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So welcome to this next lecture on sound and structural vibration we have been looking at the 

structural acoustic wave guide. 
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Last time we looked at the software called Maple let me show you what now the picture should 

look like. The rigid cut-on calculation did not work out hopefully I will show it to you 

sometime. So, I will keep the uncoupled waves dotted in light so that is the plane wave this is 

my flexural wave. Now this is my first rigid duct cut-on this is my second rigid duct cut-on and 

so forth. Now we saw that the coupled plane wave was below here a coupled plane wave was 

above here. 

 

And in this region, it blew up I told you that will happen the reason is what we did this 

expansion 𝜉 = Ω + 𝑎1𝜖. So, this was valid for that region and this region not valid for that 

region. That means this correction should have some other form I will tell you that form it 

should have this form +𝑎1𝜖1/2 that is why it did not work out.  

 

Now the flexural wave how did it look the coupled flexural wave looks like this here and below 

what happened. There was the point it crossed below it was lower above it was higher now let 



me draw in some light color here let may be that is good. There are these points there are these 

light lines what is that point it is a critical point? What is that? Let me draw these so there are 

these lines. 

 

Now what essentially happens is my coupled wave starts here it remains close to the plane 

wave here transitions slowly into the flexural coupled wave continuously. Now I am on to the 

coupled flexural wave line which crosses at a single point the uncoupled flexural wave and 

then it goes beyond and then it starts to follow the next rigid duct. I told you that these black 

lines can never cross the other dotted lines because there are three terms here in a product and 

they have to be small enough to balance my 𝜖. 

 

If they exactly go to 0 at anywhere at any point, then there is no way to balance this and 

therefore if I am any one of these dotted lines then I am exactly 0. If I am here, I am exactly on 

the acoustic plane wave. So, second term will go to 0 if I am exactly here, I am on the uncoupled 

flexure. So, first term will go to 0 so this entire term will go to 0 then 𝜖 will be left hanging so 

no uncoupled line I mean no coupled line can exactly cross the uncoupled line except there are 

exceptions. 

 

And these are this exception points so what happens to the rigid coupled curve which I said did 

not work out. So, it follows the rigid coupled line I mean the uncoupled rigid line comes up 

becomes the coupled flexure again so remains below crosses the uncoupled flexure goes above 

and it starts to follow the next rigid uncoupled line and this picture repeats. So, if I have to 

again pick let us say blue this is the coupled acoustic plane wave this is the acoustic coupled 

plane wave. 

 

This is the coupled flexure this is the coupled flexure this is the coupled rigid duct cut-on first 

fellow, and this is the coupled rigid duct cut-on second fellow and so forth. Now the naming is 

also appropriate if I coupled line is close to an uncoupled line, we will call it the appropriate 

coupled line. So, this black line is close to flexure so we will call it coupled flexure. So, we 

will call it uncoupled flexure and other is coupled flexure. 

 

So that is the pictures now let us look at a physical explanation we look at the physical 

explanation why this happens? That means why the coupled flexure here is above why the 

coupled plane wave here is above why the coupled plane wave here is below and so forth. We 



will see the physical explanation for that. So, in order to do that let us look at the original 

equation  

𝐸𝐼𝑘𝑥
4 − 𝑚𝜔2 = −

𝜔2𝜌

𝑘𝑦
(cot 𝑘𝑦𝑎). 

We will give this a number 1 now we will say 𝐸𝐼 is the structural stiffness and 𝑚𝜔2 is the 

structural inertia. Now please note that cot 𝑘𝑦𝑎 because it is composed of cosine and sine it 

will switch signs it will have positive regions and negative regions in frequency. So, it has a 

minus here so let us say this entire term including the minus entire term including the minus. 

 

If that term will call it fluid loading term if the fluid loading term that means along with the 

sign is positive. Then it comes to the left side when it transferred to the left side it becomes 

negative and it adds where it adds to inertia it adds to structural inertia that means the fluid 

behaves as inertia. So, the structure sees it as inertial loading whereas if the entire fluid loading 

term along with the sign is negative. Then it adds to the structural stiffness so whether 𝑘𝑦 is 

real or imaginary does not matter.  

(Refer Slide Time: 11:31) 

 

Now we will see what that means so we will try to explain the coupled flexure try to explain 

the coupled reflection so what is 𝑘𝑦? 𝑘𝑦 is equal to √𝑘2 − 𝑘𝑥
2
 and it is part of the equation is 

part of equation 1. So let us say we are looking for below coincidence or below 𝜔𝑐 or Ω is less 

than 1 and 𝑘𝑥 is approximately near 𝑘𝑏 flexure. Or we will call it 𝑘𝑝 I forget what I have been 

using. 

 



I think I have been using 𝑘𝑏 so let us stick with 𝑘𝑏 and therefore 𝑘𝑦 also will have √𝑘2 − 𝑘𝑏
2
. 

And because 𝑘𝑥 is close to 𝑘𝑏 the relationship between 𝑘 and 𝑘𝑏 also holds. So below 

coincidence 𝑘 happens to be below 𝑘𝑏 and therefore 𝑘𝑦 is imaginary so now what happens? 

