
Sound and Structural Vibration 

Prof. Venkata Sonti 

Department of Mechanical Engineering  

Indian Institute of Science, Bangalore 

 

Module No # 02 

Lecture No # 10 

Physical meaning of terms 

 

Good morning to this next lecture on sound and structural vibration so if you recall we had 

fully formulated the velocity potential and velocity the inverse. 
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So, velocity of the plate was given  

𝑣(𝑥) =
−𝑖𝜔𝐹

2𝜋𝐵
∫

𝑒𝑖𝑘𝑥

[𝑘4 − 𝑘𝑝
4 −

𝜔2𝜌

𝐵𝛾
]

∞

−∞

𝑑𝑘. 

So just a word, about 
𝜔2𝜌

𝐵𝛾
 if I multiply by 𝑚 and divide by 𝑚 I have 

𝑚𝜔2

𝐵
 which is 𝑘𝑝

4
. Then I 

have 𝛾 then I have 𝜌 by 𝑚 which I will call a 𝜇 so this becomes a 𝜇. 

 

So, I get 
𝑘𝑝

4𝜇

𝛾
 so 

𝜔2𝜌

𝐵𝛾
  I will write as 

𝑘𝑝
4𝜇

𝛾
. So, if I write it just once  

𝑣(𝑥) =
−𝑖𝜔𝐹

2𝜋𝐵
∫

𝑒𝑖𝑘𝑥

[𝑘4 − 𝑘𝑝
4 −

𝑘𝑝
4𝜇

𝛾
]

∞

−∞

𝑑𝑘. 

So, it is worth remembering this form. Now this is going to be computed using a contour 

integral as we just did last class it is going to be computed using a contour integral.  

 



So, what happens here? We will have this whole thing represented I will call 
−𝑖𝜔𝐹

2𝜋𝐵
 part 𝜓. So, 

the contour integral is 

𝐽 = ∮ =  𝜓 ∮
𝑒𝑖𝑘𝑥

𝑝(𝑘)
𝑑𝑘, 

𝑝(𝑘)  = 𝑘4 − 𝑘𝑝
4 −

𝑘𝑝
4𝜇

𝛾
. Now I said last time that is a particular cut we are going to follow 

which is what? At 𝑘0 I go vertical to 𝑘0 + 𝑖∞ at –𝑘0 I have another downward cut. 

 

So how does this integral look like? I come from minus infinity I go down here cross I am 

below the cut over here I go off to plus infinity and then I come at an arc with infinite radius. 

And this line is a cut so I cannot cross so I come down here go around take a vertical line back 

up. And again, with an arc of infinite radius I join up at minus infinity. So that is my closed 

contour.  

 

And there will be some singularities that are another big topic so we will look at it slowly 

whatever singularities are there. There will be some singularities so we will look at them 

separately but that is the contour first. So, if I call these infinite parts arcs as 𝑆 I called that as 

𝑆 then this part going down and going up. So, this is the direction of the integral I mean along 

the contour the line integral. 

 

So, this part is called the 𝐵 portion the branch portion this part is 𝑆 so now what do I have? I 

have the 𝐽 the contour integral given by several branches. So, I have the portion I want which 

I do not touch again this is the portion I want along the real line. Then I have the arcs at infinity 

plus I have 𝜓 and the integral over the arcs at infinity then I have the integral over 𝐵. And that 

is equal to  2𝜋i the sum of residues of this integral. 

 

Now by Jordan Lemma these are all theorems in complex variables, and I said that I have a 

series of 24 lectures on contour integration in the complex variable. So, if you type my name 

contour integration in you tube you will get this set of lectures so I am not repeating, or you 

would have seen this in some complex variable class there is a Jordan Lemma. Based on the 

Jordan Lemma the 𝑆 branch goes to 0. These integrals on infinite radius arc goes to 0 so what 

do I have now?  
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What I have is 

𝐽 =  ∮ =  𝜓 ∫ + 𝜓 

∞

−∞

∫    =
𝐵

 𝑖2𝜋 ∑ 𝑅𝑒𝑠. 

So, my velocity in the space is given by 

𝑣(𝑥) = 𝑖2𝜋 ∑ 𝑅𝑒𝑠  −  𝜓 ∫ [  ]
𝐵

. 

 So, what was B? B was B comes down this way go around and go up that is what B is about.  

