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So, good morning and welcome to this next lecture on sound and structural vibration, we are 

looking at oblique plane wave transmission through an unbounded flexible panel. So, we have 

reached up to this point where the blocked pressure gives me the response. 
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Now, let us see on the transmitted side. So, we are interested in �̃�2 should not forget that we 

are interested in �̃�2 so, the pressure on the transmitted side can be written as 

𝑝𝑟
+ = �̃�2𝑒

𝑗𝜔𝑡−𝑗𝐾1 sin 𝜙1 𝑧−𝑗√𝐾2
2−𝐾1

2 sin2 𝜙1 𝑥
 . 

So, for far field transmission this should be a real number or far field transmission so that is 

one condition. So, what does that give me let us say? That says if you compute sin 𝜙1  has to 

be less than 
𝑐1

𝑐2
. I would like to make a correction here I am using 𝑚 everywhere so this dash 

should not be there.  
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Next, if I again use my Euler equation  

𝜕𝑝𝑟
+

𝜕𝑥
|

𝑥=0

= −𝜌2

𝜕𝑉

𝜕𝑡
= −𝑗𝜔𝜌2�̃�, 

then that means 

�̃�2 − 𝑗𝐾2√1 − (
𝐾1 sin 𝜙1 

𝐾2
)

2

𝑒𝑗(𝜔𝑡−𝐾1 sin 𝜙1 𝑧) = −𝑗𝜔𝜌2�̃�𝑒𝑗(𝜔𝑡−𝐾1 sin 𝜙1 𝑧). 

 Now, this phasor part goes away.  

 

So that my 

�̃�2 =
−𝑗𝜔𝜌2�̃�

−𝑗𝐾2√1 − (
𝐾1 sin 𝜙1 

𝐾2
)

2

=
𝜌2𝑐2�̃�

√1 − (
𝐾1 sin 𝜙1 

𝐾2
)

2

= �̃�𝑤𝑓2�̃�. 

 Now so we have found �̃� from blocked pressure. So, �̃�2 which is our interest again let me 

remind you that this is the transmitted pressure amplitude this is the velocity of sound in the 

right-side medium.  

 

So, 

�̃�2 =
�̃�𝑤𝑓2 2�̃�1

�̃�𝑤𝑓1 + �̃�𝑤𝑓2 + �̃�𝑤𝑝

 

Now, we want the intensity transmission coefficient and then the power transmission 

coefficient. The intensity transmission coefficient 𝜏 is given by 
|�̃�2|2/2𝜌2𝑐2

|�̃�1|2/2𝜌1𝑐1
 because the media 

are different there is refraction.  



 

Now, once we bring in, we want to get to the power transmission that means some area term 

has to come in now that area term is going to be what there is a slight difference in the beam 

width. So, if I say this is my panel let us say and this is my wave vector. So, these are the wave 

fronts. So, this is the beam width here but if the wave vector is in this direction changes here 

than the normal is like this. So, now this beam width is different.  

 

So, the beam width that is working on the half-cell of a panel that beam works on half-cell of 

this panel so, the widths are different. So that width has to be brought into account for the 

power transmission, so far as intensity transmission but once you talk of power you have to 

bring that beam width in.  
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So, if you bring that beam width into the picture the width ratio happens to be  

cos 𝜙1

cos 𝜙2
=

√1 − sin2 𝜙1

√1 − (
𝑐2 sin 𝜙1

𝑐1
)

2

 

 . 

So, now we write the power transmission coefficient as this given by let us call it  

𝜏𝑝 =
4|�̃�𝑤𝑓2|

2

|�̃�𝑤𝑓1 + �̃�𝑤𝑓2 + �̃�𝑤𝑝|
2  

𝜌1𝑐1

𝜌2𝑐2
{

1 − (𝑐2 sin 𝜙1 /𝑐1)2

1 − sin2 𝜙1
}

1/2

. 

 

So, this is the true picture when you have two different media. So, we will not continue with 

this thought for from here onwards. So, first thought is media are same the media on both sides 



are same that simplifies certain things immensely. So that the �̃�𝑤𝑓 is twice 2�̃�𝑤𝑓1 or 2�̃�𝑤𝑓2, so 

we will use this notation. So, what is now the power transmission coefficient  

𝜏𝑝 =
|�̃�𝑤𝑓|

2

|�̃�𝑤𝑓 + �̃�𝑤𝑝|
2 . 

 

If you put in all the terms now, what the impedances stand for if we put the expression now 

comes out to be  

𝜏𝑝 = 𝜏 =
(2𝜌0𝑐 sec 𝜙)2

[2𝜌0𝑐 sec 𝜙 +
𝐷𝜂
𝜔  𝐾4 sin4 𝜙]

2

+ [𝜔𝑚 −
𝐷
𝜔 𝐾4 sin4 𝜙]

2 . 

Now please remember this that 𝐾𝑏
4 =

𝜔2𝑚

𝐷
 the panel free wave number so let us looks at this 

picture once.  

 

So, I have my acoustic wavenumber going this wave straight up and this is the panel free wave 

number as I said I use 𝐾𝑝 and 𝐾𝑏 interchangeably we will stick with 𝐾𝑏 for now. So, the panel 

free wave number goes like this. Now the coincidence what is coincidence now? It is the forced 

𝑧 wavenumber being equal to the free wavenumber of the panel that is coincidence it is like 

resonance what I am forcing is equal to what is naturally liked by the system.  

