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Good morning and welcome to this next lecture on sound and structural vibration as you can 

see, we ended in the last class by deriving the non-dimensional form of the coupled dispersion 

equation.   
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This is called the let me call this the coupled dispersion equation today we will see what it 

means and how to solve it? Now 𝜖 I said was 
𝜌0𝑎

𝑚
 . Now typically this is a small quantity in the 

sense of 𝜖 is in the range of 0.1 and so on and so forth. Now 𝜖 is a small quantity and I have a 

certain equation plus a small quantity = 0. 

[  ? ]  + 𝜖 = 0.            [1] 

 

And I have to solve for some unknown in here we have seen this in the first problem we saw 

the classical problem from Crighton. That when you have a small parameter, we use asymptotic 

methods we use the asymptotic method. So again, to repeat the idea is that if we know the 

solutions to this particular equation let me again call it some number will call it one. If you 

know the solution to this equation 1 when 𝜖 is 0 and this 𝜖 is 0 if we know the solutions. 

 



Then if 𝜖 is added as the small quantity the intuitive idea is that my solutions here should not 

have changed that much by the presence of the small quantity that is the idea. So, if I know 

these solutions when 𝜖 was 0 and my query is what are they when 𝜖 is not 0 but a small quantity. 

Then they should be the new solution must be a perturbation that means old solution plus 

something small. 

 

It cannot be hugely different which makes physical sense so first of all let us see when 𝜖 is 0 

what are we getting. When 𝜖 is 0 we get these 3 we get 
𝜉4

Ω2  − 1 and we set it 0. We put 𝜖 to 0 

and the equation is set to 0 then there are 3 products 1, 2, 3 there are 3 terms in the product. 

And so, anyone of them can be 0 so this can be 0 for example. 

 

And this represents the flexural wave solution wave in the 1D plate will see that again then we 

have 𝜆√Ω2 − 𝜉2 which represents the plane acoustic wave in the duct. And then lastly the 

tan(𝜆√Ω2 − 𝜉2) equal to 0 this is the rigid acoustic duct higher order waves.  

 

So, there are 3 solutions so these are what I call uncoupled solutions. When the fluid is bounded 

by a rigid wall it behaves on its own that is the plane acoustic wave and rigid duct higher order 

wavenumbers. When the flexural plate is not in contact with the fluid that is in vacuum, so this 

is the solution. So, these are the uncoupled solutions now when 𝜖 is brought in the solutions 

will become coupled. 
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But further to this let us see on a diagram what these are so let me take an axis this is the non-

dimensional frequency axis. So let us look at 
𝜉4

Ω2  − 1  = 0 which implies that 𝜉 is equal to √𝜔. 

So, this is the non-dimensional flexural wave in the plate. So, it will look like this, so this is 

the flexure next we have 𝜆√Ω2 − 𝜉2 when that is equal to 0. 

 

𝜆 is dimensional so it is not 0 then we get 𝜉 is equal to of course ±Ω so we will take Ω. So, 𝜉 

is equal to Ω is this plane wave 1D sound wave and lastly, we have tan(𝜆√Ω2 − 𝜉2)  = 0 and 

this is the tan. So, what I will say is 𝜆√Ω2 − 𝜉2 must be some 𝑛𝜋. Or Ω2 − 𝜉2 = (
𝑛𝜋

𝜆
)

2

 or 𝜉2 =

Ω2 − (
𝑛𝜋

𝜆
)

2

 or  𝜉 is equal to √Ω2 − (
𝑛𝜋

𝜆
)

2

. 

 

We will take 𝑛 going from 1, 2, 3 etc., now for example if we take 𝑛 =  1 then my 𝜉 is equal 

to √Ω2 − (
𝜋

𝜆
)

2

. So, 𝜋 is a fixed number 𝜆 is a fixed number. Ω is the only variant in here Ω 

varies so if Ω is less than 
𝜋

𝜆
 then 𝜉 is imaginary. We have seen that if you have something 

imaginary it amounts to a decaying wave. 

 

So below for the values of the non-dimensional frequency below 
𝜋

𝜆
 , 𝜉 will decay away. 𝜉 is an 

actual wave number dimensional form is 𝑘𝑥  so in the axial direction it decays away. So, it is 

not of interest if it is decays away a little distance away you do not pick it up. So, it is not of 

interest whereas if Ω just is greater than or equal to  
𝜋

𝜆
 then 𝜉 starts to emerge as a real quantity. 

