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Welcome to you all. Now, we said that we are interested only in real values, right, only in real 

values although we are bringing in the complex phasor notation we are interested in real values. 

That means as this slider rotates or as this crank rotates and this mass does oscillatory 

movement, this mass is doing oscillatory movement back and forth, so either a cos(ω𝑡) type 

movement or a sin(ω𝑡) type movement.  

 

So, then how do we get it back? We get it back by saying that 𝐴 cos(ω𝑡) which could be the 

movement of this mass. This mass could be moving like 𝐴 cos(𝜔𝑡), this is equal to the real 

part of 𝐴ejωt.  

𝐴 cos(ω𝑡) = Re{𝐴ejωt}. 

So, this crank is rotating at ejωt. It is rotating as ejωt and therefore there is some amplification 

due to this slider and so let us say that slider has an amplification and becomes 𝐴ejωt. 

 

And out of that I am trying to pull a real value movement for my mass, so it is the real part of  

𝐴ejωt or the imaginary part whichever I want and this angle that is covered 𝜔𝑡 is the phase 



angle. So, we said that we will consider the starting to be vertical at 
π

2
. So, the phase at any 

instant for this first mass is going to be measured from here, so it is going to be ω𝑡 +
π

2
.  

 

Now, how does it work out? So, in 𝑇 seconds, the phase covered by the phasor is 2π and so in 

one second the phase covered is 
2π

𝑇
 which is ω. So, in small 𝑡 seconds the phase covered is ω𝑡, 

this is actually a non-dimensional number that is why it is an angle, non-dimensional number. 

So that is what is covered by the phasor and to that you add the reference value your starting 

value.  

 

So, that happens to be the phase of the first mass point and beyond that is our spring. Now, let 

us see over here the information as it travels along the spring, it takes time right we said c is 

the speed, so it takes time to travel. So if I assign a phasor to the starting point, let us say that 

phasor we will align with the original phasor here. So, it moves its own descriptor moves like 

this and we assume there is is an amplification 𝐴.  

 

So, let this phasor be 𝐴ejωt. This 𝐴 is unimportant, but let us just keep it because if we say this 

is 1, there might be some amplification of 𝐴 over here, so well let us keep it. Now, as the pulse 

moves along the spring, if I look at a certain location 𝑥1it is delayed. So, it will see the 

information at a later time. So, the phasor should be representable here as ej(ωt − Δ).  

 

But 𝜔𝑡 being the phase or being the angle, this should also have the same unit, a non-

dimensional angular unit. So, now what should that be? Now, we say that wavelength happens 

to be the distance between two points, let us say these are two points, wavelength the distance 

between two points undergoing similar motion or same motion that means the phase is 2𝜋, 

right, because the phasor went round once and these two points were generated. 

 

So, the phase difference between them is 2𝜋. So, over λ distance the phase covered is 2𝜋. So, 

over unit distance the phase covered is 
2π

λ
. So, over a distance 𝑥1, the phase covered is 

2𝜋

𝜆
𝑥1 . 

So, at 𝑥1location the phasor will be denoted by ej(ωt  − 
2π

λ
𝑥1)

 that is the amount of phase delay. 

This is a phase delay over unit distance, this is the phase delay over 𝑥1.  

 



So, that is the amount of phase delay, so that is what the location at 𝑥1will be seen. Another 

location 𝑥2let us say will be seeing ej(ωt  − 
2π

λ
𝑥2)

and similarly if there was a point 𝜆 away from 

𝑥1, let us call it 𝑥1 + 𝜆, let us do this here.  

 

So, let us say 
2𝜋

𝜆
 and it is 𝜆 upon more than 𝑥1. So, this is going to be equal to ej(ωt − 

2π

λ
𝑥1−2π)

. 

e
j(ωt − 

2π
λ

(𝑥1+λ))
= ej(ωt − 

2π
λ

𝑥1−2π). 

So, 2𝜋 gives me just one. So, a point 𝜆 away from 𝑥1 behaves like 𝑥1, so that is the answer I 

get.  
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So, now if we look at my spring, so this first mass is moving like ejωt at a distance 𝑥1, I have a 

phasor that moves like (ωt   −  
2π

λ
𝑥1), at a distance 𝑥2 I have ej(ωt  − 

2π

λ
𝑥2) and so forth. And if 

my 𝑥 is a continuous variable, not discrete points, I will say the description along the spring 

for a continuous variable 𝑥 is 
2𝜋

𝜆
𝑥, 𝑥 is now continuous along the spring.  

