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Good morning and welcome to this next lecture on sound and structural vibration. We have been 

looking at sound radiation from a panel set in a rigid baffle and we have come to understand the 

cancellation effect. Now we will try to understand the same phenomenon in the frequency 

domain that means the Fourier transform domain and we will do this for a one-dimensional case. 

That means there is an infinite baffle that comes from −∞ up till 𝑥 =  0 and there is a 1D panel.  

That is, vibrating goes off to ∞ and it extends till 𝑥 =  𝑎. So, now let us say that the velocity is  

𝑉̃𝑛(𝑥, 𝑡) = 𝑉̃𝑝 sin (
𝑝𝜋𝑥

𝑎
) 𝑒𝑗𝜔𝑡      0 < 𝑥 < 𝑎 

                                                         = 0                                    𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒. 
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Now we look at this in the Fourier domain or we call it the wave number domain and the 

definition we choose is the forward transform  

𝐹(𝑘𝑥) = ∫ 𝑓(𝑥)𝑒−𝑗𝑘𝑥𝑥 𝑑𝑥.
∞

−∞

 

And the inverse 

𝑓(𝑥) =
1

2𝜋
∫ 𝐹(𝑘𝑥)

∞

−∞

𝑒+𝑗𝑘𝑥𝑥 𝑑𝑘𝑥. 

So, now if we just take the spatial part of 𝑉̃𝑛, we just take the spatial part and apply the wave 

number transform or Fourier transform.  

 

That means the Fourier transform is applied to 𝑉̃𝑝 sin (
𝑝𝜋𝑥

𝑎
) , 𝑒𝑗𝜔𝑡 is left out. By the way as 

before 𝑉̃𝑝 is the amplitude which is held constant it does not change with frequency. It is held 

constant, and this mode is being driven at this frequency any particular frequency. So, now if we 

apply the Fourier transform to this, we will get  

𝑉̃(𝑘𝑥) = 𝑉̃𝑝 (
𝑝𝜋

𝑎
)

[(−1)𝑝𝑒−𝑗𝑘𝑥𝑎 − 1]

𝑘𝑥
2 − (

𝑝𝜋
𝑎 )

2 . 



 

So, if we plot the magnitude of this, we get + 
𝑝𝜋

𝑎
 , −

𝑝𝜋

𝑎
 we get a peak here then these bumps we 

get a peak here. We get these bumps this is how this looks like magnitude 𝑉̃(𝑘𝑥). Now let me tell 

you that this is only on purely related to 𝑉̃𝑝 sin (
𝑝𝜋𝑥

𝑎
). It has nothing to do with 𝜔, it has nothing 

to do with 𝜔. The moment you have this shape in the spatial domain and you put it through a 

Fourier transform. 

 

This is what you will get. Now we would like to compute an expression for power from the 1D 

panel. And so, we will compute that using acoustic power we mean acoustic power we will 

compute that using the normal velocity and the pressure on the panel. We computed using these 

two expressions.  
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So, now let us see here how does it look like. The power space averaged power which I will I 

mean time averaged power is given by  

〈𝜋〉𝑇 =
1

𝑇
∫ ∫ 𝑅𝑒[𝑝(𝑥, 𝑦 = 0, 𝑡)] 𝑅𝑒[𝑉̃𝑛(𝑥, 𝑡)] 𝑑𝑥 𝑑𝑡,

𝑎

0

𝑇

0

 



and let us assume a unit width perpendicular to the paper. So, this is kind of power per unit 

width. Now we know that the time can be removed,  

=
1

2
𝑅𝑒 {∫ 𝑝∗(𝑥, 𝑦 = 0)𝑉̃𝑛

∗
(𝑥) 𝑑𝑥 

𝑎

0

}. 

So, here we took the pressure and velocity to be real so just to clarify we took the real pressure, 

let me do this. We will make this real of 𝑝 and will make this real of 𝑉̃𝑛 that is better. So, real 

part of 𝑝 real part of 𝑉̃𝑛. So, that I can have 𝑝(𝑥, 𝑦, 𝑡) = 𝑝∗(𝑥, 𝑦)𝑒𝑗𝜔𝑡and I can have 𝑉̃𝑛(𝑥, 𝑡) =

𝑉̃𝑛
∗
(𝑥)𝑒𝑗𝜔𝑡, this 𝑒𝑗𝜔𝑡 is the thing that always messes up.  

