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Good morning and welcome to this next lecture on sound and structural vibration. We are 

looking at transmission through flexible panel and we have reached the stage where you can 

see this is my power or intensity transmission coefficient because media on both sides are same. 

Just want to reiterate one thing here that let us say the free wavenumber on the panel or free 

wavelength also is like this, we can only show the wavelength, and this is let us say the 

incidence axis.  

 

Now if and this is 𝜙, so 𝜙 is becoming smaller, what will happen is that the trace wavelength 

will become bigger, so that the trace wave number will become smaller. So, 𝐾 sin 𝜙 will 

become smaller as 𝜙 reduces, I am just giving the picture here. So, this is a trace wavelength 

which is becoming bigger whereas wavelength becomes bigger the corresponding trace 

wavenumber becomes smaller.  

 

So, now that has to match your free wavenumber and therefore, the frequency angle is fixed 

the frequency has to go up so that you can actually match the free wavenumber, we are talking 

so much because there are these terms where you have 1 minus the ratio forced to free wave 

numbers.  
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So, in another way if we want to see it again if we have a free acoustic wavenumber line here 

and this is my 𝐾𝑏 panel free wave number line over here then let us say I have a certain angle 

at which I am incident, then let us say this has to be the frequency for that angle certain 𝜙1 

such that I have a certain sin 𝜙1 . So, I have to be here at this frequency for matching 

𝐾 sin 𝜙1 = 𝐾𝑏.  

 

If 𝜙1 is reduced then sin 𝜙1 is reduced then I have to be at a higher frequency to match the free 

wavenumber, this is my free wavenumber line and this is my acoustic wave line. So, now let 

us look at this picture which we have or this expression that we have  

𝜏𝑝 = 𝜏 =
(2𝜌0𝑐 sec 𝜙 /𝜔𝑚)2

[
2𝜌0𝑐 sec 𝜙

𝜔𝑚 + (
𝐾

𝐾𝑏 )
4

𝜂 sin4 𝜙]

2

+ [1 − (
𝐾

𝐾𝑏 )
4

sin4 𝜙]

2 , 

so by the same accord, if I am at such a frequency that I am just barely at coincidence.  

 

Then 𝜙1 has to be 90 degrees there is no other choice and so, if I am falling below this basic 

coincidence frequency then I have no coincidence possible. So, for a certain 𝜙1 I could be at a 

certain frequency higher than the basic coincidence frequency, this is my basic coincidence 

frequency here then I could be at some particular coincidence frequency that is related to 𝜙1 

such that 𝐾 sin 𝜙1 = 𝐾𝑏. 

 

So, when we mean low frequency we will talk of low frequency so, we could mean that we are 

wave below the basic coincidence, or we could say that we are wave below 𝜔𝑐𝑜 the currently 

possible coincidence.  



 

So, now we are going to talk of low frequency which means below the possible coincidence at 

a certain 𝜙 angle. So, now what happens then that means this term is small and if we say that 

the loss factor term is also small then my 𝜏 is given by 
1

[1+(
𝜔𝑚 cos 𝜙

2 𝜌0𝑐
)

2
]
 and based on materials 

placed in gases are materials metals placed in air and so forth this term can be larger than one.  

 

In which case the 𝜏 depends only on that term so, that my transmission loss or sound reduction 

index is 20 log10 (
𝑚𝜔 cos 𝜙

2 𝜌0𝑐
) you can see this is again the 6dB increment per octave or doubling 

of frequency this is the mass law. Now as I said low frequency can be taken in two ways for a 

given 𝜙 if you are about the basic coincidence then there is a good enough range where we call 

low frequency because at a certain 𝜙 the coincidence frequency is higher.  

 

Now, at coincidence the low frequency we are done at coincidence at 𝜔𝑐𝑜 what happens? Now 

my 𝐾 sin 𝜙 = 𝐾𝑏 this term is actually exactly 0. Now this term 𝜏 after cancelling all the terms 

can be written as  
1

[1+
𝜂𝜔𝑐𝑜𝑚 cos 𝜙

2 𝜌0𝑐
]
2 therefore, this region is now damping dominated at 

coincidence and this is the minimum value this happens to be them or rather this happens to be 

the maximum value this is the maximum value.  

