Mechanics and Control of Robotic Manipulators
Professor Santhakumar Mohan
Department of Mechanical Engineering
Indian Institute of Technology, Palakkad
Lecture — 39
MATLAB Simulation on Kinematic Control

Welcome back to mechanics and control of robotic manipulator. In the last class we have seen
how to do a kinematic control, starting from inverse differential kinematics; that is also we can
call as a kinematic control because it is an open loop. So, in this class we are trying to see the

kinematic control including inverse differential kinematics in the MATLAB simulated form.

(Refer Slide Time: 00:39)

SIMULATION ON KISEMATIC CONTROM

n Kinematic Contro
w Jont Space Scheme

n Task Space Scheme

e (g S c—

So, whatever we have derived the equation, those things we are trying to do. So, you can see like

the inverse differential kinematics both joint space or task space; so, how one complement other
that we can see. So, finally we will end up with a kinematic control; we will see joint scheme.
So, there we talk about computed velocity control, where we are computing the velocity in the

form of kinematic control scheme.

So, where feed forward term and feedback term will be there. So, even if we assume that the feed
forward term is not there; so, then we can consider as a proportional control. Then there would

be a steady state error, then the steady state error we can rectify with; so, you can see a

proportional integral control. These all we have seen in the last class; so, in this particular lecture

we are trying to see that the same thing in MATLAB.

(Refer Slide Time: 01:30)

Inverse Differential Kinematic Model

Trajectory Planner

P (94) jtgf——{ Robotic System ——

q

‘I
Inverse Kinematics

Y
So, for that we are taking a simple inverse differential kinematic model which we have seen in
the last class. So, we would be assuming that the mu desired dot and mu desired are known.
Then what we can see, so we need the q dot; the g dot we can write as J of g desired inverse into
mu desired dot; where this q desired can be obtained from the inverse kinematics, so we can do
it.

So, even if the trajectory planner is giving straight away the joint space; so, g dot desired and g
dot, then that is straight forward, where the g dot can be written as q dot desired. So, that is why

that picture I have not plotted here; however, we can see in MATLAB, so how we can do it.

(Refer Slide Time: 02:18)

The inverse differential kinematic model

Q=9
Lt +
W Start
clear all; close all; clc;
tf = 10; % trajectory duration
dt = 0,1; % step size
* 0:dtitf; ¥ tine gpan

global L1 L2

=1 L2=1,

) EW —

So, for that we are saying the first one is in the joint space, where q dot can be considered as g

dot desired; this is the inverse differential kinematic model. So, here we assume that it is straight
forward, so where the desired is known and we are assuming that is the actual; so, then we can
write the MATLAB code in this way.

So, since it is a differential equation, so we are trying to solve the g of time by numerically
integrating. So, again we will bring the Euler integration; so here you can see the 10 is the total
duration of the trajectory planner; or probably you can say simulation. So, then the step size is

here we have given us dt, and then the time span goes.

So, here | am doing only one addition because | am going to create a sub function. In fact, in last
class itself I told we can use a sub function; so, any how I thought of introducing in this
kinematic control itself. So, we are talking about global L1 and L2, where link length L1 and L2

I would be using in sub functions also. So, that is why we are taking it that way.

(Refer Slide Time: 03:22)

The forward kinematic model
x = Lycostly = Lacos{fy + &)

y = Lygnty + Lysin(ly +)
function [x,y] = FK2R(th1,th2)
global L1 12

% = Llscos(thl)+L2¢cos(thl1+th2);

y = Ll*gin{thl)+L2¢sin(thl+th2),;

end

6 w

So, what we are trying to do the forward kinematic model, we want to use it; so x and y we want

to write it, so, the x and y write it in this form. So, the same thing | can write as a one of the sub
functions, where function x comma y basically this particular function would be returning x and

y, for given thetal and theta2.

So, even if you are going further and further, you can straight away write mu and you can say g.
So, that also we can do where q of 1 would be related to thetal, and g of 2 related to theta2; and
similarly, mu of 1 is belongs to x, mu of 2 is belongs to y that also we can use. Since, this is

beginning, so we will use independent variable.

