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Welcome to this next lecture on sound and structural vibration. Last class we left off at the 

kinematic boundary condition. So, that is given by this equation which equates the acoustic 

particle velocity at the surface to the velocity of the plate. Now, we need a Fourier transform 

definition, we are going to do this in the Fourier domain. When it is used in the spatial form, 

not temporal form, it is also called a wave number transform. 

 

So, I will give you the definition we are going to use. The forward transform 

F(k) = ∫ 𝑓(𝑥)𝑒−𝑖𝑘𝑥𝑑𝑥,
∞

−∞

 

this is the forward transform and the inverse  

f(x) =
1

2π
∫ 𝐹(𝑘)𝑒𝑖𝑘𝑥dk

∞

−∞

, 

this is the pair that we are going to use.  

 

So, now if you recall the Helmholtz equation, the time removed wave equation Helmholtz 

equation was  



∂2ϕ(𝑥, 𝑦)

∂ 𝑥2
+

∂2ϕ(𝑥, 𝑦)

∂ 𝑦2
  + 𝑘0

2ϕ(𝑥, 𝑦)  = 0. 

This is the Helmholtz equation for the acoustic half space. And so now, we are going to apply 

the wave number transform which is an integral from −∞ to ∞ and we are going to have 

𝑒−𝑖𝑘𝑥 dx.  

 

So, it works on the x and when you have a derivative you should know that this −ik will fall 

out twice. So, what happens is the result is  

(−ik)2ϕ(k, y) +
∂2ϕ(k, y)

∂ y2
+ k0

2ϕ(k, y) = 0, 

that is the resulting equation after wave number transform. 
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So if we write it what do we get? We get  

𝜕2𝜙(𝑘, 𝑦)

𝜕𝑦2
+ (𝑘0

2 − 𝑘2)𝜙(𝑘, 𝑦) = 0. 

So, I am going to define a variable 𝛾2 which is actually 𝑘2 − 𝑘0
2
 so that it becomes 

𝜕2𝜙(𝑘, 𝑦)

𝜕𝑦2
− 𝛾2𝜙(𝑘, 𝑦) = 0. 

This is somewhat like the spring mass system except with a minus over here, so what is the 

solution to this?  

 

Solution to this is 𝜙(𝑘, 𝑦) = 𝐴𝑒−𝛾𝑦 + 𝐵𝑒𝛾𝑦. Now because 𝛾2 has this nature of a difference at 

times k can be bigger than 𝑘0, at times k can be less than 𝑘0 so in which case 𝛾 could be a real 



number positive or negative, gamma could be an imaginary number positive or negative. Now, 

these have implications.  

 

If 𝛾 happens to be a real number and we choose the positive value, then look at the B term, 

𝐵𝑒𝛾𝑦 and y is going off to infinity from plate and therefore this term will go to infinity as y 

tends to infinity if 𝛾 is a positive real number which cannot be allowed. We cannot allow 

infinite pressures or infinite displacements, infinite pressures in this case at infinity that is one 

point.  

 

The other is let us say 𝛾 is now imaginary, yeah we choose the negative quantity. Then what 

happens is that again the B term has how does it look like? It looks like 𝑒−𝑖𝜓𝑦. Now the 

temporal description was 𝑒−𝑖𝜔𝑡 and the spatial description is 𝑒−𝑖𝜓𝑦, so what this would imply 

is that there is an incoming wave from infinity in the y direction.  

 

So, if we decide to choose when the real quantity when 𝛾 is real, if we want to choose the real 

positive value then B is not allowed. If we decide to choose the 𝛾 imaginary quantity but 

negative then also B is not allowed, both these are counter intuitive. This incoming wave from 

infinity violates causality. There is no source at infinity. The source is our plate.  

 

In the entire universe there is only one source which is our vibrating plate and so all the waves 

should move from the plate towards infinity, so there cannot be a returning wave that is the 

idea of causality. So, in these two cases having B violates it, so we say that B we set to 0. That 

means when 𝛾 is real we will choose the positive value, when 𝛾 happens to be imaginary we 

will choose the negative imaginary value and with this convention B will have to be set to 0, 

A will not be 0. 

 

So, my  𝜙(𝑘, 𝑦) is given by A 𝑒−𝛾𝑦. Now, the kinematic boundary condition if you recall was 

𝜕𝜙(𝑥, 𝑦)

𝜕𝑦
|

𝑥,𝑦=0

= 𝑣(𝑥). 

So, now if we take the Fourier transform first or wave number transform first, then I get 

𝜕𝜙(𝑘, 𝑦)

𝜕𝑦
|

𝑦=0

= 𝑉(𝑘). 

 



 So, now 
𝜕𝜙(𝑘,𝑦)

𝜕𝑦
  gives me   −𝛾A𝑒−𝛾𝑦. 

 

When y is set equal to 0, I get 

−𝛾A𝑒−𝛾𝑦|𝑦=0 →  −γA =  V(k), 

 and A I write as we look at it here  𝜙(𝑘, 0). So, I get  

−𝛾𝜙(𝑘, 0)  =  𝑉(𝑘). 

So, one after the other this is what we derived. Now, we have to get back to our plate equation 

and substitute this, the transform plate equation we substitute this, so what do we get? 
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So, let us just recall what it was. The transformed plate equation was 

(𝐵𝑘4 − 𝑚𝜔2)𝑉(𝑘) = −𝑖𝜔𝐹 − 𝜔2𝜌𝜙(𝑘, 0). 