 

Now what is –B? Along with the –B is you come down go around and go up this is called 𝐵1 

we will call this 𝐵2. So, what is –𝐵1 so this is –𝐵1 and –𝐵2 what is –𝐵1?  

−𝐵1 =  𝜓 ∫ [  ] 𝑑𝑘.

𝑘0

𝑘0+𝑖∞

 

−𝐵2  =  𝜓 ∮ [  ] 𝑑𝑘.

𝑘0+𝑖∞

𝑘0

 

So, one end is 𝑘0 the other end is 𝑘0 + 𝑖∞ so what I do is I substitute now 𝑘 is as 𝑘0 + 𝑖𝑈 so 

that when what does that mean. So now 𝑑𝑘 first of all is equal to 𝑖𝑑𝑈 when 𝑘 = 𝑘0 + 𝑖∞ then 

𝑈 is infinity and then 𝑘 = 𝑘0 then 𝑈 = 0. And one more thing so we have 𝑘0 and we are going 

up, so we come to 𝑘0 + 𝑖∞ and we come down. So, this is the cut, so this is called the 𝛾− portion 

this called the 𝛾+ portion. 

 

The cut is because of 𝛾 so we will use 𝛾− definition here and we will use the 𝛾+ definition here 

that is the idea. So now related to 𝐵1 I have  



𝑣1 =  𝜓 ∫
𝛾−𝑒𝑖𝑘𝑥 𝑑𝑘 

(𝑘4 − 𝑘𝑝
4)𝛾− − 𝜇𝑘𝑝

4

𝑘0

𝑘0+𝑖∞

. 

So, if now I implement this transform here if I implement this transform in there what do I get? 

 

I get  

𝑣1 =  𝜓 ∫
𝛾−𝑒𝑖(𝑘0+𝑖𝑈)𝑥 𝑖𝑑𝑈 

𝛾−(𝑘4 − 𝑘𝑝
4) − 𝜇𝑘𝑝

4

0

∞

. 

= 𝜓(−1)𝑒𝑖𝑘0𝑥 ∫
𝑖𝛾−𝑒−𝑈𝑥𝑑𝑈 

𝛾−(𝑘4 − 𝑘𝑝
4) − 𝜇𝑘𝑝

4

∞

0

. 

 

So, that is this part here along with the minus so that means this will get added as +𝑣1 straight 

away because it carries the minus in it. 

 

So now what about this small lower portions here? The small lower portion around 𝑘0 here let 

me just briefly show it without elaboration here. My 𝑘 =  𝑘0 +  𝜖𝑒𝑖𝜃 because that 𝑘 if I 

exaggerate it at 𝑘0 I move on a semicircle of infinitesimally small radius. So, what is d times 

k? 𝑑𝑘 =  𝜖𝑖𝑒𝑖𝜃 , 𝜖 is constant radius is constant.  

 

So, if I implement 𝑑𝑘 then in the integral the 𝑑𝑘 will turn out to be 𝜖𝑖𝑒𝑖𝜃𝑑𝜃 and 𝜃 value will 

have its limit. Let us say 𝜋 to 0 or something like this 𝑑𝜃 will have its limits. But we are going 

to take limits of 𝜖 tending to 0 and there will be 𝜖 always sitting on top. Here also there will be 

𝜖 because 𝑘 is 𝑘0 + 𝜖 but they will be overwhelmed by other terms 𝜖 is small quantity. 

 

But in the numerator, all by itself there will be one 𝜖 sitting so as limit 𝜖 tends to 0 this small 

half circle integral goes to 0. So, I am not elaborating that it can be rigorously but not 

elaborating on that.  
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So next my −𝐵2 integral what is that?  

−𝐵2 =  𝜓 ∫
𝛾+𝑒𝑖𝑘𝑥 𝑑𝑘 

(𝑘4 − 𝑘𝑝
4)𝛾+ − 𝜇𝑘𝑝

4

𝑘0+𝑖∞

𝑘0

. 

