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Good morning and welcome to this next lecture on sound and structural vibration. 
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Last class we started looking at a structural acoustic wave guide. We derived the relevant 

equations and we found what we call the coupled dispersion equation and then I just presented 

the non-dimensional form. I said I will derive it in this class that is what we are going to see. 

But before that I would like to present something which I may have done it. But I will do it 

again because this happens to be the crux of all sound structural interactions. 

 

So, if we look at the acoustic wave equation it looks like this 

𝜕2𝑃

𝜕𝑥2
 =  

1

𝑐2
 
𝜕2𝑃

𝜕𝑡2
.               [1] 

 So, wave equation and we have seen with that crank and spring example that we can represent 

the pressure using this 

𝑃(𝑥, 𝑡) = 𝐴𝑒𝑗(𝜔𝑡−𝑘𝑥).        [2] 

If I substitute equation 2 into equation 1 on the left, there are 2 derivatives with space. So, I 

will get 

𝐴(−𝑗𝑘)2𝑒𝑗(𝜔𝑡−𝑘𝑥) =
1

𝑐2
 (𝑗𝜔)2𝐴𝑒𝑗(𝜔𝑡−𝑘𝑥), 



𝑘2 =
𝜔2

𝑐2
 , 

𝑘 = ±
𝜔

𝑐
 . 

The 𝑘 is the acoustic wave number 𝜔 is the frequency in the radians c is the speed of sound in 

the medium.  

 

So ± because there can be a right going wave with the wave number +𝑘 there can be a left 

going wave with a wave number – 𝑘. So, this is with respect to one dimensional sound wave 

and this equation is called the dispersion equation wave number given as a function of 

frequency is called the dispersion equation anywhere 1D sound is very simple. If you look at 

other systems, it can get very complicated. 

 

Next if we have a 1 D plate equation is  

𝐸𝐼
𝜕4𝑤(𝑥, 𝑡)

𝜕𝑥4
+ 𝑚

𝜕2𝑤(𝑥, 𝑡)

𝜕𝑡2
= 0 .      [3] 

So let us say the 

𝑤(𝑥, 𝑡) = 𝐵𝑒𝑗(𝜔𝑡−𝑘𝑝𝑥).                           [4] 

If we substitute equation 4 into equation 3, I have fourth derivative with space.  

 

So, I will get  

𝐸𝐼(−𝑗𝑘𝑝)
4

𝐵𝑒𝑗(𝜔𝑡−𝑘𝑝𝑥) + 𝑚(𝑗𝜔)2𝐵𝑒𝑗(𝜔𝑡−𝑘𝑝𝑥) = 0. 

So 𝐵 can cancel and this propagator can cancel I have 

𝐸𝐼𝑘𝑝
4 = 𝑚𝜔2.                [5] 

 So, I have 𝑘𝑝
4
 the wave number in the 1D plate given by 

𝑚𝜔2

𝐸𝐼
 or 𝑘𝑝 given by so they 4 roots 

so let us  

𝑘𝑝 = ± (
𝑚𝜔2

𝐸𝐼
)

1/4

, ±𝑗 (
𝑚𝜔2

𝐸𝐼
)

1/4

. 
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So let us look at this solution using each of these roots so I had 𝐵 or rather 𝑤 given by 𝑤(𝑥, 𝑡) 

given by 𝐵𝑒𝑗(𝜔𝑡−𝜙𝑥) let us say I take the plus value and I will 𝜙. So 𝜙𝑥 this represents a 

rightward travelling wave or propagating wave similarly if I take the negative root over here 

what I will get is 𝐵𝑒𝑗(𝜔𝑡+𝜙𝑥).  

 

And this represents a left travelling wave, so these are travelling waves if we choose the 

imaginary roots then I have  𝑤(𝑥, 𝑡) = 𝐵𝑒𝑗(𝜔𝑡−𝑗𝜙𝑥) let us say I take the positive imaginary. So 

𝐵𝑒𝑗(𝜔𝑡) does not bother us. But this 𝑗 over here I mean use 𝑗 and 𝑖 interchangeably so please 

do not mind that I am use it. Both are square root of −1 so now this 𝑗 square or 𝑖 square here 

is −1 so this becomes a plus.  

 

So, what happens is this becomes 𝑤(𝑥, 𝑡) = 𝐵𝑒𝑗𝜔𝑡𝑒𝜙𝑥. So, what this means is this is a decaying 

wave in the negative 𝑥 direction. So, I have this 1D plate over here suppose I excite it over here 

and I will get a positive propagating wave I will get a negative propagating wave that we have 

seen above. In addition, I will get a decaying wave on the left-hand side. 

