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Good morning and welcome to this next lecture on sound and structural vibration. We have 

been looking at a structural acoustic wave guide and we have gone quite a bit into the into 

solving the problem we were looking at the physics. So, at the outset there is one point I would 

like to make this factor the fluid loading parameter 𝜖 is the coupling parameter between the 

structure and the fluid if 𝜖 is set to 0 as we have seen we get the uncoupled roots.  

 

So, it is the ratio of the fluid density to the structural density and if the medium is like air a 

light medium and the waveguide is made of let us say steel or aluminum then 𝜖 will be a small 

quantity in which case the structure is loaded lightly and also the fluid sees more or less rigid 

structure. Whereas on the other hand if the fluid density goes up let us say it is water and there 

is some light medium for the wall of the waveguide then 𝜖 can go up and the situation reverses.  

 

So, 𝜖 is the coupling parameter I did not mention this explicitly. There is one more point I 

would like to make this entire derivation on this structural acoustic waveguide can be found in 

this paper I am giving the title and asymptotic analysis for the coupled dispersion 

characteristics of a structural acoustic waveguide this is a paper published in the Journal of 



Sound and Vibration a volume 306 the year is 2007 and pages 657 to 674. So, there are more 

details in there than I have presented over here. 
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Now continuing the equation, we have is this  

(
𝜉4

Ω2
− 1)  𝜆√Ω2 − 𝜉2  tan 𝜆√Ω2 − 𝜉2 + 𝜖 = 0. 

So, this is the equation we use if 𝜖 is small. However, if 𝜖 is large then we have to change. The 

asymptotic method works for small values the technique works like that.  

 

So, if 𝜖 becomes large then what we do is we write 𝜖 as 
1

𝜖′ ok where 𝜖′ is a small parameter. 

So, if we do that we will have  

(
𝜉4

Ω2
− 1)  𝜆√Ω2 − 𝜉2  tan 𝜆√Ω2 − 𝜉2 + 

1

𝜖′
= 0 , 

𝜖′ (
𝜉4

Ω2
− 1) 𝜆√Ω2 − 𝜉2 + cot 𝜆√Ω2 − 𝜉2 = 0. 

Now 𝜖′ is a small parameter. So, now what is the basic uncoupled solution if 𝜖′ is sent to 0 and 

my solutions are for cot 𝜆√Ω2 − 𝜉2 = 0.That means the cosine is equal to 0 and therefore 

𝜆√Ω2 − 𝜉2 = (2𝑚 + 1)
𝜋

2
. Now let us say if 𝑚 is 0 then I have 𝜆√Ω2 − 𝜉2 =

𝜋

2
  which means 

my 𝜉2 = Ω2 −
𝜋2

4𝜆2
. 

These are non-dimensional this is the non-dimensional 𝑦 wavenumber and therefore I will write 

it as 
𝑘𝑦

𝑘𝑐
=

𝜋

2𝜆
. The square root of 

𝜋2

4𝜆2 is 
𝜋

2𝜆
 which is the non-dimensional 𝑦 wavenumber and this 



is the 𝑘𝑐 was the denominator for non dimensionalizing. So, now what is this which implies 

𝑘𝑦

𝑘𝑐
=

𝜋

2𝑘𝑐𝑎
. So, this goes with that. So, 𝑘𝑦 is equal to 

𝜋

2𝑎
 which is 

2𝜋

𝜆𝑦
 which means 𝜆𝑦 is equal to 

4𝑎 we have seen this if you recall.  

 

So, now let us see it again briefly. So, I have this waveguide top is rigid bottom lower is this 

vibrating plate. So, top the pressure will be maximum. So, I will come up this way is one quarter 

is the next quarter this is the next quarter and then the last quarter. So, this is 𝜆𝑦 and this is 𝑎 

and that is how 𝜆𝑦 is 4𝑎 which means again I have 0 pressure here. So, the fluid column sees 

a medium beyond which is very light here. 

 

There is no gravity. So, do not worry about it ok. So, the fluid sees something very light and 

therefore the pressure is 0 if the fluid saw something stiff and solid you will have high pressure. 

So, pressure is 0 and there will be displacement velocity is actually high. So, those are the 

uncoupled solutions here and so these are called the pressure release cut-ons. So, this is called 

the pressure release boundary condition where pressure is 0 at the boundary of a fluid it is 

called the pressure release condition zero pressure conditions.  