(Refer Slide Time: 04:09)

The inverse kinematic mode
eyt -1)

Q L 2=y1-9
M = tan 1I:| +tan

fy = tan~! | T]

function [thi,th2] = IK2R(x,y)
global L1 L2
¢2 = (x"2+y"2-L172-1272) /(2sL10L2) ;

82 = gqri(

thl = atan2(y,x)-atan2(L2¢s2, L1+L2¢c2);
th2 = atan2(s2,c2),

end

So, the same way we want to know like what is inverse kinematic model; because any of q
desired, we would be taking from the mu desired. So, in that sense we need to know this; so, we
are taking a inverse kinematic model which we have derived in one of the lecture, the same
model we are taking it in MATLAB function. So, you can see this is going to return thetal and
theta2, for given x and y right. So, now these two functions are sufficient; so, then we need to

know Jacobian.

(Refer Slide Time: 04:36)

Jacobian matrix A
Lysinthy = Lysin(thy +) ~Lpsin(fy +)

[Ly coshy + Lycos(fy = th) Lycos(f) + 6s)

llq)

function J = Jaco2R(thl,th2)

global L1 L2

J = [-Li*sin(thl)-L2+sin(thi+th2) ,~L2#sin{th1+th2);
tLiscos(thl)+L2¢cos(thl+th2) ,+L2+cos{th1+th2);];

end

So, the Jacobian matrix we derived 2 cross 2 in the given form; the same thing we can write as a
sub function. So, Jaco2R is like Jacobian of the two are serial manipulator, for given thetal and
theta2 the Jacobian matrix would be written in this particular sub function; so, these all the sub
function. So, further what we want? We want trajectory because so here we assume that the mu
desired and mu desired dot would be there. So, in that case one of the easiest ways is we can take

a cubic polynomial.

(Refer Slide Time: 05:10)

Third ceder polynamaal
1 0 0 07 [ag I
D1 0 0 E 1)
Lt 8 &)=

0 1 2t 3t |, X

function t¢ = Cubic_TR(x0,xdot0,zf,xdotf tf)
A= [1,0,0,0;

0,1,0,0;

108,072,873,

0,1,2¢tf ,3st£°2];

b = [x0;xdot0;x{;xdot!];

tc = inviA)*b;
s w

So, we are taking the third order polynomial or cubic polynomial; so, we assume that tf is given

and t0 we have assumed as 0. So, in the sense general we take x as the variable; so, x of t | can
derive based on this third order polynomial. So, I can find the trajectory coefficients tc for given
input x naught, x dot naught, then xf, x dot of f and tf is given; then | can find the trajectory

coefficient based on this.

Once | found the trajectory coefficient what I can do? | can go with x of t; so that is what we are
trying to do here. So, first case what we are trying to do? So, only joint space, the q desired and g

desired dot are given.

(Refer Slide Time: 05:57)

W& Joint positions using inverse kinematics

X0=4; yO=1; xf =~1; yf = 1.5;

xdotQ = 0] ydot0 = 0; xdotf = 0; ydotf = 0,
[th10,th20] = IX2R(x0,y0);

[thif ,ch2f] = IK2R(xt,yf);

JO = Jaco2R(th10,th20}; Jf = JacoZR(thif th2f);
qdot0 = JOe[xdot0;ydot0]; qdotf = Jf[xdotf;ydot{];
thidot0 = qdot0(1); thidotf = qdotf(1);

thidotd = qdot0(2); th2dotf = qdotf(2);

) Nmuioem/’
R

So, in that case, so we assume that the initial position and final position of the end effector is

given, and the time also given already tf; so, which is 10 second. So, now we assume that it is a

2R serial manipulator, where L1 and L2 also given.

So, now what we can do through the inverse kinematics? We can find thetal initial and theta2
initial; similarly, thetal final and theta2 final we can get. Some further extend you want to find
the initial velocities, so we can use Jacobian; because here we have, we know the end effector

velocities.

So, we can find the joint space velocity by the Jacobian matrix; so that is what we can do it. So,
here we take inverse Jacobian so that anyhow, in this particular case would not be that beneficial;
so, that we can correct it in the MATLAB code, so, what exactly we wanted. So, then thetal dot

all those things we defined.

