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Good morning and welcome to this next lecture on Sound and Structural Vibration. 
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So far in so many lectures we have seen the classical problem as I call it, we posed the problem. 

We went into the Fourier Domain we decided to do the work in Complex Domain. So, we 

learnt some roles in the Complex Domain we used branch cuts we learnt about Asymptotics. 

We looked at the plate velocity and the related acoustics uncoupled and coupled. 

 

And we understood the important frequency regimes for different physical effects. I am writing 

this because this kind of gives you the gamut that is involved typically in sound and structural 

vibration problems. Now the problem we looked at was infinite dimensional the panel was 

infinite dimensional the sound field half space was infinite dimensional I mean extends to 

infinity. 

 

So, we are going to look at the next problem now, the next problem is this I will call it a 2-D 

Structural Acoustic Wave guide. What is it the geometry is this I have a 2-D channel of acoustic 

fluid there is acoustic fluid here and this channel extends to ∞ in both the directions and has a 



height 𝑎. Now the top is rigid this surface is rigid and bottom surface now can carry a flexural 

wave its flexible bottom is flexible. 

 

So, from the earlier problem here 𝑜𝑛𝑒 dimension is bounded in this direction it is bounded in 

the other direction it is ∞. But in this vertical direction is bounded and let me say my coordinate 

system happens to be 𝑥 in this direction 𝑦 in direction here this is my 𝑦 = 0 the bottom is my 

𝑦 = 0 top is 𝑦 = 𝑎. So, what does what is going to be revealed or what is interesting about this 

problem. 

 

The fact is that if this flexural plate the bottom plate was placed in vacuum, then it will carry a 

flexural wave unaffected by any fluid. On the other hand, if there was a rectangular 2-D rigid 

duct then you will have various waves propagating you will have a plane wave propagating 

then you will have the next cut on propagating which has 𝑧𝑒𝑟𝑜 velocity at the walls. 

 

And then you will have the next level wave cut on propagating and so forth and all higher 

orders which all start with zero velocity here will be propagating. These are higher order Modes 

of a duct so this comes from acoustics which I am not going to repeat one should know this 

from acoustics. So uncoupled from the other medium the flexural plate placed in vacuum or 

this acoustic fluid with rigid walls being rigid they behave uncoupled in isolation.  

 

But now we are going to place an acoustic fluid in contact with a flexible plate. So, the fluid 

will see now a not a rigid boundary now, but it will see a flexible boundary. Similarly, this 

flexing plate will see acoustic fluid applying pressures to it. So, this is a coupled problem that 

means as the flexural wave propagates the pressures in the fluid will be applied back. They will 

influence and change the behaviour of the plate. 

 

And the acoustic fluid carrying its own cut on waves plane wave and higher order modes will 

see the flexing of a nearby boundary and so their behaviour is going to be modified. So, each 

medium will modify the behaviour of the other, so this is a coupled problem, so this is going 

to be interesting to look at. 
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So let use see so again this is my geometry here 2-D wave guide. So top is a rigid plate bottom 

is a flexible plate my 𝑦 begins here 𝑦 is 0 and 𝑦 = 𝑎, and they go off to ∞ in both directions. 

So, we will formulate the equations for this system now the so let us see now the acoustic fluid 

it is a 2-D domain. And so, the related acoustic wave equation in pressure is,  

∂2𝑃(𝑥, 𝑦, 𝑡)

∂𝑥2
+

∂2𝑃(𝑥, 𝑦, 𝑡)

∂𝑦2
=

1

𝑐2

∂2𝑃(𝑥, 𝑦, 𝑡)

∂𝑡2
 . 

 

So, what is the general solution to this? We are looking at harmonic sound fields that was the 

statement I made right in the beginning. So, if this system is somehow driven at a harmonic 

single frequency the general solution is this 

𝑃(𝑥, 𝑦, 𝑡) = 𝐴ei(ωt−𝑘𝑥𝑥 − 𝑘𝑦𝑦) + 𝐵ei(ωt−𝑘𝑥𝑥 + 𝑘𝑦𝑦). 

So, I am looking at waves that are propagating back and forth up and down and propagating in 

one direction that is adequate. 

 

So, this is not the most general in that sense but that is adequate so far off on the left there is 

some source which is localized source which disturbs this system. And so now the waves are 

propagating in the positive 𝑥 direction and they are propagating up and down in the 𝑦 direction. 

So that is this solution. 

 

So, this minus sign here and here says that the waves are moving towards the right and this 

minus sign says they are moving towards the positive 𝑦 direction and this plus says the waves 

are moving in the negative 𝑦 direction. And one more statement I should make is that the 

classical problem that we did I use the 𝑒−𝑖𝜔𝑡 convention. So approximately half the world uses 

this −𝑖𝜔𝑡 convention and the other half uses the 𝑒+𝑖𝜔𝑡 convention. 



 

So unfortunately, it is confusing for the students but what to do and the reason I use the −𝑖𝜔𝑡 

for the classical problem is the entire literature which is very rich and studies this problem uses 

this −𝑖𝜔𝑡. So, if I now suddenly change the notation the student will go when here, reads the 

paper this +𝑖𝜔𝑡 and that difference makes a lot of difference in the branch cuts. 

 

So, it will cause more confusion than use so I kept it that way. So, if you have looked at that 

problem the way I presented and then you go look at the literature you will not be confused 

about the notation. Whereas I myself I am comfortable with +𝑖𝜔𝑡 so the rest of the problems I 

will use +𝑖𝜔𝑡. In the long run if you understand what is happening there is no problem you can 

do it both ways after you understand. 