 

So, these are these pressure release cuttings ok and one of the critical points was intersection 

of this with the flexural wave we have seen that ok. Now let me go back to the software Maple 

which we saw last time, and I will again show you the demo of Maple and we will get back 

here. 
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Last time I had shown you the Maple software. So, let us start again. So, start this is the basic 

equation that is how it looks like first we will do the plane wave solution. So, plane wave 

solution plus 𝑎1 into 𝜖 then that trial is substituted into the main equation a Taylor series is 

made. Then I convert the Taylor series into a polynomial and then find the coefficient to 𝜖 to 

the power one.  

 

So, let us do that okay then we have to solve for it that is the solution to the correction and then 

the final total answer similarly for the flexural wave okay let us run it okay something changed 

here. So, I will see these equation trial series equation trial 2 epsilon, 2 okay then equation 2 

yeah it should work now. So, let us start here trial 2 okay then solve it okay then add as a 

solution. 

 

Then third one this is the rigid cut-on okay then solve the equation then now we plot it. So, that 

is the plot I was trying to get all three of them last time. So, let us see here the blue line dashed 

is the plane wave this blue line is the first rigid cut-on this blue line is the second rigid cut-on 

the this first green line is the uncoupled flexure this is the pressure release we just spoke about 

this is the second pressure release we just spoke about okay.  

 

So, the coupled flexure is just above below coincidence then here it blows up okay and that 

blowing up is because of the choice of our expansion not because the actual wave blows up 

okay then the this is the couple next coupled flexure it passes through the pressure release ok 

we have discussed the physics that is where 0 pressure occurs. So, just beyond the wave goes 

up and just below the wave is below.  

 

So, you have stiffness effect here inertial effect here again this is the next critical point where 

the fluid loading actually goes to infinity and. So, our expansion fails which means we have to 

find another expansion and it will work out okay. And so, the coupled flexure repeats between 

every two rigid cations. So, again it passes through the next pressure release above that is higher 

below that it is lower and so forth okay. 

 

Now the plane wave the plane wave correction is below the original below coincidence this is 

the coincidence omega equal to 1 and the correction is above coincidence. So, the plate is 

looking like a stiffness here and like inertia here ok. As inertia becomes more and more, we 



approach the plane wave original as inertia drops the wavenumber drops. So, that the inertial 

effect having reduced the wave speed increases whereas here it is the other way okay. 

 

As stiffness drops the wavenumber goes up okay. So, that 𝜆 goes down ok and it for infinite 

stiffness we are back to the original uncoupled plane wave. Now this is the rigid duct first rigid 

duct cut-on. So, it starts off with this black line okay and it blows up here because again of our 

expansion and it transitions to the coupled flexure okay actually it will be do a very smooth 

transition.  

 

So, the coupled rigid duct comes transits becomes the coupled flexural wave passes through 

the pressure release point goes forward and it latches on to the next rigid duct cut-on that is 

how it will happen okay as it is doing over here okay. Now I will also, so these are now values 

of small 𝜖. So, I will show you what happens for large 𝜖 value. So, I will comment this picture 

ok. 

 

Now I am doing a pressure release solution here let me start over for this case these are 

unimportant, but I need to restart the program I will do the calculation but not plot it ok.  
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I have chosen two the second pressure release. So, we will see that here and that is how it looks 

like ok. So, so this is my second pressure release, and this is the coupled pressure release curve 

ok. So, it this is a frequency where the particular expansion blows up. So, we do not worry 

about that otherwise it will be a smooth curve. So, it is above below this crossing frequency 

one critical frequency it goes through that point which is the crossing point between uncoupled 



flexure and that pressure release and then it transits above ok close to the pressure release curve 

ok.  

 

So, if I have to show on this graph itself for small values my curve will be close to the rigid 

duct for small values of 𝜖 my curve will be close to the rigid duct okay and somewhere it will 

transition to coupled flexure cross through this point rise above follow the next rigid duct cut 

on. As my 𝜖 value goes up okay, I have chosen an epsilon value which is 1 over 0.05 which is 

like 20 ok this is 𝜖′ mind you from my derivation ok.  

 

So, 𝜖′  is a small quantity in order to find the pressure release correction. So, as 𝜖 starts to 

become bigger and bigger this curve will shift towards the pressure release that is what has 

happened okay, and it will straight away pass through the critical point and crossover okay. So, 

that is the transition from small 𝜖 to large 𝜖 ok. So, let me get back to my derivation.  
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So, now I will summarize what has happened. So, we have this picture over here this is  Ω let 

us see I will put all uncoupled curves as blue okay and light. So, this is my uncoupled plane 

wave this is my uncoupled flexure this is my uncoupled flexure then let us say this is my 

uncoupled pressure release and this is my first rigid duct cut-on this is my next pressure release, 

and this is my next rigid duct cut-on okay. 

