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Good morning and welcome to this next lecture on sound and structural vibration. Last time 

we had arrived at this integral from the paper by Maidanik. From here Maidanik proceeds to 

approximate as I said last time this integral for various modes this simply supported plate and 

also in various frequency regimes so, there is the acoustic wave number 𝑘 there are the plate 

modal wave numbers 𝑘𝑝𝑥 and 𝑘𝑝𝑦 so, now and the free wave number of the panel which is 𝑘𝑝. 

 

So, now various relations between them whether 𝑘 is greater than 𝑘𝑝𝑥, 𝑘 may be greater than 

𝑘𝑝𝑥 but less than 𝑘𝑝𝑦 and so forth. So, all sorts of frequency regimes examine and gives 

approximate formulas, so, some are quite good and some are not so, good but there are these 

formulas. 
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Now, if you recall I had spoken of the work by Wallace who does numerical calculations of 

modal radiation efficiency or radiation resistance does not matter. So, the picture looks like 

this, this is the non-dimensional model coincidence 𝛾 it is 𝑘  over √(
𝑚𝜋

𝑎
)

2

+ (
𝑛𝜋

𝑏
)

2

 and this is 

the value 1. So, you get these sorts of curves that approach one and briefly cross 1 and then 

asymptotically approach 1 or some other mode may behave like this has a higher slope. 

 

And some further higher slope with some oscillations that are related to this cells interacting 

with each other that I spoke of now, it turns out that if you have odd-odd modes which are the 

most efficient in radiating their slope at the lower end is about is 20 dB per decade, you have 

odd even or odd even odd modes it is about 40 dB per decade, decade is 10 times increase in 

frequency and then if they are even-even it is 60 dB per decade. 

 

That is because of further and further cancellations that happen at the starting point, which is 

the lower end of the frequency now, so, these are numerical curves as I said now, you can 

superpose Maidanik’s approximate formula on these modal radiation efficiency curves and as 

I said he does them in regimes. So, you will have one curve here, segment of a curve here or a 

segment of a curve here then there is a segment of a curve here there is another segment of a 

curve here. 

 

And so, he approximates in this manner and you can over plot on top of Wallaces numerical 

curves and you have matches and you have some places the more inaccurate the next portion 

which I will briefly touch upon is modal average radiation efficiency now, we saw how if we 



break up the wave number diagram into these regions of modes where the node points are 

modes then you have an acoustic wave number quarter circle. 

 

And then you have the free plate wave number quarter circle. So, if we extend these boundaries 

in this manner so, you know these are let me call them 𝑦 edge now. So, you have a plate which 

is 𝑥 in this direction, 𝑦 in this direction this has dimension a dimension b. So, these are Y edge 

modes that means you have a strip on the 𝑦 edge that radiates here these are Y edge. 

 

Then you have another set you have these sorts of modes where there is a strip along the 𝑥 axis 

that radiates so this strip radiates the rest is cancelled. Those are these types of modes, modes 

here in this zone here where X edge radiators, and then you have corner radiators here and so 

forth so corner, let me show the corner radiators, corner radiators look like this. Just a quarter 

cell radiates here the rest is cancelled, so forth corner. 

 

Now, if in reality if a plate is vibrating and redirecting sound it is not individual modes several 

modes are vibrating several modes are present. So, how to bring in this picture of several 

modes. So, that means what the 𝑘𝑏 circle is here we are right here at a certain frequency we are 

right here. So, now, if you look at the division here let me use the blue line if I draw this line 

over here all these are X edge modes all these are X edge modes and all these if I draw this line 

here all these are Y edge modes. 

 

Similarly, these are corner modes so, you have on the 𝑘𝑝 circle on the 𝑘𝑝 quarter circle you 

have a number of Y edge modes a number of corner modes and a number of X edge modes and 

to begin with they are discrete, in actuality they are discrete, but the thing is that there are 

infinite dimensions of panels you could choose. So, infinite ways that these nodes could land 

on this particular line and there is no general way of presenting the picture of panels radiation. 

 

So, what Maidanik did was that suppose there is a continuous presence of modes everywhere 

there is a mode not discrete points and suppose they carry the same amount of vibrational 

energy each of them carries the same amount of vibrational energy. So, what is the average 

radiation resistance at a certain frequency? So, we are trying to find an average. So, let me use 

another picture here 
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I have the acoustic quarter circle and its bounds then the panel free wave number quarter circle. 

And if I draw this line here you have along this red portion X edge modes along this portion 

you have Y edge modes now a continuous distribution, we are going to make it a continuous 

distribution and then along here you have corner modes below full panel coincidence 

frequency. 

 

So, now if I join this also so in, I call this the A strip, I call this the B strip, I call this the C strip 

the A portion has at X edge modes. So, I will use the X edge mode approximate formula derived 

by Maidanik and that will be made continuous, the modal variable will be made continuous 

then we have the B strip where we have corner modes. So, there we will use the appropriate 

approximate formula then lastly, we have seen where you have Y edge modes. 

