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Good morning. Welcome to this next lecture. We are doing the velocity field calculation using 

our branch cut contour. So, we reached this position where we are seeing that one part of the 

contribution to the velocity field of the plate is due to a continuous range an integral over that 

wave number from 0 to ∞. So, now this integral the way it is this integral cannot be computed 

in closed form.  

 

It has to be done numerically, but here we are going to find some approximate value to it. So, 

the contribution 𝑣1 + 𝑣2 is given by,  

𝑣1 +  𝑣2 =  
𝜔𝐹𝜇𝑘𝑝

4

𝜋𝐵
𝑒𝑖𝑘0𝑥 ∫

(𝑘2 − 𝑘0
2)

1/2
𝑒−𝑈𝑥𝑑𝑈

(𝑘4 − 𝑘𝑝
4)(𝑘2 − 𝑘0

2) − 𝜇2𝑘𝑝
8 .

∞

0

 

We should not forget that 𝑘 =  𝑘0 + 𝑖𝑈. So 𝑘 comes here, 𝑘 comes here, 𝑘 comes here, so I 

am not changing that, it will become horrendous. Now we will find as x extends to ∞, x 

approaches ∞ that means I have this 1-D plate excited by a line force. So, I have some 

vibrations happening, then sound field being generated and so forth and the sound field is 

interacting. So, as I move far away from my source as x tends to ∞, I want to see the velocity 

field. 



 

So, let us not forget actually, let us not forget that my total velocity field, just want to remind 

here is first of all the sum of residuals which we are yet to calculate, plus 𝑣1 +  𝑣2. So, we are 

looking at 𝑣1 +  𝑣2 only now. This residue part has not come in yet, we will do that. We will 

do that the residue part a little later. I said that is a separate study. So we are looking at 𝑣1 +  𝑣2 

and 𝑣1 +  𝑣2 is this integral and I say that this is not integrable in closed form. 

 

So we see what happens as you move further away from the forcing. Now we have 𝑒−𝑈𝑥 in the 

numerator, so as x tends to ∞ this goes to 0. And so as x tends to ∞, the dominant contribution 

comes from 𝑈 = 0. So, I had said my 𝑘 =  𝑘0 + 𝑖𝑈 and so if 𝑈 happens to be equal to 0 my 𝑘 

should be equal to 𝑘0. So, in here 𝑘 will be equal to 𝑘0 or close to 𝑘0 and 𝑘 will be equal to 𝑘0 

here. 

 

So, in the approximate sense I will have 

𝑒−𝑈𝑥

𝑝(𝑘)
=

𝑒−𝑈𝑥

−𝜇2𝑘𝑝
8. 

 So, this part and the denominator we write it as this. So, there is still this portion. So, what do 

we do?  
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Now, we have the 

𝑣1 +  𝑣2 =  
𝜔𝐹𝜇𝑘𝑝

4

𝜋𝐵(−𝜇2𝑘𝑝
8)

𝑒𝑖𝑘0𝑥 ∫(𝑘0
2 + 2𝑖𝑘0𝑈 − 𝑈2 − 𝑘0

2)
1/2

𝑒−𝑈𝑥𝑑𝑈,

∞

0

 



=
−𝜔𝐹

𝜋𝐵(𝜇𝑘𝑝
4)

𝑒𝑖𝑘0𝑥 ∫ √2𝑖𝑘0𝑈 − 𝑈2 𝑒−𝑈𝑥𝑑𝑈,

∞

0

 

𝑈 → 0 

−𝜔𝐹

𝜋𝐵(𝜇𝑘𝑝
4)

𝑒𝑖𝑘0𝑥√2𝑘0 ∫(𝑖𝑈)1/2 𝑒−𝑈𝑥𝑑𝑈.

∞

0

 

  

We look at this part, this part will be an integral which decays as x to the power 
−3

2
 after you 

integrate. So, there is a wave which has a dominant wave number as 𝑘0 okay on the plate, but 

it decays away and decays away as you move towards ∞ at the rate 𝑥
−3

2 . So, we had to weigh 

this contribution along with the other contributions from residue, so which one is big, which 

one is small so forth. 

 

But the integrals from the vertical cut on the left and right side at 𝑘0 gives me this part, this 

behaviour. So, that is one major part of it done, we still have to deal with residues that will 

deal. Now, let us see we have to move towards the thought about singularities so that we can 

get the residue contributions which is very important. So, now to move towards that first of all 

we need to non dimensionalize. 

So, denominator at some point we had (𝑘4 − 𝑘𝑝
4)√𝑘2 − 𝑘0

2 − 𝜇𝑘𝑝
4
, this was a denominator. 

So, cutting short the entire discussion we need a one parameter which is non-dimensional 

frequency we need. The second is a non-dimensional material parameter which can take 

material properties like fluid density, speed of sound, plate density, and any other parameters. 

 

So that we can weigh that when fluid is heavy how it behaves, if fluid is light, how the situation 

looks like and from here at high frequencies or low frequencies or around some typical 

frequencies. So, these two parameters we need. So, now to refresh you the coincidence 

frequency in this plate problems is given by 𝜔𝑐 = √
𝑚𝑐4

𝐵
, 𝑐 is the speed of sound in the material, 

𝐵 is the flexural rigidity. 