(Refer Slide Time: 06:58)

tel = Cubic_TR{th10,thidot0,thif, thidot! tf);
t¢2 = Cubic_TR{th20,th2dotD,th2f,th2dotf tf);
itial conditions

[th10-0.1;th20-0.1];

v

W% Numerical Integration starts here

for i=1:length(t)

W4 Desired Joint-space pesitione
thl_desired = [1,v(i),t(i)"2,t(i)"3]tcl;
th2_desired = [1,v(1),t(1)"2,v(1)"3)*te2;
q.desired(:,1) = [thi_desired;th? desired];

Then we send it to the cubic polynomial sub function; then we will get the trajectory coefficient.
So, then we assume that the initial conditions are not equal to the same; so, then you can find the
difference, why we need kinematic control. So, for that we assume that there is a point one
radian is the error in both cases. So, then we are going for a numerical integration, there first we
define the thetal of time; in the sense the desired we are trying to do. So, thetal decide and

theta2 desired we have taken as this form.

(Refer Slide Time: 07:34)

%% Desired Joint-space velocites
thi_dot _desired = [0,1,2¢t(1),3¢t(1)"2] otcl;
th2_dot_desired = [0,1,2¢t(1),3%t(1) 2] +tc2;

q.dot_desired(:,1) = [thi_dot_desired;th2 dot_desired];

W4 Inverse differential kinematic model
q.dot(:,1) = q_dot_desired(:,1);
q(:,441) = q{1,1) + q_dot(:,1)edt;

W4 Forward kinematics
thi(1) = q(1,1); th2{1) = q(2,1);
[x(1),y{1)] = FK2R(th1(L),th2(1)),;

[xd(1),yd(1)] = FKZR{thi_desired,th2_desired);

..)ond % Numerical integration ends here w

figure) nanipulator motion animation

for i=1:leugth(t)

plot([0,L1*coa(thi(i}),x(i}], [0,L1*sin(th1(i)),y(1)}, 'r-0", 'linevidth’,2)
hold on

plot(xd,yd, 'k--', 'linevidth' 1) | trajectory
plot{x(1:1),y(1:1),'b~", 1inewidth',1) % trajectory
plot(xd{1),yd(1),’rs', 'markersize',10) ¥ starting point
plot(xd{length(t)),yd{length(t)), 'gp’, ‘markersize’,10) ¥ final point
get(gca, 'fontsize’, 12, 'fontnane’, 'Tines') ;

rlabel('x, [units]’);ylabel{'y, (units]’);

axis([-(L1+12)-0.1 (L1412)40,1 -(L1412)-0.1 (L141.2)+0.1]);

grid on, axis square, pause((.01), hold off

{)und

So, then we are going with g dot desired; so that also we can derive it from here; so, here there is
no issue. So, then we are doing the inverse differential kinematic model, where so g dot has a g
dot desired. So, then we are making it this and then we are trying to find out the forward
kinematic model; so that x desired and x we can find. So, then we can plot it as a manipulator
motion animation. So, now we will go to the MATLAB; so, we can see the inverse differential

kinematics for joint space, so, this we are doing it here.

(Refer Slide Time: 08:16)

k™ - S e !
1 Xdotf = 0; ydotf = 0;

1 thl0,th20] = IX2R(x0,y0);

14 [thlf, th2f] IK2R (x£,yE);

15 JO = JacoZR(thl0,th20);

1€ }i JacoZR(thlf, th2f});

17 idot0 = inv(J0)* [xdotD;ydotQ];

1 gdotf = inv(Jf)* [xdotf; ydotf];

19 thldot0 = qdot0(1); thidotf = gdotf(l);

20 thidot(= qdot0{2); th2dotf = qdotf(2);

R !

— -

So, here I will just so correct this, so this is one thing which; because mu is like mu dot equal to J

of g into q dot. So, we are trying to find out g dot; so obviously inverse of this. So, now these are

the two things we have modified. So, now we have taken L1 and L2 are one meter each or one

unit each; so, then the tf is 10 second.

So, the total simulation also like 10 second that is what we have taken. So, now this is the initial,
so we are trying to do the inverse kinematics so that we can find thetal zero and theta2 zero; so,
based on that we have found trajectory coefficients. So, if you do not want straight away for

example you are giving thetal initial and final, you have joint space coordinate straight away.