So here also we will write 

𝑘 =  𝑘0 + 𝑖𝑈, 

𝑑𝑘 =  𝑖𝑑𝑈, 

when 𝑘 = 𝑘0, 𝑈 = 0 when k = 𝑘0 + 𝑖∞, 𝑈 = ∞. So now my 

−𝐵2 =  𝜓 ∫
𝛾+𝑒𝑖(𝑘0+𝑖𝑈)𝑥 𝑖𝑑𝑈 

(𝑘4 − 𝑘𝑝
4)𝛾+ − 𝜇𝑘𝑝

4

∞

0

, 

= 𝑒𝑖𝑘0𝑥 𝜓 ∫
𝑖 𝛾+𝑒−𝑈𝑥 𝑑𝑈 

(𝑘4 − 𝑘𝑝
4)𝛾+ − 𝜇𝑘𝑝

4 .

∞

0

 

So now we will combine both of them we will combine  𝑣1 + 𝑣2 or –𝐵1 –𝐵2 will combine. If 

we do that what happens I get 

𝑣1 + 𝑣2 =  −𝑒𝑖𝑘0𝑥𝜓 ∫
𝑖𝛾−𝑒−𝑈𝑥𝑑𝑈 

𝛾−(𝑘4 − 𝑘𝑝
4) − 𝜇𝑘𝑝

4

∞

0

+ 𝑒𝑖𝑘0𝑥 𝜓 ∫
𝑖 𝛾+𝑒−𝑈𝑥 𝑑𝑈 

(𝑘4 − 𝑘𝑝
4)𝛾+ − 𝜇𝑘𝑝

4 .

∞

0

 

  

Now 𝜓 itself is 
−𝑖𝜔𝐹

2𝜋𝐵
. So, what do we get?  

=
−𝑖𝜔𝐹

2𝜋𝐵
𝑒𝑖𝑘0𝑥 [∫

𝑖𝛾−𝑒−𝑈𝑥𝑑𝑈 

𝛾−(𝑘4 − 𝑘𝑝
4) − 𝜇𝑘𝑝

4

∞

0

− ∫
𝑖 𝛾+𝑒−𝑈𝑥 𝑑𝑈 

(𝑘4 − 𝑘𝑝
4)𝛾+ − 𝜇𝑘𝑝

4

∞

0

]. 

 



I will write 𝛾− is equal to −𝛾+why because at the cut. If you go, there is a minus one jump you 

will get a jump of 𝑒𝑖𝜋.  

=
−𝑖𝜔𝐹

2𝜋𝐵
𝑒𝑖𝑘0𝑥 [∫

𝑖𝛾+𝑒−𝑈𝑥𝑑𝑈 

−𝛾+(𝑘4 − 𝑘𝑝
4) − 𝜇𝑘𝑝

4

∞

0

+ ∫
𝑖 𝛾+𝑒−𝑈𝑥 𝑑𝑈 

(𝑘4 − 𝑘𝑝
4)𝛾+ − 𝜇𝑘𝑝

4

∞

0

], 

 

=
𝑖𝜔𝐹

2𝜋𝐵
𝑒𝑖𝑘0𝑥 [∫

𝑖𝛾+𝑒−𝑈𝑥𝑑𝑈 

𝛾+(𝑘4 − 𝑘𝑝
4) + 𝜇𝑘𝑝

4

∞

0

 − ∫
𝑖 𝛾+𝑒−𝑈𝑥 𝑑𝑈 

(𝑘4 − 𝑘𝑝
4)𝛾+ − 𝜇𝑘𝑝

4

∞

0

]. 

 

So, we have to combine this now so how do that, so I have something like 𝑎 + 𝑏  I have this, 

𝑎 + 𝑏  in the same 𝑎 − 𝑏. So, 𝑎2 − 𝑏2 and then I will take an LCM so that this 𝑖𝛾+, 𝑖𝛾+  will 

add up and the other parts will cancel. So, I am going to change the page so if you take the 

LCM and add it up. 
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So, I get 

𝑖𝜔𝐹

2𝜋𝐵
𝑒𝑖𝑘0𝑥 [∫

−2𝑖𝛾+𝜇𝑘𝑝
4𝑒−𝑈𝑥𝑑𝑈

𝛾+
2(𝑘4 − 𝑘𝑝

4)
2

− 𝜇2𝑘𝑝
8

∞

0

]. 

So now you can see that U is the wave number variable and we have a continuous range of 

wave number variables contributing to the velocity. 

 

So let us write it due to the branch cut contributions to the plate vibrations include those waves 

from a continuum of wave numbers. So, this is interesting we are running out of time I will 

close the lecture here and we will continue from this portion next lecture. 

 