 

Similarly, if I choose negative imaginary root, I will get 𝑤(𝑥, 𝑡) = 𝐵𝑒𝑗𝜔𝑡𝑒−𝜙𝑥 and this 

represents a decaying wave in positive direction those are the 4 roots. Of these let us focus 

currently on this positive propagating wave which is the positive root here. Let us just focus on 

that now if we plot this if we plot both the wave numbers so I have this frequency axis this 

wave number axis for acoustic wave number and for the plate wave number. 

 



The acoustic wave number was 
𝜔

𝑐
 so it is a straight line with the slope related to 𝑐 it is a straight 

line this is an acoustic wave number. Whereas 𝑘𝑝 the plate wave number is given by separate 

the 𝜔 out it is √𝜔 (
𝑚

𝐸𝐼
)

1/4

. So, this is like a parabola, so it goes like this and somewhere those 

two meet these two cross each other somewhere that frequency is called coincidence I have 

mentioned this before or critical frequency. 

 

Now what this means if I pick a frequency over here this is the acoustics wave number so let 

us say acoustic wave number is 𝑘1 whatever at 𝜔1 it is 𝑘1. 𝑘1 meaning it is related to a certain 

𝜆1 so there is let us say this is the acoustic wavelength this is the wavelength of the acoustic 

wavelength in the 1D. That means pressure starts with zero, pressure is high over here the 

acoustic wave. And again, pressure goes to zero and pressure is low over here. 

 

Now if I take another 𝜔 I take 𝜔2 suppose I am just describing the plot of the dispersion 

equation how to read it. Because this is a physical quantity so at 𝜔2 my 𝑘2 is higher and 𝜆 is, 

inverse of 𝑘. So 𝜆 is smaller so let us say it becomes small I am not bothering about scales or 

anything. So just get the feel for the size then if I take 𝜔3 it is further smaller, so the wave 

number goes up wavelength goes down. 

 

Similarly, with 𝑘𝑝 also the plate wave number but what happens is whereas the slope is high 

for the plate wavenumber with respect to 𝜔 initially it is you know slows down. So that at some 

point your acoustic wavelength and this structural plate wavelength are equal. And this is very 

important because this is when the best coupling can occur when the acoustic wavelength and 

the structural wavelength or acoustic wavenumber and structural wavenumber are equal. 

 

That is when the best coupling can occur because here the structure is pulling, and the acoustic 

wave has a low-pressure region. Similarly, here the structure is pushing upward and by default 

the sound pressure is high over there. And they match perfectly so that is coincidence it happens 

because the dispersion equation for the acoustic wave is linear with frequency and because it 

is you know square root of 𝜔 dependence in flexural wave that is the reason this thing happens. 

 

And as you go beyond the 𝑘𝑝 is drops off quickly whereas the acoustic wave number 

continuous. So 𝑘𝑝 here is lower beyond coincidence 𝑘𝑝 is lower which means 𝜆𝑝 remains 

higher than 𝜆𝑎𝑐𝑜𝑢𝑠𝑡𝑖𝑐. And this condition is important for sound radiation.  

(Refer Slide Time: 20:36) 



 

Now let us derive and expression for the coincidence frequency 𝜔𝑐 for the acoustic wave 

number 

𝑘 =
𝜔

𝑐
 . 

And the 𝑘𝑝 for the plate will take the positive propagating root  

𝑘𝑝 = (
𝑚𝜔2

𝐸𝐼
)

1/4

. 

So, at coincidence these two are equal that is what we say at coincidence this two are equal that 

means 
𝜔𝑐

𝑐
 =  (

𝑚𝜔𝑐
2

𝐸𝐼
)

1/4

.  

 

So let us take it to match this let us take this 4 times so I have 

𝜔𝑐
4

𝑐4
 =  

𝑚𝜔𝑐
2

𝐸𝐼
 . 

So 𝜔𝑐
2 =

𝑚𝑐4

𝐸𝐼
 or 𝜔𝑐 is 𝑐2√

𝑚

𝐸𝐼
. So, it is a material and fluid property so if you take the speed of 

sound 𝑐 of the fluid, you take the mass per unit area of your plate you take the stiffness 𝐸𝐼 

bending stiffness for the plate they are related and they give 𝜔𝑐 depends on both. 

 

Accordingly let me just write it here 𝑘𝑐 wavenumber at coincidence is 
𝜔

𝜔𝑐
 and therefore it is 

equal to 𝑐√
𝑚

𝐸𝐼
. So, I thought should just repeat this part over here. So now in typically in 

structural acoustic non dimensionalizations are done with respect to the coincidence frequency 

it is a very common practice either coincidence frequency or coincidence wavenumber it is 

common practice.  



 

And it gives physically meaningful results so if you have a non-dimensional frequency you can 

talk of beyond coincidence that is beyond one or below coincidence less than one ok. So, to 

remind you the coupled dispersion equation the coupled dispersion for the structural acoustic 

wave guide turned out to be 

𝑘𝑥
4

𝑘𝑝
4 − 1 =

−𝜌0𝑎

𝑚
 
cot(𝑘𝑦𝑎)

𝑘𝑦𝑎
 . 