 

It is a continuous variable along the spring, not discrete points. This entity 
2π

λ
 which is actually 

phase change per unit distance is given the symbol 𝑘 and the name wave number. Wave number 

is a very important entity in acoustics and sound structure interaction. The symbol is 

dedicatedly used for wave number. So that means what? The wave description has become 

ej(ωt − 𝑘𝑥).  

 



So, now just to drive home the point a little bit more I will take stations, I will take this station 

right here the 1, the mass the origin. I take another station a little to the right, one more little to 

the right, on more little to the right and may be the last one and this is my spatial direction and 

this below vertical will be my temporal direction. This way is my temporal direction, increasing 

time.  

 

So let us say here I begin as before as my phasor is vertical. Now this point a little bit later is 

delayed, so that phasor is let us say some 22
1

2

∘
 behind. Another point to the right is let us say 

45∘ behind. Why is that because it is ejωt and delayed by 𝑘 times let us say 𝑥1, 𝑥2, 𝑘 times 𝑥2. 

Similarly this one is say delayed by 67
1

2

∘
and this is delayed by 90∘. 

 

Now here what do we have? This is advancement in time, so the phasor let us say moves 

forward 22
1

2

∘
 and here it is 22

1

2

∘
behind, so this is going to be vertical. Here it is further 

22
1

2

∘
behind, it is going to be here. Here it is going to be 45∘ behind and here it is going to be 

67
1

2

∘
 behind and so on. Here this will be 45∘ ahead.  

 

Here it will be 22
1

2

∘
 ahead. Here it will be vertical. Here it will be 22

1

2

∘
behind. Here will be 

45∘ behind. Here this will be 67, my angles are a bit off but here this is a 67
1

2

∘
 ahead. Here it 

is 45∘. Here it is 22
1

2

∘
. Here it is vertical. Here it is 22

1

2

∘
 behind and so forth and all points in 

between, 𝑥 is a continuous variable time in a continuous way.  

 

So, every point in a wave transmitting system or a wave bearing system has a phasor 

description. I am having some trouble here, so let us see. 
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Has a phasor description of this form ej(ωt − 𝑘𝑥). At some reference 𝑥 = 0 whatever it may be 

you choose it is going to be ejωt. So, you can consider that to be your reference for phase, many 

times this happens to be the forcing agency, so your forcing agency is 𝐹ejωt.  

 

So, the rest of the response is phased with respect to the forcing agency and therefore the 

absolute phase is not important, it is with respect to any reference that you choose. Here we 

said our phasor moves starting from vertical, so we tied that to the mass, we said let us say that 

is the phase of your mass, then everything else starts to move relative to that phase and so you 

have this description ej(ωt − 𝑘𝑥) where this was described as ejωt.  

 

If this is described by ej(ωt + 
π

2
)
 it does not matter, this 

π

2
 will get added everywhere so that the 

relative difference between the two is the same. Now, let us see. We go now to the very first 

important idea in sound structure interaction, main or central idea in sound and structure 

interaction. In order to do this, we will need the two dimensional acoustic wave equation. 

 

We will write it like this A. W. E acoustic wave equation in rectangular coordinates, it is given 

by  

∂2𝑝(𝑥, 𝑧, 𝑡)

∂𝑥2
+

∂2𝑝(𝑥, 𝑧, 𝑡)

∂𝑧2
=

1

𝑐2

∂2𝑝(𝑥, 𝑧, 𝑡)

∂𝑡2
. 

So, we will need this equation, 2-D acoustic wave equation. We will also need the plate 

equation governing the vibrations of a plate the rectangular plate. 



 

What is that given by? That is given by 

D [
∂4𝑊

∂𝑥4
+ 2

∂4𝑊

∂𝑥2 ∂𝑦2
+

∂4𝑊

∂𝑦4
] + 𝑚′

∂2𝑊

∂𝑡2
= 0. 

This is the equation of motion for a vibrating plate, vibrating rectangular plate. So, we will 

need these two equations.  
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Now. So, what is the system we are looking at? We are looking at a system, let me draw it 

small first. So, we have a rectangular plate. So, this is my 𝑥, that is my 𝑦, that is my 𝑧. So, we 

have a rectangular plate that is vibrating and it goes off to ∞ in this direction, it goes off to 

∞ in that direction. So, above the plate we have a region we call it the acoustic half space. 

 

So as if the region has been divided into two halves, the world has been divided into two halves, 

one above the plate, one below the plate. Now further as this plate vibrates, we will assume 

that the dependence on 𝑦 is not there. So, the displacement 𝑊 earlier is not a function of 𝑦, so 

all 𝑦 derivatives will go to 0, all orders of 𝑦 derivatives go to 0. So, the plate equation kind of 

looks like the beam equation. 