Now, let us divide both sides by B. So I get  

(𝑘4 −
𝑚𝜔2

𝐵
) 𝑉(𝑘) =

−𝑖𝜔𝐹

𝐵
−

𝜔2𝜌𝜙(𝑘, 0)

𝐵
. 

So, this also can be put in terms of 𝑉(𝑘) if you recall. This was equal to or rather 𝑉(𝑘) , if you 

recall 𝑉(𝑘) was equal to  −𝛾𝜙(𝑘, 0). 

 

So, this also can be written in terms of 𝑉(𝑘). So if we do that, let us do that so  

(𝑘4 −
𝑚𝜔2

𝐵
) 𝑉(𝑘) =

−𝑖𝜔𝐹

𝐵
+

𝜔2𝜌

𝐵

𝑉(𝑘)

𝛾
. 

So, now we will combine and before that I have given you the definition right in front that 

𝑘𝑝 the free plate wave number in vacuum at a given frequency 𝜔 was (
𝑚ω2

𝐵
)

1
4⁄

. 



 

Therefore, I get first of all 

[𝑘4 − 𝑘𝑝
4 −

𝜔2𝜌

𝐵𝛾
] 𝑉(𝑘) =  

−𝑖𝜔𝐹

𝐵
. 

 In other words 

𝑉(𝑘) =
−𝑖𝜔𝐹

𝐵 [𝑘4 − 𝑘𝑝
4 −

𝜔2𝜌
𝐵𝛾 ]

. 

Now, this has to be inverse Fourier transformed.  

 

We want velocity in space, so we have to inverse Fourier transform this, 

𝑣(𝑥) =
1

2𝜋
∫

−𝑖𝜔𝐹

𝐵 [𝑘4 − 𝑘𝑝
4 −

𝜔2𝜌
𝐵𝛾 ]

𝑒𝑖𝑘𝑥

∞

−∞

𝑑𝑘. 

𝛾 has k in it mind you, 𝛾 is a function of k. So, there is k in the denominator here, there is k in 

the denominator here, there is k in the numerator here and we are going to do this integral.  

 

So, this will give me 𝑣(𝑥) which is what is wanted the velocity of the plate under fluid loading 

under forcing that is what is wanted. So, we are going to do that. So, this is the fully coupled 

problem, but before going fully all the way we will look at the uncoupled problem, what the 

uncoupled problem simply means is that the fluid density is 0. So that means we are in vacuum 

and then what happens?  

 

The velocity I need is 

𝑣(𝑥) =
1

2𝜋
∫

−𝑖𝜔𝐹

𝐵(𝑘4 − 𝑘𝑝
4)

𝑒𝑖𝑘𝑥

∞

−∞

𝑑𝑘. 

So, this is the inversion we have to do for the invacuo problem. Now, here we are going to 

invoke the complex variables theorems, we are going to use complex variables to compute this 

integral. 
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So, what that means? That means is if we are going to do some integral let us say 𝐼,  

𝐼 = ∫ 𝑓(𝑥)

∞

−∞

 𝑑𝑥. 

What we are going to do in order to compute this integral is we are going to take an I star or  

𝐼′, let us say 𝐼′ and compute the integral over a closed contour of this function or some related 

function, 

𝐼′ = ∮ 𝑓(𝑧) 𝑑𝑧. 

Let us say for now dz where now z has become a complex variable, variable in the complex 

plane, complex variable. Now this integral from Cauchy Residue theorem is equal to 

2𝜋𝑖 ∑ 𝑅𝑒𝑠. (𝑧𝑘). For those who have forgotten, I would advise you to refresh this use of 

complex variables, there are some very good books and you may have already seen it. 

 

So what is the advantage? Advantage is this, I am just taking some example, I need an integral 

that is going from −∞  to +∞ I need this integral. Instead of that, I am going to do an integral 

on a closed contour, typically we take it in the counterclockwise direction, these are all rules 

of complex variables. So, the importance is that when I choose the closed contour the portion 

I want to integrate must be part of the contour.  

 

So, I have this portion which I wanted to do  

∮ = ∫ 𝑓(𝑥)

∞

−∞

 𝑑𝑥, 



z becomes x on the real axis that was integral I wanted to do. So, my contour includes the 

portion I want to do and then there is this additional contour that has come up. This additional 

contour which has come up 𝑓(𝑧) dz on the contour. 

∮ = ∫ 𝑓(𝑥)

∞

−∞

 𝑑𝑥 + ∫𝑓(𝑧) 𝑑𝑧
𝐶

 =  2𝜋𝑖 ∑ 𝑅𝑒𝑠 𝑓(𝑧). 

 

It means that singularities of this z function at z function inside the contour where the isolated 

singularities where 𝑓(𝑧) goes to infinity. So, now, this side can be computed, the right hand 

side can be computed, the residues can be computed and this additional contour integral which 

has come up should be integrable, that means we should be able to find it, find its value 

integrable. I will tell you ahead of time usually it goes to 0. 

 

So, what has happened? I need this integral, instead I have chosen to integrate over a contour 

but that contour includes this portion and some additional portion and is equal to the residues 

which are known. So, if this can be computed or sent to 0, let us say it goes to 0, then the value 

of the integral I want is equal to 2𝜋𝑖 sum time sum of the residues So, without touching the 

integral I have found the value.  

 

Without actually attempting the integral I have found the value. If this integrate to some 

nonzero value, some finite nonzero value, then I have residue minus that value as the integral 

value. So, that is the advantage, we integrate without touching the original integral we want. 

The time is up, I will close this lecture here. We will begin from here in the next class. Thank 

you. 


