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Lecture - 34   

Sound Radiation from a Baffled Panel  

 

Good morning and welcome to this next lecture on sound and structural vibration. So, last time, 

we ended up with this Rayleigh integral.  
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And this time, I said, we will find an expression for sound radiation from a plate set in a rigid 

baffle. So, my plate sitting in the 𝑥𝑧 plane; my plate sits in the 𝑥𝑧 plane and let me say this that 

this portion I am taking from the book by Frank Fahy and its title is somewhat sound and 

structural vibration and radiation and transmission or something like that. I am taking directly 

from this book. So, you can find these derivations there.  

 

So, now, this is my plate; this is my plate sitting in the 𝑥𝑧 plane; the response is in the 𝑦 

direction. So, the plate extends between 0 ≤ 𝑥 ≤ 𝑎 and between 0 ≤ 𝑧 ≤ 𝑏 and my velocity, 

panel velocity is given by  

�̃�𝑛(𝑥, 𝑧, 𝑡) = |�̃�𝑝𝑞| sin (
𝑝𝜋𝑥

𝑎
) sin (

𝑞𝜋𝑧

𝑏
) 𝑒𝑗𝜔𝑡. 

These are the mode shapes of a simply supported plate in the 𝑝𝑞th mode and this is the 

amplitude, and this is the time indicator harmonic forcing sinusoidal.  



Now, in this derivation �̃�𝑝𝑞 will be held constant even when omega changes, omega various. 

Normally, if omega varies, the modal amplitude will change with frequency. If you go close to 

a resonance, it will go up. If you move away from a resonance, it will go down etcetera, but we 

are not going to do that. In this in this line of thought  �̃�𝑝𝑞  is going to be held constant.  

 

There is a reason for that it will become clearer a little later. Now, the pressure I want 

𝑝(𝑥′, 𝑦′, 𝑧′, 𝑡) =
𝑗𝜔𝜌0
2𝜋

�̃�𝑝𝑞𝑒
𝑗𝜔𝑡∫sin (

𝑝𝜋𝑥

𝑎
) sin (

𝑞𝜋𝑧

𝑏
)
𝑒−𝑗𝑘𝑅

𝑅
 𝑑𝑥 𝑑𝑧. 

This 𝑅 carries the scalar distance of 𝑟 − 𝑟0 numerator and denominator. It is the distance 

between the source and receiver points. Now, 𝑅 of course has 𝑥 and 𝑧 dependents or will carry 

𝑥 and 𝑧. 
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So, let us look at this. We have a panel. So, the field point is that 𝑟 which is given by (𝑟, 𝜃, 𝜙) 

in spherical coordinates and 𝜃 is measured from vertical. The 𝜃 is measured from vertical; this 

𝜙 is measured from here; 𝜙 is measured from the 𝑥 direction and 𝜃 is measured from the 

vertical. 𝜙 is the azimuthal; 𝜃 is the elevation angle.  

 

Now, we need the coordinates in rectangular description. So, my 𝑦 is equal to 𝑟 cos 𝜃, the 𝑦 

of this point, 𝑦 value of this point is 𝑟 cos 𝜃; the 𝑥 value is 𝑟 sin 𝜃 cos𝜙; the 𝑧 is equal to 

𝑟 sin 𝜃 sin𝜙. So, this is the receiver. The source point, it is 𝑦0 = 0, 𝑥0 = 𝑟0  cos 𝜙0 and 

𝑧0 = 𝑟0 sin𝜙0. 

 



So now, we need to formulate this 𝑅 which is the distance between 𝑟 – 𝑟0, which we will call 

as R. So, what is 𝑅 equal to now? It is equal to the √(𝑥 − 𝑥0)2 + (𝑦 − 𝑦0)2 + (𝑧 − 𝑧0)2. So, 

in terms of the values, we have found, this is equal to I will just put a square root symbol to 

remember it is there. So, what will we get?  