 

Why the denominator becomes a minimum? So, there is a maximum value so maximum 

transmission value that means transmission loss goes to a minimum. Finally above coincidence 

the stiffness term dominates, so that what do we get now? We get 𝜏 given by 
1

1+(
𝐷 𝐾4 sin4 𝜙 cos 𝜙

2 𝜌0𝑐 𝜔
)

2 . 

So, this stiffness term can be bigger than one.  
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And therefore, the transmission loss or sound reduction index becomes equal to  

20 log10 (
𝐷 𝐾4 sin4 𝜙 cos 𝜙

2 𝜌0𝑐 𝜔 
), 

and then in a fourth we have 𝜔4 and below we have an 𝜔 here so this is 𝜔3. So, finally in terms 

of frequency we get  20 log10 𝜔 so that means what when frequency doubles when 𝜔 becomes 

2𝜔 we get log 2 times 60 which is 18 decibels.  

 

So, in this range for doubling of frequency we get 18dB increment in transmission loss this is 

the stiffness control region so what is the picture now? So, the picture now is this here so we 

have transmission loss so at a certain angle 𝜙 we have a mass law and let me pull this a little 

longer then you have a dip this is coincidence and you are at 18dB per octave let me do this 

one once you have, so this is a certain angle I get a dip and then I get 18dB per octave this is 

the stiffness control region this is a smaller angle.  

 

Now what happens? At a higher angle I have because angle is small coincidence occurs at 

highest frequency sin 𝜙 pulls it down, so frequency has to be higher as my angle increases, I 

have this line I have this line then I have a dip here and then the dip starts to go parallel to again 

18dB per octave at the stiffness control. So, this is the coincidence at a higher frequency and 

it continues.  

 

So, now if you take a further higher angle then I will have a dip here and then the dip will 

continue at 18dB. Smaller angle higher coincidence higher angle lower coincidence. So, this 

is incrementing 𝜙 this is 18dB per octave this is 6dB per octave. And finally, if you actually 



do normal incidence then 𝜙0 and 𝜏 is going to be 
(2 𝜌0𝑐)2

(2 𝜌0𝑐)2+(𝑚𝜔)2 and so, if which typically 𝑚 is 

a bigger entity mass dominated.  

 

Then we will have transmission loss given by 20 log10 (
𝑚𝜔

2 𝜌0𝑐
) which will be some here which 

is parallel to the 6dB curve but keeps going parallel to the 6dB curve but it keeps going this is 

𝜙 =  0 normal so there are many more studies that can be done in transmission actually when 

you have a building and there is a window and there is traffic going by and that is sound 

reaching your window, so there is going to be a transmission of sound into your room.  

 

Then you have a double walled indoors, two layers of windows that are used. So, now that 

could be a study on how to layer could have two layers? So, two flexible partitions and the 

sound waves incident. So, what is the sound wave transmitted? So, there are such studies 

possible and also averaging across angles what is a angularly average transmission? But those 

are at this stage beyond this course so I will not get into that. So, I think to give a basic idea of 

sound transmission this is good enough section.  
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The next important topic is sound and structure interaction in cylindrical geometries so 

cylindrical objects like pipes carrying fluid or quite common and of course we have aircraft jar 

approximately cylindrical and there is a noise problem associated with aircraft, so we will look 

at how cylindrical shell vibrations coupled with the fluid inside or the fluid outside and we look 

at it for this course infinite geometries.  

 



So, this is a cylindrical shell which is flexible it can vibrate carry waves and it extends to 

infinity in this direction most likely that will be my 𝑥 direction this will be 𝜃 direction and then 

that is radial. Now one more thing we will mostly we talk about coupling of shell vibrations 

with internal fluid not so much with exterior is a very elaborate topic more or less you can 

spend a lifetime in it. 

 

And so, it is just if based of what it is? This could become actually a separate topic entirely for 

a course. So, we will just skim through some details so, firstly we will just look at cylindrical 

shell vibrations and waves in an infinite cylindrical shell. So, if I draw a shell element it looks 

like this it is a place my coordinate here, this is my 𝑥 axis and let us say this is my 𝜃 direction 

now I will just put my force or stress resultants.  

