − 𝜈

2(1 − 𝜈)
}. 

Let me put it here so, this is the form a convenient form. Now, this portion talks of bending energy 

and therefore flexure. And this parameter I said 𝛽 is 
ℎ

𝑎√12
  so, 𝛽2 is 

ℎ2

12𝑎2. It is another very important 

parameter if 𝛽2 is small. Then the shell is dominated by membrane energy.  

 

Whereas, if it is any acquires any importance or dominance then the shell is dominated by flexural 

or bending energy. So, it is a very important parameter. So, this term describes bending energy 



and this term describes membrane energy stretching, stretching energy stretching or membrane 

energy, we are out of time so I will discuss in next class thank you. 