 

We will get from here  

√𝑟2cos2 𝜃 + 𝑟2 sin2 𝜃 cos2𝜙 + 𝑟0
2 cos2𝜙0 + 𝑟

2 sin2 𝜃 sin2 𝜙 + 𝑟0
2 sin2 𝜙0 − 2𝑟𝑟0 sin 𝜃 cos 𝜙 cos𝜙0 − 2𝑟𝑟0sin θ sin 𝜙 sin 𝜙0 

 

𝑅 = √𝑟2 + 𝑟02 − 2𝑟𝑟0 sin 𝜃 cos(𝜙 − 𝜙0). 

This is 𝑅. So, this is the one this 𝑅 will sit as 𝑒−𝑗𝑘𝑅 and 𝑅 in the Rayleigh integral, now and 

this is going to be integrated over you know 𝑥 and 𝑧.  

 

So, the 𝑥 and 𝑧 will be part of the numerator here and part of the denominator here and that 

integral is not amenable to close form solution. If we write the integral which has 

sin (
𝑝𝜋𝑥

𝑎
) sin (

𝑞𝜋𝑧

𝑏
)
𝑒−𝑗𝑘𝑅

𝑅
 𝑑𝑥 𝑑𝑧. Where 𝑅 contains 𝑥 𝑧 you know dx dz. This is not amenable 

to close form solution. So, in order to do find a closed form, in order to find a closed form 

answer, we do what is called a far field approximation that means my 𝑟 is much greater than 

𝑟0.  

 

𝑟0 lies on the plate and 𝑟 is that receiver, so 𝑟 is much greater than 𝑟0, we do that. So, if we do 

that, I am sorry, this should be square, if we do that, we take 𝑟 square outside, so it becomes r; 

inside it becomes 1 + (
𝑟0

𝑟
)
2

−
2𝑟𝑟0 sin𝜃 cos(𝜙−𝜙0)

𝑟
, I am sorry, 

𝑟0

𝑟
 is much less than 1.  

𝑅 = 𝑟√1 + (
𝑟0
𝑟
)
2

−
2𝑟0 sin 𝜃 cos(𝜙 − 𝜙0)

𝑟
. 

So, this carries one level of smallness, and this carries the square level of smallness. So, we 

will drop this term. Then what happens?  
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We have 

𝑅 = 𝑟√1 − 2 (
𝑟0
𝑟
) sin 𝜃 cos(𝜙 − 𝜙0). 

And if 
𝑟0

𝑟
 is a small quantity like epsilon, then you can expand this and get 

= 𝑟 (1 −
𝑟0
𝑟
sin 𝜃 cos(𝜙 − 𝜙0)), 

𝑅 = 𝑟 − 𝑟0 sin 𝜃 cos(𝜙 − 𝜙0). 

 So, now, one more level of approximation. In the integral, this 𝑅 goes in as 
𝑒−𝑗𝑘𝑅

𝑅
.  

 

So, that means what? It becomes  

𝑒−𝑗𝑘𝑅

𝑅
=
𝑒−𝑗𝑘(𝑟−𝑟0 sin𝜃 cos(𝜙−𝜙0))

𝑟 − 𝑟0 sin 𝜃 cos(𝜙 − 𝜙0)
. 

Now, this is still not amenable; still not amenable to close form because we have 𝑥 𝑧 here and 

𝑥 𝑧 over there. Now, what we do is that it is like if I have an expression 1 – epsilon, then I look 

at the expression 𝑐𝑜𝑠 of 1 – epsilon. It is now suddenly in radians versus I look at the expression 

1 – epsilon in just linear terms.  

 

So, this is a nonlinear function of 1 – epsilon whereas here it is just a linear function. So, if 

epsilon is a small quantity, it is safe to neglect epsilon over here. It is not so. It is not so safe to 

ignore epsilon over here where it appears as radians. So here in the numerator, even though 𝑟 

is bigger than 𝑟0, I have this expression so, I will not ignore this 𝑟0 term compared to this 𝑟 term. 

Whereas in the denominator in comparison to 𝑟, this will be a small term I am going to ignore.  

 



So, what will this look like? It looks like  

=
𝑒−𝑗𝑘𝑟

𝑟
𝑒𝑗𝑘𝑟0 sin𝜃 cos(𝜙−𝜙0). 