 So 𝜌0 is mean fluid density not the acoustic perturb density it is a mean fluid density. And how 

are 𝑘𝑦 and 𝑘𝑥 related 𝑘𝑦 is equal to √𝑘2 − 𝑘𝑥
2
. So 𝑘 is the acoustic wave number in fluid, 𝑘𝑥 

is the axial direction wave number. 

 

And then 𝑘𝑦 is the vertical wave number at a given frequency 𝑘 is known at a given frequency 

automatically 𝑘 the total acoustic wave number is known. Whereas now because of the 

coupling the breakup into 𝑘𝑥 and 𝑘𝑦 is unknown. The two systems are interacting in a coupled 

manner top is rigid, bottom is flexing and there is a fluid. So fluid is interacting with the 

structure, structure is interacting with the fluid and therefore the 𝑘𝑥 is now actually unknown 

we have to find that.  

 

And 𝑘𝑥 is related to 𝑘𝑦 through this so we have to find that out anyway that is the equation and 

the non-dimensional parameters I said Ω the frequency a non-dimensional frequency I said is 

going to be 
𝜔

𝜔𝑐
 . So, this also means that it is 

𝜔/𝑐

𝜔𝑐/𝑐
. 𝜔/𝑐 is the acoustic wavenumber 𝜔𝑐/𝑐 is the 

coincidence wavenumber. 

Ω =
𝜔

𝜔𝑐
=

𝜔/𝑐

𝜔𝑐/𝑐
=

𝑘

𝑘𝑐
 . 

 

Then 𝜆 we have the non-dimensional length which is again 𝑘𝑐𝑎 and 𝜖 the fluid loading 

parameter I said is very important it is 
𝜌0𝑎

𝑚
. Then this 𝜉 is another which is the one we want 

non-dimensionalized with 𝑘𝑐 we want 𝑘𝑥 now. 

 

That is our plan in the whole of this equation the idea is to figure out 𝑘𝑥 and 𝑘𝑥 is related to 

𝑘𝑦. So, 𝑘𝑦 will be replaced in terms of 𝑘𝑥 so that the whole equation has 𝑘𝑥 and 𝑘𝑥 is the only 

thing unknown the rest are all known. So, if we use this non-dimensionalization what do we 

get?  
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We get 

𝑘𝑥
4/𝑘𝑐

4

𝑘𝑝
4/𝑘𝑐

4  − 1 = −𝜖

cot (𝑘𝑐√(
𝑘

𝑘𝑐
)

2

− (
𝑘𝑥

𝑘𝑐
)

2

 𝑎)

𝑘𝑐√(
𝑘

𝑘𝑐
)

2

− (
𝑘𝑥

𝑘𝑐
)

2

  𝑎

 . 

 

So now 𝑘𝑥 by 𝑘𝑐 this is 𝜉 we said so I have psi 𝜉4 and now what is that thing 𝑘𝑝
4/𝑘𝑐

4
. So, 𝑘𝑝

4
 

is 
𝑚𝜔2

𝐸𝐼
 as we have seen before the plate wave number at 𝜔. Free plate wave number at 𝜔 in 

vacuum and then what is 𝑘𝑐
4
 in the denominator?  

 

It is 𝑐4 𝑚2

(𝐸𝐼)2 you can check the previous page.  

𝑘𝑝
4

𝑘𝑐
4  =  

𝑚𝜔2

𝐸𝐼
 
(𝐸𝐼)2

𝑐4𝑚2
 . 

So now if I cancel of things whatever I get 𝐸𝐼 cancelled and I get an 𝑚 cancelled. So, this is 

𝜔2 𝐸𝐼

𝑚𝑐4. So, this quantity (
𝐸𝐼

𝑚𝑐4) if you again see is my 𝜔𝐶
2 so what I have here this entity is 𝜔2 

by 𝜔𝐶
2 which is my non-dimensional frequency squared. 

𝑘𝑝
4

𝑘𝑐
4  =  Ω2 . 

So, I get here 

𝜉4

Ω2
 − 1 = −𝜖

cot(𝜆√Ω2 − 𝜉2)

𝜆√Ω2 − 𝜉2
 , 

(
𝜉4

Ω2
 − 1) [𝜆√Ω2 − 𝜉2] [tan (𝜆√Ω2 − 𝜉2)] + 𝜖 = 0. 



 

Time has run out for this lecture I will close this here and we will start looking at how to solve 

for 𝜉? 𝜉 was 𝑘𝑥 in disguise non-dimensionalized 𝑘𝑥. So, we will solve for 𝜉 in the next class 

thank you. 

 