 

That means propagation that means this wave cuts-on so the non-dimensional wave number 
𝜋

𝜆
 

is in the y direction. Whereas 𝜉 happens to be in the axial direction from here you can see that 

𝜉2 + (
𝜋

𝜆
)

2

= Ω2 is very similar to 𝑘𝑥
2 + 𝑘𝑦

2 = 𝑘2. So now 
𝜋

𝜆
 is non-dimensional wavenumber 

in the 𝑘𝑦 direction it is related to a shape of the wave in the 𝑦 direction. 

 

Because 𝑦 is bounded on the top and bottom between 0 and 𝑎 so 𝜉 can be propagating can be 

non-propagating. And for Ω greater than 
𝜋

𝜆
 it becomes propagating so how do we plot this thing? 

So, at very large values of Ω you can see because 
𝜋

𝜆
 is a fixed number does not change. So, at 

very large values of Ω, Ω2 much greater than (
𝜋

𝜆
)

2

 so you can neglect (
𝜋

𝜆
)

2

 term and then I get 

√Ω2  which is Ω. 



 

So, 𝜉 equal to Ω is my plane wave so this thing will start somewhere over here and as time I 

mean with frequency it will start approaching and it will approach the plane wave 𝜉 this is 𝜉 

equal to Ω the plane wave. But this cut-on wave will approach this fellow at a higher and higher 

values of Ω let me put it in red ink. So, this is a higher order wavenumber but because it has a 

cut-on behavior, we call them it is rigid duct cut-ons. 

 

I will use that terminology similarly if I take 𝑛 higher value, I take 𝑛 =  2 here then I get a 

higher order cut-on which will start again somewhere here. We will start of vertically and then 

it will turn, and it will start following this plane wave at higher and higher frequencies and 

similarly 𝑛 =  3 and so forth. That means if you decide the frequency is here excitation 

frequency is here then you take it vertically then these are the possible waves that can exist in 

your acoustic system that’s what it means. 

 

Just a word of caution what we have plotted is uncoupled use this language commonly, so these 

are uncoupled that means actually when there is a plate vibrating there is no fluid. So, these 

waves should not be there its uncoupled similarly when these plane wave and higher order cut-

ons are there, there is no flexible wall, wall is rigid so this curve should not be there. But we 

use this language we plot both of them on the same plot and look at their relationship. 

 

But in actuality what happens? We are going to find the coupled wavenumbers that is the 

objective we are going to find the coupled wavenumber dimensional wavenumber 𝑘𝑥 or non-

dimensional 𝜉 we are going to do that. So, then we will plot 𝜉 on the same graph to see how 

they change. So, these are the 3 types of waves that exist the red ones are the fluid waves the 

black one is the plate wave. 
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Now in the next picture I will give you an idea here of what is going to happen again this is my 

Ω these are I am going to uncoupled. I am going to plot them a little light this is the uncoupled 

plane wave I will show you what I mean by a plane wave 𝜉 equal to Ω plane wave. Then the 

next cut-on at 𝑛 =  1 it takes off vertically and starts to curve and asymptotically meet the 

plane wave then the 𝑛 =  2 rigid duct cut-on it takes out vertically too and will start turning 

and it higher and higher it will approach this one. 

 

And then we have the plate uncoupled wavenumber that also I will plot in a dotted manner. 

Now what happens the when the coupling has occurred that means now I have a structural 

acoustic wave guide fluid couple the plate, plate couples the fluid. This picture is going to 

change this is uncoupled picture but now because they are coupled this picture will change. 

 

So, the question is how it will change that the question we are asking from the coupled 

dispersion equation we have with this 𝜖 quantity the question we ask is that how does this 

picture change. By setting 𝜖 to 0 this is the picture we got this is the 𝜖 = 0 picture uncoupled. 

But when 𝜖 is not equal to 0 a small quantity what is this picture look like? 