 

But at the learning stage these are very cumbersome if the notation is changed. So, this problem, 

I am going to do with +𝑖𝜔𝑡 convention. So, now having said that so, we have this solution for 

the pressure field and where let us see 𝑘𝑥 is the wave number in the 𝑥 direction and 𝑘𝑦 is the 

wave number in the 𝑦 direction. So that now you should know 𝑘𝑥
2 + 𝑘𝑦

2
 should be equal to 

the acoustic wave number square which is 
𝜔2

𝑐2
  and c is the speed of sound. 

 

So that is for now the information about the acoustic fluid and A and B are unknowns. There 

are more unknowns here but 𝐴 and 𝐵 are unknowns, frequency 𝜔 is known. So, 𝑘𝑥 and 𝑘𝑦 are 

still undecided now what about the panel so or what about the plate that is the boundary? The 

plate it is a, 1D plate as before so it is a 1D plate that is the boundary so what is the equation 

governing that. 

It is 

Eℎ3

12(1 − 𝜈2)

d4 𝑤(𝑥)

d𝑥4
− 𝜌𝑝ℎ𝜔2w(x) = −𝑝(𝑥, 0). 

 

So, the time behaviour has been removed because it is a linear system and every variable 

vibrates at 𝜔 that has been removed. And so now because the 𝑦 dependence what I mean is the 

𝑧 dependence for the plate in the other direction. The 𝑧 dependence in the other direction is not 

there so it is just dependent on 𝑥 so I have written it accordingly, the time has been removed 

because its harmonic. 

 



The 𝑧 dependence has been removed because it is the way we have posed it and so the 

displacement 𝑤 of the bottom boundary is the sole function of 𝑥 so this is the equation. And 

now there is a pressure that is applied on it from the fluid. So, there is pressure acting on the 

plate bottom plate due to the acoustic fluid that is this term here. 
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Next now we know that we have two equations the one the fluid equation or the fluid PDE and 

then we have the structural PDE. Now we need to connect the 2 which is a boundary condition. 

Now first of all the Euler equation which is our friend, and we want to relate pressure to velocity 

is let us say in the 𝑦 direction in the fluid  

𝜕𝑃(𝑥, 𝑦, 𝑡)

𝜕𝑦
 =  −𝜌

𝜕𝑉(𝑥, 𝑦, 𝑡)

𝜕𝑡
 . 

But as I say my time dependence is always this so if I rewrite pressure as some special pressure 

into 𝑒𝑖𝜔𝑡 and velocity as some special velocity and some this 𝑒𝑖𝜔𝑡 then 𝑒𝑖𝜔𝑡can be removed. 

So now what I have is? This  

𝜕𝑝(𝑥, 𝑦)

𝜕𝑦
= −𝑖𝜔𝜌𝑣(𝑥, 𝑦). 

So, the upper 𝑉 is 𝑣 times 𝑒𝑖𝜔𝑡 so please get used to this otherwise like I have to keep writing 

too much. 

𝑉(𝑥, 𝑦, 𝑡) = 𝑣(𝑥, 𝑦)𝑒𝑖𝜔𝑡. 
 

So here what we are saying is this 𝑣 is the coefficient of the time term. So, this is the Euler 

equation valid within the fluid. So, what is next, the next is we will try to find out what my P 

let me rewrite because its 

𝑃(𝑥, 𝑦, 𝑡) = 𝐴ei(ωt−𝑘𝑥𝑥 − 𝑘𝑦𝑦) + 𝐵ei(ωt−𝑘𝑥𝑥 + 𝑘𝑦𝑦). 



 

So, what is 
𝜕𝑃

𝜕𝑦
? So that is  

𝜕𝑃

𝜕𝑦
 =  (−𝑖𝑘𝑦𝐴𝑒−𝑖𝑘𝑥𝑥 − i𝑘𝑦𝑦 + 𝑖𝑘𝑦𝐵𝑒−𝑖𝑘𝑥𝑥 + i𝑘𝑦𝑦)𝑒𝑖ωt. 

Now this suppose we evaluate this at 𝑦 =  0 why do we do that we do that because in the wave 

guide the bottom plate velocity and the acoustic fluid particle velocity that is contiguous with 

the vibrating plate must be same. So, this is the 𝑦 =  0 position so we evaluate the Euler 

equation at 𝑦 = 0. 

So,  

𝜕𝑃

𝜕𝑦
|

𝑦=0

= (−𝑖𝑘𝑦𝐴𝑒−𝑖𝑘𝑥𝑥 + 𝑖𝑘𝑦𝐵𝑒−𝑖𝑘𝑥𝑥 )𝑒𝑖ωt. 

Now this is equal to this term over here or this term over here. Now what we say is that at 𝑦 = 

0 the panel displacement or plate displacement and velocity are equal to acoustic particle 

displacement and velocity. So, this term here which is acoustic particle velocity when we write 

it as acoustic particle velocity at 𝑦 =  0 is the equal to the plate velocity.  

 

Let us call it 𝑣𝑝 and the plate velocity = 𝑖𝜔𝑤(𝑥). So, I have  

𝜕𝑃

𝜕𝑦
|

𝑦=0

= −𝑖𝜔𝜌𝑖𝜔𝑤(𝑥)𝑒𝑖𝜔𝑡 

So, this is what I have so if I rewrite this what I have is? 
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𝜔2𝜌𝑤(𝑥) = (−𝑖𝑘𝑦𝐴 + 𝑖𝑘𝑦𝐵)𝑒−𝑖𝑘𝑥𝑥 . 

 



So, we are at the end of the time frame so I will stop over here, and I will continue with this 

portion in the next class thank you. 

 

 