 

So, we will use the formulas from Maidaniks paper, and we will make the discrete variable 

continuous, but we need a few special relations here. So, we are going to measure 𝜃 in this 

direction increasing 𝜃 will be measured like this, 𝜃 increases like this and up till here we will 

call it 𝜃1 and till here we will call it 𝜃2. So, now let us see some relations we have. So, this 

radius is obviously 𝑘𝑝, this radius is 𝑘𝑝 this big radius is 𝑘𝑝. 

 

But this is 𝑘 acoustic wave number, this is 𝑘 the acoustic wave number, this is 𝑘 the acoustic 

wave number, this is 𝑘 the acoustic wave number. So, now, let us see sin 𝜃1, sin of this angle 

here. So, it should be a perpendicular by hypotenuse, so, this perpendicular is 𝑘 hypotenuse is 

𝑘𝑝 next we have cos 𝜃2, so cos 𝜃2 is this angle. So, what is that? That is base by hypotenuse 

base is what? Base is 𝑘 hypotenuse is 𝑘𝑝. 



sin 𝜃1 =
𝑘

𝑘𝑝
. 

cos 𝜃2 =
𝑘

𝑘𝑝
. 

 

We will use a substitution which is 𝑘𝑝
2 − 𝑘2 = 𝜇2 and further sin2 𝜃1 = (

𝑘

𝑘𝑝
)

2

 which implies 

that 1 − sin2𝜃1 =
𝑘𝑝

2−𝑘2

𝑘𝑝
2 , which implies that cos 𝜃1 =

𝜇

𝑘𝑝
, similarly will have sin 𝜃2 is given 

by 
𝜇

𝑘𝑝
. So, now if we summarise sin 𝜃1 is given by 

𝑘

𝑘𝑝
, cos 𝜃1 is given by 

𝜇

𝑘𝑝
,  tan 𝜃1 is given by 

𝑘

𝜇
, sec 𝜃1 is given by 

𝑘𝑝

𝜇
. 

 

Similarly, sin 𝜃2 is given by 
𝜇

𝑘𝑝
, cos 𝜃2 is given by 

𝑘

𝑘𝑝
, tan 𝜃2 is given by 

𝜇

𝑘
 and csc 𝜃2 is given 

by 
𝑘𝑝

𝜇
. So, now, how is this average radiation resistance going to be computed  

𝑅𝑟𝑎𝑑 = ∫ 𝑅𝑥
𝑟𝑎𝑑 𝑑𝜃

𝜃1

0

+ ∫ 𝑅𝑐
𝑟𝑎𝑑 𝑑𝜃 + ∫ 𝑅𝑦

𝑟𝑎𝑑 𝑑𝜃
𝜋/2

𝜃1

𝜃2

𝜃1

 

and then the whole thing is over 𝜋 / 2. 

 

So, we will multiply by 2 / 𝜋 in the end. So, now, let us see this the X edge radiators the 

approximate formula by Maidanik is of this form  

𝐴𝑝𝜌𝑎𝑐 (
𝑘𝑎

𝑘𝑝𝑦
)

2

𝑘𝑎ℎ

{1 +
(𝑘𝑝

2 − 𝑘𝑎
2)

𝑘𝑝𝑦
2 }

{
(𝑘𝑝

2 − 𝑘𝑎
2)

𝑘𝑝𝑦
2 }

3/2
. 

This is an approximate formula from that big formula that we derived last class. Now in here 

𝑘𝑎 is the acoustic wave number which is fixed at a frequency 𝑘𝑝 is the panel free wave 

wavenumber fixed at a frequency the only varying thing is 𝑘𝑝𝑦 the 𝑦 component of 𝑘𝑝 it varies 

with 𝜃. So, 𝑘𝑝 will be made a continuous variable as a function of 𝜃. So, let us see now what 

we do? 
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So, as a result, what will happen is that the formula will become 

=
𝐴𝑝𝜌𝑎𝑐𝑘𝑎

ℎ𝑘𝑝𝑦
2

{1 +
𝜇2

(𝑘𝑝  cos 𝜃)
2}

𝜇3
 𝑘𝑝

3 cos3 𝜃. 

𝑘𝑝𝑦
2
 is also 𝑘𝑝

2 cos2 𝜃 so, as a result we will get I am going to use 𝑏 instead of ℎ now,  

=
𝐴𝑝𝜌𝑎𝑐𝑘𝑎

𝑏
{

𝑘𝑝
2 cos2 𝜃 + 𝜇2

𝑘𝑝  cos 𝜃 𝜇3
}, 

=
𝐴𝑝𝜌𝑎𝑐𝑘𝑎

𝑏
{

𝑘𝑝  cos 𝜃

𝜇3
+

1

𝑘𝑝𝜇 cos 𝜃
} . 

 

So, if we now integrate this from 0 to 𝜃1. So, what happens we have 

=
𝐴𝑝𝜌𝑎𝑐𝑘𝑎

𝑏
{

𝑘𝑝 

𝜇3
 ∫ cos 𝜃 𝑑𝜃

𝜃1

0

+
1

𝑘𝑝𝜇
 ∫

1

cos 𝜃
𝑑𝜃

𝜃1

0

}. 

We are out of time. So, I will close the lecture here and continue from the next class. Thank 

you. 