In the denominator, we will take it as 𝑟 that is the approximation. So now, if we put all this 

together, my solution here pressure at a certain location 𝑟 including time, let us say, including 

time, I often forget to put the time part because these are harmonic.  

 

So, they do not hurt us very much.  

𝑝(𝑟, 𝑡)

=
𝑗𝜔𝜌0
2𝜋

�̃�𝑝𝑞𝑒
𝑗𝜔𝑡

𝑒−𝑗𝑘𝑟

𝑟
[∫ ∫ sin (

𝑝𝜋𝑥

𝑎
) sin (

𝑞𝜋𝑧

𝑏
) 𝑒𝑗𝑘[𝑟0 sin𝜃 (cos𝜙 cos𝜙0+sin𝜙 sin𝜙0)] 𝑑𝑥 𝑑𝑧

𝑏

0

𝑎

0

]. 

 

However, 𝑟0 cos𝜙0 is 𝑥 and 𝑟0 sin𝜙0 is 𝑧. So, this becomes 𝑝 some location 𝑟 and 𝑡; this entire 

term in front here double integral 0 to 𝑎, 0 to 𝑏, then 𝑠𝑖𝑛 this term, 𝑠𝑖𝑛 this term and 𝑒 to the 

power of 𝑗𝑘[𝑥 sin 𝜃 cos 𝜙 + 𝑧 sin 𝜃 sin𝜙] 𝑑𝑥 𝑑𝑧. Now, this has to be integrated.  

 

This has 𝑥 only; this has 𝑥 only; you have 𝑑𝑥. This has 𝑧 only; the z only here; you have dz. 

So, you can use the product rule and integrate them separately. So, what is the final result? The 

final result, I write as pressure at a certain scalar 

𝑝(𝑟, 𝜃, 𝜙, 𝑡) = 𝑗�̃�𝑝𝑞𝑘𝜌0𝑐
𝑒−𝑗𝑘𝑟

2𝜋𝑟

𝑎𝑏

𝑝𝑞𝜋2
[   ], 

 

[  ] term, which I am going to write here, what is that?  

{
(−1)𝑝𝑒𝑗𝛼 − 1

(
𝛼
𝑝 𝜋)

2

− 1
}

{
 

 (−1)𝑞𝑒𝑗𝛽 − 1

(
𝛽
𝑞 𝜋

)
2

− 1 }
 

 
. 

So, this total term enters this box here where 𝛼 is equal to 𝑘 𝑎 sin 𝜃 cos 𝜙, whereas 𝛽 is equal 

to 𝑘 𝑏 sin 𝜃 sin𝜙.  
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Now, we are interested in the far field sound intensity, sound intensity in the far field. So, those 

who remember their acoustics, it is given by  

𝐼 =
1

2
 𝑅𝑒(�̃��̃�∗) =

1

2
 
|�̃�|𝟐

𝜌0𝑐
. 

So, there is a plane wave, by this time, the wave become a plane wave. So, now pressure was 

found earlier.  

 

If we use this expression now, my intensity in the far field is going to be 

𝐼 = 2𝜌0𝑐|�̃�𝑝𝑞|
𝟐
(
𝑘 𝑎𝑏

𝜋3𝑟 𝑝𝑞
)
𝟐

{
 
 

 
 

𝑐𝑜𝑠
𝑠𝑖𝑛

(
𝛼
2)
𝑐𝑜𝑠
𝑠𝑖𝑛

(
𝛽
2
)

 

[(
𝛼
𝑝 𝜋)

2

− 1][(
𝛽
𝑞 𝜋

)
2

− 1]
}
 
 

 
 
𝟐

. 

Now, here what is this new notation? Here 𝑐𝑜𝑠 will be used when 𝑝 or 𝑞, 𝑝 comes in here and 

𝑞 comes in here, the cos will be used when 𝑝 or 𝑞 is odd.  

 

The sin will be used when 𝑝 or 𝑞 is even. We are running out of time so; I will stop here. We 

will continue in the next class. Thank you. 