 

So, I will give you the story ahead of time so let me see if I can so there are these extra lines in 

the middle, I will talk about them little later there are these extra lines. So, I might need other 

pictures so let us see so let me take it here, so I have these red colored acoustic wave the first 

cut-on let me say 𝑛 =  1 cut-on. So, I will use the language cut-on 𝑛 =  1 and I have the 𝑛 = 

2 cut-on then I have the flexural wave let me exaggerate. 

 



Let me even take 𝑛 =  3 here as I said these are uncoupled and they will approach this plane 

wave at higher frequency. Now I will give you the picture of the coupled wave just the little 

ahead of the story. So, because 𝜖 is small every wave gets modified slightly is not a strong 

modifier to the original wave. So, this wave looks a little like this over here let me plot it looks 

like this. 

 

In the coupled case so let me I said there are these extra invisible lines let me plot them in a 

light manner. These extra lines here for now let them be just lines for some convenience I will 

give the physical picture meaning later. So now this flexural wave how does it change so there 

will be an acoustic plane wave will change get modified so let me use black get modified to 

this. 

 

And then as we approach to the flexural wave it becomes the flexural wave and it crosses at 

this blue line interrupt section. And it follows the next rigid duct cut-on so I will show it more 

clearly here so this rigid duct cut-on will become this black line over here and as we approach 

this flexural wave line it turns and then it crosses at a certain point. So, it is below this frequency 

it is below the flexural wave above this frequency above the flexural wave. 

 

And then it starts to follow the next higher rigid duct cut on asymptotically so this red fellow 

will become this black line. As we approach this flexural wave returns crosses at the blue line 

interaction and follows the next rigid duct cut-on. So, this is the story so now what happens to 

this it will have this behaviour and add this junction which is the coincidence this is a 

coincidence frequency where the plane wave cuts the flexural wave. 

 

There it will turn and starts following the acoustic plane wave just above, so these black solid 

lines are the coupled waves. So that means what now in this system over here as they are 

coupled if I put a pressure sensor in the fluid or I put an accelerometer on the plate somewhere 

at a certain frequency at a certain non-dimensional frequency. If I take a vertical cut, I will see 

this wave is dark black line and this dark black line I will see these two waves. 

 

Or these two waves are possible the dispersion equation gives possibility of waves in actuality 

what will be has to be solved for using a force problem. If I force this system in some manner 

using some piston or something, then we will see what the propagating waves are that is the 

actual solution? What dispersion equation does is it gives you this entire set of waves that are 



only possible whether they will be there or not will depend on the type of forcing you are going 

to do. 

 

Then you will solve a forced problem which is a more difficult problem so at this frequency if 

I draw a vertical line this is a possible wave that is a possible wave. But now these are coupled 

so whether you measure it in this sound field or you measure it on the plate they will pick it up 

both of them are carrying the same way they will pick it up your sensor will pick it up. Or let 

us say if you shift to a higher frequency somewhere here. 

 

And I draw now a vertical line then these crossings this and this are the possible waves that 

could exist in your system. And again, if you put a pressure sensor somewhere or an 

accelerometer somewhere you will pick up these 3 waves in either of the mediums you will 

pick up these waves. Now mathematically I would like to arrive at these answers I have given 

you a schematic picture mathematically we would like to arrive at these answers. 

 

So now how do we do that another thing while we are at this picture the let me use may be blue 

now. So, there is a physical reason why this flexural wave moved upward there is a physical 

reason why this red plane wave moved downwards. There is a physical reason why at this 

frequency below you have the wavenumber below and above the wavenumber is above the 

flexural wavenumber there is a reason why this black line asymptotically now starts to 

approach the next rigid cut-on. 

 

So, the physical reason why here the plane wave went up whereas here the plane wave went 

down. Now because the coupled waves are actually small perturbation to the original waves 

the language, I will use is that I will use the same name but put coupled in front of it. So, to me 

this is a plane wave but now it is a coupled plane wave to me this is a flexural wave. But now 

it is a coupled flexural wave, and I will refer to the region based on the frequency. 

 

So here I will call it coupled flexural wave below coincidence and this I will call coupled 

flexural wave above coincidence between the first and second rigid duct cut-ons. So, I will use 

this language we are very close to the end of this half an hour. So instead of starting next section 

I will close here. So, we will start finding the actual mathematical solutions in the next class 

thanks. 