 

So, we start with this we take the real parts, and we multiply, and we integrate over time that is 

now equivalent to one here, this is equivalent to this. So, let us say 𝑝∗,  𝑉̃𝑛
∗
 now I will make 

conjugate as a bar over here this is conjugate. So, here the time is removed using the 𝑝 𝑣 

conjugate relation. Now this time averaged power is equal to the one half which is already there 

and for this and this I am going to bring in inverse Fourier transforms. 

 

So, which means I get  

〈𝜋〉𝑇 =
1

2
 

1

2𝜋
 

1

2𝜋
 𝑅𝑒 {∫ [∫ 𝑝(𝑘𝑥)𝑒𝑗𝑘𝑥𝑥 𝑑𝑘𝑥

∞

−∞

]
𝑎

0

[∫ 𝑉̃(𝑘𝑥
′)

∞

−∞

𝑒−𝑗𝑘𝑥
′𝑥𝑑𝑘𝑥

′]  𝑑𝑥}. 

This minus again because it is conjugated and again 𝑑𝑥 at the end. Now the  

 

𝑝(𝑘𝑥) and 𝑉̃(𝑘𝑥
′) have come from a panel vibrating only between this. The form of 𝑉̃(𝑘𝑥

′) and 

the corresponding 𝑝(𝑘𝑥) comes up only because the panel vibrates between 0 and 𝑎. So, these 

inverse Fourier transforms will lead to those pressures which correspond to a panel vibrating 

between 0 and 𝑎 and no vibration of sight.  

 

Therefore, I can safely change this limit to − ∞  to + ∞. So, how do what do I get? I get power 

per unit width of the panel,  



〈𝜋〉𝑇 =
1

8𝜋2
 𝑅𝑒 {∫ [∫

±𝜔𝜌0

(𝑘2 − 𝑘𝑥
2)

1/2
𝑉̃(𝑘𝑥)𝑒𝑗𝑘𝑥𝑥 𝑑𝑘𝑥

∞

−∞

]
∞

−∞

[∫ 𝑉̃(𝑘𝑥
′)

∞

−∞

𝑒−𝑗𝑘𝑥
′𝑥𝑑𝑘𝑥

′]  𝑑𝑥}. 

 

There are there is a 𝑑𝑘𝑥 and a 𝑑𝑘𝑥
′
 integral and a 𝑑𝑥 integral. So, we have one do one of these 

first and we will do the 𝑥 integral occur. Why? Because 𝑥 occurs here  

So, the 𝑥 occurs only here and only here nowhere else. So, we will do the 𝑥 integral first. So, let 

us see. 
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So, what is that? That we have to ∫ 𝑒𝑗𝑘𝑥𝑥−𝑗𝑘𝑥
′𝑥 𝑑𝑥.

∞

−∞
 So, let us see now. First the definition of a 

delta function of a Dirac delta function. So, if we have 

∫ 𝛿(𝑘𝑥 − 𝑘𝑥
′)𝑒+𝑗𝑘𝑥𝑥 𝑑𝑘𝑥 =

∞

−∞

𝑒𝑗𝑘𝑥
′𝑥. 

 Now what I do?  

1

2𝜋
∫ 𝛿(𝑘𝑥 − 𝑘𝑥

′)𝑒+𝑗𝑘𝑥𝑥 𝑑𝑘𝑥 =
∞

−∞

𝑒𝑗𝑘𝑥
′𝑥

2𝜋
 . 



This is now the inverse Fourier transform of this function. This is the inverse Fourier transform 

by definition earlier of this function. So, that gives me including the Dirac definition this divided 

by 2𝜋 which is this.  

 

So, now if I look at the forward transform. The forward transform of this now should give me 

delta back. So, the forward transform which is 

1

2𝜋
∫ 𝑒𝑗𝑘𝑥

′𝑥−𝑗𝑘𝑥𝑥 𝑑𝑥 = 𝛿(𝑘𝑥 − 𝑘𝑥
′)

∞

−∞

. 

∫ 𝑒𝑗𝑘𝑥
′𝑥−𝑗𝑘𝑥𝑥 𝑑𝑥 = 2𝜋 𝛿(𝑘𝑥 − 𝑘𝑥

′)
∞

−∞

. 

 So, this is what we wanted. So, in the earlier integral in the integral we had previous page here. 

For this part of the integral, we replace it by twice by 𝛿(𝑘𝑥 − 𝑘𝑥
′) and we are left with two 

integrals one on 𝑘𝑥 one on 𝑘𝑥
′
. But this delta will force both of them to be together. So, they will 

collapse to one integral. So, they will collapse to one integral that means all will be 𝑘𝑥.  