We have if we look at the non-dimensional form of the fluid loading term which is −𝜖
cot(𝑘𝑦𝑎)

𝑘𝑦𝑎
. 

 

That term tends out let me write it once more  

−𝜖
cot(𝑘𝑦𝑎)

𝑘𝑦𝑎
= −𝜖

cot (√𝑘2 − 𝑘𝑏
2𝑎)

√𝑘2 − 𝑘𝑏
2𝑎

 , 

=  𝜖

coth (√𝑘𝑏
2 − 𝑘2𝑎)

√𝑘𝑏
2 − 𝑘2𝑎

 . 

So, note that I have switched 𝑘 and 𝑘𝑏 positions and this is a positive term. 

 

So, this entire term along with the sign is a positive term on the right so what we will do? If it 

is positive on the right, it is negative on the left that means it is an inertial loading it is an inertial 

loading. And so, what it does is actually slows down the uncoupled flexure uncoupled what I 

mean is? As an inertial influence on the flexure and slows down the coupled flexure that means 

the coupled 𝜆𝑥 is smaller remember 𝜆𝑥 is distance covered in one cycle. 

 

So, if it slower 𝜆𝑥 is smaller and therefore 𝑘𝑥 happens to be bigger and so 𝑘𝑥 becomes bigger 

than 𝑘𝑏. So, the structure perceives the fluid as inertia and now since 𝑘𝑥 is a modification to 

𝑘𝑏 we will call it coupled flexure that is the nomenclature coupled flexure that is influence of 

both structure and fluid. But because 𝑘𝑥 is close to 𝑘𝑏 we will call it coupled flexure now what 

about beyond coincidence that means 𝜔 greater than one. 

 

Here again I am looking for 𝑘𝑥 close to 𝑘𝑏 but 𝑘𝑏 is less than 𝑘 and therefore you can see in 

the equation in the original equation which is 

𝐸𝐼𝑘𝑥
4 − 𝑚𝜔2 = −

𝜔2𝜌

𝑘𝑦
cot (√𝑘2 − 𝑘𝑏

2𝑎) . 

 



I will open this square root of 𝑘2 − 𝑘𝑏
2
 and 𝑘𝑏 is less than 𝑘 already. So here also it is the same 

term square root of 𝑘2 − 𝑘𝑏
2, 𝑘𝑏 is less than 𝑘. So therefore, the cot term will change signs the 

cot term will change signs so how does it do that? 

(Refer Slide Time: 19:50) 

 

So, for  0 ≤ 𝑘𝑦𝑎 <
𝜋

2
 the correction the fluid loading term along with the sign is negative hence 

what happens? When it is transferred to the left-hand side it is positive on the left it is positive 

and therefore it adds as stiffness. Then this is important there is one point where cot goes to 0, 

cot(𝑘𝑦𝑎) goes to 0. And then beyond the fluid loading term which is sine switches sine and 

becomes positive along with the sign is positive which means on the left it is negative. 

 

And therefore, it behaves as inertia so then what happens so if we look at that picture in the 

localized picture here my coupled my original flexure is moving like this and some where I am 

beyond coincidence and somewhere. The cot(𝑘𝑦𝑎) is 0 beyond it is positive and therefore it 

becomes inertial before it is negative. So, it becomes stiffness, so this is now my coupled 

flexure beyond coincidence. 

 

So, there is this one point which is where cot(𝑘𝑦𝑎)goes to 0 it is a critical point I told you 

earlier that coupled and uncoupled curves cannot cross but this is one exceptional point where 

this crossing occurs that means the coupled and uncoupled are equal. That means what the 

correction is 0 that means what the correction is 0. So even by the language what that means is 

that structure or plate does not see the fluid does not see or experience the fluid pressure 

 



on the plate is zero and hence the coupled wave behaves like the uncoupled wave now we look 

at that critical point that is we look at what happens at that critical point in a few minutes. But 

before that this whole term which is −
cot(𝑘𝑦𝑎)

𝑘𝑦𝑎
 which is part of correction term or main 

contributor is how does it behave in frequency? So, this is my I am going to plot it with respect 

to non-dimensional frequency. 

 

So, this is Ω = 1 then Ω = 2 then Ω = 3 Ω = 4 this is Ω axis below Ω so let us a 0 value let us 

say this is a 0 value let me plot it in red so below Ω = 1 this term is totally positive. We have 

shown you that it is a hyperbolic chord, so it behaves like this, so it makes it inertial. So, this 

is region is mass the fluid loads the structure as a mass but just beyond it starts to behave as 

stiffness become very light. 

 

Somewhere here there is a cross over and at value of 𝜋 , Ω equal to 𝜋 this thing blows up and 

this region is mass loading again and this region is stiffness. And this repeats now somewhere 

here again there is a stiffness part it becomes light loading crosses over and again at  2𝜋. It 

starts to blow up so this is reflected in the correction of the flexural coupled wave at the time 

is running out. So, I will explain to you why this crossover point is there and what happens 

here in the next class we will stop here thank you. 