 

On top of this let me do the coupled structure coupled structure is above here okay. And at this 

point there is a transition that is going to happen a smooth transition the coupled structure will 

smoothly transition become the coupled plane wave. Below we have the coupled plane wave 



it will come up ok. And as we get close to uncoupled structure it will smoothly transition to 

coupled structure pass through the pressure release go beyond start following the next rigid 

duct cut-on ok. 

 

Next this uncoupled rigid duct cut-on starts as a couple rigid duct cut-on smoothly transitions 

to a coupled flexural wave passes through the pressure release point crosses over and becomes 

or gets asymptotic to the next rejected cut-off and so forth ok. So, this is the picture for small 

𝜖 ok. So, here the structure sees the fluid as inertia and therefore wave number higher and 

therefore 𝜆 lower ok. 

 

In this region the structure does not see the fluid at this transition pressure release point. Here 

it sees it as inertia here it sees it as stiffness ok. Here the original plane wave sees the structure 

as inertia ok. Less and less inertia the wavenumber will drop high inertia you get back your 

uncoupled plane wave in here the fluid sees the structure as stiffness ok. Less and less stiffness 

the wavenumber rises 𝑘𝑥 goes up and  𝜆𝑥 comes down.  

 

So, that wave speed goes down and high stiffness you approach the plane wave closer and 

closer at almost infinite stiffness you reach the plane wave back ok. And here let us say for 

larger and larger values of 𝜖 this curve will do this for further larger values of 𝜖 it will do this 

ok. Finally, it will become a correction to the pressure release cut-on become a correction to 

the pressure release cut-on ok. 

 

And as 𝜖 becomes larger and larger this wave will start moving up this way will start moving 

up ok. Now just a point I want to make you must have seen that at the first corrections these 

there is a blow up the value blows up at these values at these critical points ok. So, let us see 

for Ω for a plane wave we took a correction 𝑎1𝜖 for the flexure we took 𝛺1/2 + 𝑎1𝜖 ok. 

 

Now I will show you if I have  𝜆√Ω2 − 𝜉2 let us say. So, 𝜉 is here 𝜉 = Ω + 𝑎1𝜖 . So, 𝜉2 

ok  𝜆√Ω2 − (Ω2 + 2𝑎1𝜖Ω + 𝑎1
2𝜖2)2 ok. So, if I cancel of etcetera. So, what I get 

𝜆√Ω2 − Ω2 − 2𝑎1𝜖Ω − 𝑎1
2𝜖2. 

So, if this cancels out, I have the leading term as 𝜆√−2𝑎1𝜖Ω ok. Now when I approach a 

critical point ok there is a second root also that is approaching there is a flexural root that is 



also approaching just as the plane wave is approaching ok. So, from the flexural root side also 

I have (
𝜉4

Ω2 − 1). So, in this I am going to substitute my 𝛺1/2 + 𝑎1𝜖 correction ok.  

 

So, what that does is that I will have a correction term after cancellation which is of 𝜖 order 

okay. So, here I have a correction of 𝜖1/2 order ok. So, this 𝜖 order correction and that 𝜖1/2 

correction will give me an 𝜖3/2 order correction there is also a tan term and just as this term 

gave me 𝜖1/2 this will be 𝜖1/2 and tan of that is also 𝜖1/2.  

 

So, this 𝜖3/2 and another 𝜖1/2 and some terms plus 𝜖 should balance but this has now become 

𝜖2 and we are left with 𝜖to be balanced. So, it cannot be balanced and. So, what now that means 

is that this expansion that we have ok should be of 𝜖1/2 order ok then what happens is every 

correction term is half to the power half then this will become 𝜖 and it can balance this 𝜖from 

the fluid loading term.  

 

So, what essentially means is that wherever you have two uncoupled routes meeting you have 

a plane wave meeting a flexural ok. So, there is 2 roots are meeting you need to have half order 

expansions. So, that the half order corrections from each of the roots multiply they become 

epsilon and then that epsilon can be balanced by this epsilon. Time is up I will close here we 

will continue with this topic in the next lecture, thank you.  

 

 