 



Now we will take a value or a parameter called 𝑀 which is 
𝑘0

𝑘𝑝
, the acoustic wave number by 

the plate wave number and if you look at this, this is 
𝜔/𝑐

𝜔/𝑐𝑝
, so that becomes equal to 

𝑐𝑝

𝑐
 . So, if 

we now elaborate here 𝑘0 is 
𝜔

𝑐
 and 𝑘𝑝 is (

𝑚 𝜔2

𝐵
)

1/4

. So, let me take out onto the next page.  

𝑀 =
𝑘0

𝑘𝑝
=

𝜔/𝑐

𝜔/𝑐𝑝
=

𝑐𝑝

𝑐
, 

=
ω

c
(

𝐵

𝑚 𝜔2
)

1/4

. 
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So, 

𝑀 =
𝑘0

𝑘𝑝
= √

𝐵

𝑚 𝜔2

4 𝜔

𝑐
 , 

= √
𝐵 𝜔4

𝑚 𝜔2 𝑐4

4

 , 

= √
𝐵 𝜔2

𝑚 𝑐4

4

= √
 𝜔2

 𝜔𝑐
2

4

 . 

𝑀 = √
𝜔

𝜔𝑐
  . 

This is the non-dimensional frequency parameter. The other material non-dimensional 

parameter 𝜖 let me write it as 
𝜌𝑐

𝑚𝜔𝑐
 , this is the other parameter. So, these are the two we need. 

 



There is a discussion behind it and so forth but these are the two we need. Now, if you recall 

somewhere in the derivation of the plate in the Fourier domain in Fourier or wave domain we 

came up across this equation which (𝐵𝑘4 − 𝑚𝜔2)𝑉(𝑘) = −𝑖𝜔𝐹 − 𝜔2𝜌𝜙(𝑘, 0). Now you 

should know that this term (𝐵𝑘4) comes from plate stiffness like 𝐵 is flexural stiffness, plate 

stiffness. 

 

And this term (𝑚𝜔2) comes from plate inertia and if we take 𝐵 out, suppose we take 𝐵 out and 

divide, so I take 𝐵 out  I get 

(𝑘4 − 𝑘𝑝
4)𝑉(𝑘) =

−𝑖𝜔𝐹

𝐵
−

𝜔2𝜌𝜙(𝑘, 0)

𝐵
, 

=
−𝑖𝜔𝐹

𝐵
+

𝜔2𝜌

𝐵

𝑉(𝑘)

𝛾
. 

 Now let us see about 𝛾 . Now, how did we formulate the 2-D verification for the potential, we 

get 

−𝑘2𝜙(𝑘, 𝑦) +
∂2ϕ(k, y)

∂ y2
+ k0

2ϕ(k, y) = 0. 

Then we have  

𝜕2𝜙(𝑘, 𝑦)

𝜕𝑦2
− (𝑘2 − 𝑘0

2
) 𝜙(𝑘, 𝑦) = 0. 

So, this carries (k0
2ϕ(k, y)) information about the speed of sound and hence compressibility, 

compressibility of the fluid. 

 

And this term (−𝑘2𝜙(𝑘, 𝑦)) comes from 
∂2ϕ

∂ x2 it is similar to 
∂2p

∂ x2  so that the net pressure across 

an element. So, this term (𝑘2) we will consider to be representing pressure and this term (𝑘0
2) 

to be representing compressibility. So, we have structural stiffness (𝑘4), structural inertia 

(𝑘𝑝
4) and a 𝛾  over here and 𝜌 over here so which is fluid density. So, what do we get as in the 

net?  
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So we will get let us see.  

(𝑘4 − 𝑘𝑝
4)𝑉(𝑘) =

−𝑖𝜔𝐹

𝐵
+

𝜔2𝜌

𝐵

𝑉(𝑘)

𝛾
, 

 

[𝑘4 − 𝑘𝑝
4 −

𝜔2𝜌

𝐵 𝛾
] 𝑉(𝑘) =

−𝑖𝜔𝐹

𝐵
, 

[(𝑘4 − 𝑘𝑝
4)𝛾 −

𝜔2𝑚
𝐵

𝜌
𝑚] 𝑉(𝑘)

𝛾
=

−𝑖𝜔𝐹

𝐵
, 

𝑉(𝑘) =
−𝑖𝜔𝐹𝛾

𝐵 [(𝑘4 − 𝑘𝑝
4)𝛾 − 𝑘𝑝

4𝜇]
. 

So, [(𝑘4 − 𝑘𝑝
4)𝛾 − 𝑘𝑝

4𝜇] is my denominator now. So the denominator carries the roots of this 

system. We are going to do control integration, so the roots of the system or poles of the system 

are important. So, now we have already seen 𝑘4 comes from plate stiffness, 𝑘𝑝
4
 comes from 

plate inertia. 

 

Then here √𝑘2 − 𝑘0
2

, 𝑘2 this comes from fluid pressure minus 𝑘0
2
 square this comes from 

fluid compressibility and  −𝑘𝑝
4𝜇, 𝜇 carrying 𝜌 this is fluid inertia. When the plate was in 

vacuum, the behavior was play between plates stiffness and plate inertia, but now that this is a 

coupled problem it is a play between these five factors 1(𝑘4), 2 (𝑘𝑝
4), 3 (𝑘2), 4 (𝑘0

2) and 5 

(𝑘𝑝
4𝜇).  

 



These five factors coming in various frequency regimes and various parameter regimes they 

become more or less important. So, I will close it here, We will continue this from the next 

class. Thanks. 