 

So, forced 𝑧 wave number is 𝐾 sin 𝜙, so 

𝐾 sin 𝜙 = 𝐾𝑏 = (
𝜔2𝑚

𝐷
)

1/4

. 

Now sin 𝜙 is a reducing factor sin 𝜙is less than 1 always so it will reduce so that means what 

𝐾 has to be greater than 𝐾𝑏. So now, there are two terms that you can control the frequency 

and the angle these are the two terms you can control so that the product is equal to 𝐾𝑏.  

 

So, if I am at a high frequency suppose I am at a very high frequency let me redraw in this way 

this is my wavenumber acoustic. So, let us say this is my panel wavenumber. So, this goes here 

so I am at a very high frequency that means 𝐾 is much bigger than I am here much bigger than 

𝐾𝑏  and 𝐾. So, I have a certain angle of 𝜙 which will give me equality then I have smaller and 

smaller angles of 𝜙 which will also give me equality with 𝐾𝑏.  

 



If I can go to a higher frequency, then phi can be even smaller so that 𝐾 sin 𝜙 = 𝐾𝑏 because 

𝐾 is high and sin 𝜙 brings it down. So, smaller sin 𝜙 so that 𝐾 sin 𝜙 = 𝐾𝑏 that said higher and 

higher frequencies. But if I now come down in frequency then my 𝐾 is not so much bigger than 

𝐾𝑏. So, my sin 𝜙 cannot be that small and in the limit when 𝐾 = 𝐾𝑏  then 𝜙 has to be equal to 

𝜋/2 at which you can have come to coincidence.  

  

Because sin 𝜋/2 is 1 then 𝐾 = 𝐾𝑏  but if you now go below at means 𝐾 = 𝐾𝑏below this which 

is basic coincidence frequency. If you go below the basic coincidence frequency which you 

should know it is equal to 𝑐2 (
𝑚

𝐷
)

1/2

 this is a basic panel fluid coincidence frequency if we go 

below that, then there is no 𝜙 angle for which you will have coincidence so that should be 

remembered. So, now what did we do here let us see. 
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So, if we now use these let me rewrite actually, we have 𝜏𝑝 or 𝜏 intensity and power are same 

because angles have turned up to be same. So,  

𝜏𝑝 = 𝜏 =
(2𝜌0𝑐 sec 𝜙)2

[2𝜌0𝑐 sec 𝜙 +
𝐷𝜂
𝜔  𝐾4 sin4 𝜙]

2

+ [𝜔𝑚 −
𝐷
𝜔 𝐾4 sin4 𝜙]

2 

So, if we divide by 𝜔𝑚 what do we get? 

=
(2𝜌0𝑐 sec 𝜙 /𝜔𝑚)2

[
2𝜌0𝑐 sec 𝜙

𝜔𝑚 +
𝐷𝜂

𝜔2𝑚
 𝐾4 sin4 𝜙]

2

+ [1 −
𝐷

𝜔2𝑚
 𝐾4 sin4 𝜙]

2 , 

remember 
𝐷

𝜔2𝑚
 is 𝐾𝑏 4 so, we have the ratio of the forced wavenumber and free wavenumber 

here. So, I think I have written like that again.  



 

So, I have 

=
(2𝜌0𝑐 sec 𝜙 /𝜔𝑚)2

[
2𝜌0𝑐 sec 𝜙

𝜔𝑚 + (
𝐾

𝐾𝑏 )
4

𝜂 sin4 𝜙]

2

+ [1 − (
𝐾

𝐾𝑏 )
4

sin4 𝜙]

2 . 

So, based on the frequency because again we are saying that you have to equal 𝐾 sin 𝜙 with 

𝐾𝑏 based on how high you are in frequency you have a range of sin 𝜙 to match 𝐾𝑏  but once 𝐾 

= 𝐾𝑏 that means your current frequency is the coincidence frequency only 𝜙 = 
𝜋

2
 can match.  

 

So, if we look at this equation 𝐾 sin 𝜙  = (
𝜔2𝑚

𝐷
)

1/4

 then and we are talking of coincidence 

with angle 𝜙. So, we have 

𝜔𝑐𝑜

𝑐
 sin 𝜙 = (

𝜔𝑐𝑜
2𝑚

𝐷
)

1/4

 

or the coincidence frequency is now a function of 

𝜔𝑐𝑜 = (
𝑚

𝐷
)

1/2

(
𝑐

sin 𝜙
)

2

, 

as sin 𝜙 goes down the coincidence frequency has to go up for to give a match with the bending 

wave number.  

 

Whereas if 𝜙 is 90 degrees, then you are back to your original basic coincidence, which also 

means that if you are at such a frequency that 𝐾 and 𝐾𝑏 are already equal then no other 

sin 𝜙 will give you a match except 𝜙 = 𝜋/2. So, 𝜙 = 𝜋/2 is the lowest frequency, if you are 

below the basic coincidence 𝜔𝑐 if you are below this then you cannot get no coincidence. So, 

now we will look at various regimes based on this formula over here meanwhile, the time is 

actually up. So, I will close the lecture here and continue in the next class. 