 

So, what we will have as a resultant is that we will have this power time average power per unit 

width given by  

〈𝜋〉𝑇 =
1

8𝜋2
2𝜋 𝑅𝑒 {∫

±𝜔𝜌0

(𝑘2 − 𝑘𝑥
2)

1/2
 |𝑉̃(𝑘𝑥)|

2
𝑑𝑘𝑥

∞

−∞

}. 

Now with this expression we had said before that 𝑘2 − 𝑘𝑥
2
 if 𝑘 is greater than 𝑘𝑥 then we have a 

real value we will take the positive real root.  

 

If 𝑘 happens to be less than 𝑘𝑥, we will take the negative imaginary root. So, as long as 𝑘 is 

bigger this expression is real. So, this real will choose as long as 𝑘 is bigger than 𝑘𝑥. The 

moment 𝑘𝑥 exceeds 𝑘 its imaginary and the real will not choose it. So, 𝑘𝑥 cannot exceed 𝑘 in this 

integral if it has to survive. So, we will get with change of limits 
1

4𝜋
 real is removed. Now  

 



〈𝜋〉𝑇 =
1

4𝜋
{∫

𝜔𝜌0

(𝑘2 − 𝑘𝑥
2)

1/2
 |𝑉̃(𝑘𝑥)|

2
𝑑𝑘𝑥

𝑘

−𝑘

}. 

So, if I have to bring in the picture that I drew earlier we had 𝑉̃(𝑘𝑥) shown like this. All these 

little bumps and a peak at + 
𝑝𝜋

𝑎
 this is 𝑘𝑥 axis and then again bumps here and + 

𝑝𝜋

𝑎
 , − 

𝑝𝜋

𝑎
 and this 

was magnitude of 𝑉̃(𝑘𝑥). So, now comes the 𝜔 so far 𝜔 did not come in the picture. Now comes 

the 𝜔 so I can choose 𝜔 = 𝜔1 then that would give me 𝑘1 which is 𝜔1 by 𝑐 so now 𝜔1 decides 

𝑘1.  

 

So, let us say 𝑘1 is he happens to be here 𝑘1. So, we now integrate based on 𝜔 this 𝑘 value gets 

decided that is the only way 𝑘 value gets decided. So, now 𝑘 = 𝑘1 and the range of integration is 

- 𝑘1 to 𝑘1. So, at this frequency only this range of wave numbers need to be integrated and power 

is computed. But suppose the same panel same mode is vibrated at a higher frequency another 

𝜔2 which means the 𝑘2 now is 𝜔2 by 𝑐.  

 

So, if I draw the 𝑘2 line 𝑘2  is here and - 𝑘2  is here then this becomes 𝑘2  and 𝑘2 . Now I get more 

wave numbers within the range. So, the power will increase in the limit. I could excite the same 

mode at a further higher frequency where 𝑘 is such that it crosses this plus and minus 
𝑝𝜋

𝑎
 and then 

I would get the maximum power possible radiated.  
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So, let us now just for churning our head look at two cases examples. An example 1 has two 

different problems, within example one there are two cases possible. So, one is a plate which 

carries a certain wavelength is he said in a baffle as before it carries a wavelength 𝜆1 given by 

2𝑎1

𝑝1
. It is case that is first case within that. The next is a panel now which carries the same 

wavelength, but it is longer so let us say this one is 𝑎1and this one is 𝑎2.  

 

So, this is also 𝜆1 actually 𝜆2 which is equal to 𝜆1 but it is 
2𝑎2

𝑝2
. The number of half cycles is 

different. So, if you compute the 𝑉̃(𝑘𝑥) for both these cases, they look very similar. In the main 

lobe where it is 
𝑝𝜋

𝑎
 or you know 

𝑝1𝜋

𝑎1
 or 

𝑝2𝜋

𝑎2
 the shorter one may have wider picture, so same here. 

Why does picture for shorter one and thinner picture for longer one? But otherwise below the 

picture for both looks very similar.  

 

So, if I excite both the panels at certain 𝜔 = 𝜔1which leads to a 𝑘1 and it is less than these wave 

number values. That means below coincidence of that mode then 𝑘1line can be put here 𝑘1 and 

this will be - 𝑘1 line and the integration limits will extend between - 𝑘1 and 𝑘1. And for both 

panels because this range looks similar this range looks similar. You will get the same power; 

power is same for both panels.  



 

Now what about radiation efficiency? Radiation efficiency 𝜎 one of the terms in the denominator 

is the area of the panel. So, now numerator the actual power from panels is same for both. But in 

one case area is bigger. So, this case area is bigger so it will have lower radiation efficiency. So, 

we have runoff of time. The second example I will take in the next class. Thank you. 