 

So, if that is the 𝑥 direction I will have this will be 𝑁𝑥𝑥 this will be 𝑁𝑥𝑥 plus an increment will 

not write the increment all the time increment will be of the form 
𝜕𝑁𝑥𝑥

𝜕𝑥
 𝑑𝑥 of this form there is 

no space that is why. Then we will have 𝑁𝜃𝑥 in the 𝑥 direction and 𝑁𝜃𝑥 +  Δ then we have let 

us see 𝑁𝜃𝜃 and this will be 𝑁𝜃𝜃 plus increment then we will have vertical shears resultant 𝑄𝑥3, 

𝑄𝑥3 + Δ then 𝑄𝜃3 and 𝑄𝜃3 +  Δ.  

 

Then we have let me 𝑁𝑥𝜃 and 𝑁𝑥𝜃 + Δ these are the stresses resultant in terms of this stress 

resultant we can write the shell equations for a harmonic response which you look like 

𝜕𝑁𝑥𝑥

𝜕𝑥
+

1

𝑎
 
𝜕𝑁𝜃𝑥

𝜕𝜃
+ 𝜌𝑠ℎ𝜔2 𝑈(𝑥, 𝜃) = 0. 

Then 

𝜕𝑁𝑥𝜃

𝜕𝑥
+

1

𝑎
 
𝜕𝑁𝜃𝜃

𝜕𝜃
+

𝑄𝜃3

𝑎
+ 𝜌𝑠ℎ𝜔2 𝑉(𝑥, 𝜃) = 0, 

and  

𝜕𝑄𝑥3

𝜕𝑥
+

1

𝑎
 
𝜕𝑄𝜃3

𝜕𝜃
−

𝑁𝜃𝜃

𝑎
+ 𝜌𝑠ℎ𝜔2 𝑊(𝑥, 𝜃) = 0 . 

So, 𝑈(𝑥, 𝜃) is axial displacement of a point in the 𝑥 direction axial displacement then 𝑉(𝑥, 𝜃) 

is torsional this way 𝑉 displacement is this way then 𝑊 displacement is transverse there is in 

the 𝑥 direction to the 𝜃 direction we can make this in 𝑧 direction.  
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And we are looking at thin shells theory were the thickness of the shell to the radius of curvature 

is in some thumb rule less than 1 / 20 and so that the displacements are described in terms of 

the shell mid-surface and slopes so, there are these approximations So, these approximations 

of displacements are described 𝑈(𝑥, 𝜃), 𝑉(𝑥, 𝜃), 𝑊(𝑥, 𝜃) and then from there you compute 

your strains linear and then you compute your stresses and then from the stresses you come to 

stress resultants. 

 

It means we can put the stress resultants in terms of mid plane displacements then what happens 

is? You have the entire 3 equations. So, I did not say it I suppose, so this describes the axial 

motion of the shell element, this describes the 𝜃 direction or torsional force balance in the 

torsional direction, this is force balance in the transverse direction. So, this is 𝑑𝑥 this distance 

is 𝑑𝑥 and this angle is 𝑑𝜃.  

 

So, if we put back the displacements into these 3 equations put the stress resultant in terms of 

displacements and how do we do that?  

𝑈(𝑥, 𝜃) = 𝑈̃𝑛𝑠  cos 𝑛𝜃 𝑒−𝑖𝑘𝑛𝑠𝑥𝑒𝑖𝜋/2 , 

𝑉(𝑥, 𝜃) = 𝑉̃𝑛𝑠  sin 𝑛𝜃 𝑒−𝑖𝑘𝑛𝑠𝑥, 

𝑊(𝑥, 𝜃) = 𝑊̃𝑛𝑠  cos 𝑛𝜃 𝑒−𝑖𝑘𝑛𝑠𝑥 , 

these are the mid plane displacements.  

 

After this if this is substituted back into the equations that are in terms of displacement derived 

from stress resultants then what we get is a matrix? We get a matrix which has 

 



[
𝐿11 𝐿12 𝐿13

𝐿21 𝐿22 𝐿23

𝐿31 𝐿32 𝐿33

] = 0. 

We are running out of time so I will close the lecture here we continue next class. 