 

So, I have  

D
∂4𝑊(𝑥, 𝑡)

∂𝑥4
+ 𝑚′

∂2𝑊(𝑥, 𝑡)

∂𝑡2
= 0. 



So, this actually looks like a beam equation, however, this is 
𝐸ℎ3

12(1−ν2)
 and therefore so we call 

this a 1D plate, one dimensional plate and therefore, what happens to this picture now? This 

picture gets modified, so there is a one dimensional plate. it goes off to ∞ in both directions.  

So, it goes off to ∞ in both directions and that is an acoustic half space. Now, on this one 

dimensional plate there is a wave moving. It has been initiated there is a wave moving and 

what is the description 𝑊(𝑥, 𝑡) = 𝐴ej(ωt − 𝑘𝑝𝑥). So by now you should be used to this notation, 

right. This is the description of a wave moving on a wave bearing system, right. So, ω is in my 

control.  

 

So, at some distance very far away there is a disturbance given, very far away there is a 

disturbance, maybe a point force is applied and so that starts off a wave and that wave by the 

time it arrives at where we are it looks like this and then 𝑘𝑝 happens to be the wave number in 

the plate. I should have mentioned earlier that this wave number in the structure 𝑘𝑝 depends on 

frequency and it depends on the stiffness and the inertia properties. 

 

Earlier we were talking about the spring, same thing. When the phasor is rotating and it is 

connected to the mass, the mass is connected to the spring, what is the wave number in the 

spring it is dependent on the frequency ω and the stiffness and the inertia properties on the 

spring. So, these three independent variables decide what the wave number is going to be and 

therefore what the wavelength is going to be because why wave length is what?  

 

Wave length is 
2π

𝑘
 . So, wavelength and the inverse wave length wave number are decided by 

these three properties. So, 𝑘𝑝 in the 1D plate got decided by ω and its properties. So, this is my 

descriptor of the wave in the 1D plate. Now, my question is this wave excites the sound field 

above the plate, so what is that sound field? This displacement on the 1D plate results in what 

sound field in the acoustic half space? So, let us see that. 
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So, we gave the acoustic wave equation earlier for 2D rectangle region. It was given by  

∂2𝑝

∂𝑥2
+

∂2𝑝

∂𝑧2
=

1

𝑐2

∂2𝑝

∂𝑡2
. 

You should know now that this has a wave solution given by some constant in front 

ej(ωt −𝑘𝑥𝑥 − 𝑘𝑧𝑧) 

𝑝(𝑥, 𝑧, 𝑡) = 𝐵ej(ωt−𝑘𝑥𝑥 − 𝑘𝑧𝑧). 

There is an 𝑥 component of the wave number, there is a 𝑧 component of the wave number.  

 

So, there is this 1D plate acoustic half space. So, in the acoustics half space there is a wave 

number in the 𝑥 direction, there is a wave number in the 𝑧 direction and therefore a resultant 

wave number in some direction which is the acoustic wave number 𝑘. Now, the wave number 

we said was 
2π

λ
, 

2π

λ
 = 𝑘 the wave number right. And we also said that 𝑐 =  𝑓λ or λ =

𝑐

𝑓
.  

 

So I have 
2π𝑓

𝑐
 = 𝑘 wave number, 2 π𝑓 is ω. So, therefore 

ω

𝑐
 = 𝑘, this is very important. The 

moment you know the speed of the sound wave in the medium, the moment you know the 

frequency, wave number in the medium can be found. So, we are actually exciting the beam at 

ω frequency right and so the sound field being a linear system it will respond at ω.  

 

So sound field will respond at ω and let us say the medium is air, we know the speed of sound 

in air. So, 
ω

𝑐
 is known to us, this 𝑘 is known us. The moment frequency is given 𝑘 is known to 

us, 𝑘 in air. Let us say this medium is air for now. So, now if I substitute this into this, substitute 



this supposed solution into my original partial differential equation you can see I have two 

space derivatives, I have two 𝑧 derivatives, I have double time derivatives.  

 

So, that will actually give me, without full derivation I will tell you that 𝑘𝑥
2 + 𝑘𝑧

2 = 𝑘2, you can 

try it out, you will get this. Now, I said this case known to me why because ω is known to me 

and the speed of sound in air is known to me, but 𝑘𝑥 and 𝑘𝑧 are not known to me. They are not 

known to me, so they have to be fixed. How do we fix that? The 𝑘𝑥 is the 𝑥 direction wave 

number. 

 

That means the wave number in the 𝑥 direction and 𝑘𝑧 is the wave number variations in the 𝑧 

direction, describes the variation and direction. So, let me close the lecture here for today. We 

will continue with this in the next class. Thank you. 