(Refer Slide Time: 09:09)

i~

13 (thl0,th20] = IK2R(x0,y0):

- [thlf,th2f] = IKZR(xf,yf);

15 JO = Jaco2R(thl0,th20);

16 Jf = Jacb2R(thlf,th2f);

17 qdot = inv{J0)* [xdot0;ydot0];
18 qdotf = inv(Jf)* [xdotf; ydotf};

19 thldot0 = qdot0(1}; thidotf = gdoti(l);

20 0(2); th2dotf = qdotf(2);
21
23
24
&
b tel = Cubic TR(th10,thlidot0, thlf,th
|
- ST
thl dot desired = [0,1,2°¢(1),3*t(i)"2]*tel; g
38 thZ dot desired = [0,1,2°%(1),3*t(L)"2]*tce;
39 q dot desired(:,i) = [thl dot desired;th2 dot desired);
40 % Inverse differential kinematic model
41 q dott:,1) = q_dot_desired(: i);
42 ql:,141) = qi:,1) + qudot(:,1)*dt;
43 % Forward kinematics
44 thl{i} = q(l,i); th2(i) = q(2,1);
45 [x(L),y(1)]) = FK2R(thi{i),th2(i));
46 [xd (1), yd(1)] = FKZR(thl desired,th2 des
§7- end
448
‘,j' figure ipulat
‘l for i=1:length(t)
|

So, then we can use this, so instead of using the inverse differential kinematics and inverse
kinematics; we can directly use this, so let us go to the initial condition. Now, we are taking as an
open loop control, so thetal desired and theta2 desired we have derived; and thetal dot desired
and theta2 dot desired also we have derived. And then we are using this inverse differential

kinematic model what it says?

So, q dot is g dot desired; so, we are trying to find out. So, we assume that x and y are the actual,
and x desired and y desired are the desired task space or end effector positions. So, now we are
trying to plot this. At the end we are trying to compare the results, or just | want to plot it this;
this is what we have used. And these are the sub functions which we have seen in the slide also.

So, now if I run this, now if I run this; so, I am using a shortcut F5.

(Refer Slide Time: 10:08)

T
A Invers |
41 1ot(:,1
l\
! (s,141) N \
4% Forwan W

24
tel = Cubic TR(thl0, thidot0, thlf, thldotf,tf);
27 te2 = Cubic TR(th20,th2dotl, th2f, th2dotf,ti);
28 %% Initial conditions
29 qis,1) = [thl0;th20];
30 t% Numerical Integration starts here
3 for i=1:length{t)
2 ¥% Desired Joint-space positions
33 thl desired = [1,t(1),t(1)"Z,t(1)"
.‘7 th2 desired = [1,t(1),t(1)*2,t(1)
35 | red(:,1) (thl desired;t
|
TR (TR PN)
= e v
23
24 LN
&9 ~.\
5 1
' £
tel = Cubi | bt
? = Cubic : ytf)s
29 t% Initial |
29 qis i) = [t
3 ¢! Numerica
31 for 1=1:1en
t% Desired Joint-space positions
33 thl degired = [1,t(1),t(1)"2,0(1)"3]
;%f th2 desired = §.,'ﬁ‘l,ﬂizl 2,0(1)"3
3 jesired(:,1) [t i :th
|

If 1 run this so what you can see this is the desired, and you can see like the actual is different;
because it is an open loop control; it does not know how to correct it. So, in order to make it that
clear for example, the initial conditions are same as the desired initial conditions. So, then you
can see this would be giving the same trajectory following you can find it already; so, this is

what we can see this particular plot is just for making more beneficial.

So, in fact this is not really required because we are trying to see whether the trajectory is
following or not. So, now | already said so this is the case. So, now we assumed that the desired

is like zero, or you can say q dot desired is zero; so, this will not even propagate.

(Refer Slide Time: 10:56)

34 th2 desired = [1,tdi),t(1)*2,t(1)"3]*tc?;

35 q desired(:,1) = [th]l desired;th? desired]:

36 %% Desired Joint-space velocites

37 thl dot desired = [0,1,2*¢(1),3*t(i)"2]*tc];
th2 dot desired = [0,1,2*t(1),3*¢(i)"2]*te2;

39 q dot desired(:,i) = 0*[thl dot desired;th2 dot desired

40 &% Inverse differential kinematic model

41 q dot(:,i) = q dot desired{:,i);

42 qls,141) = qi:,1) + qdot(:,1)*dt;

43 1% Forward kinematics

14 thi{i) = q(1,i); th2(i) = q(2,1);

45 [(L),y(1)] = PK2R(thi({1),th2(i));

(’4} [xd{1),yd(1)] = FKZR(thl desired,tl
¥~ end n
|
4
T .f
34 th2 desirl Sl . £2;
35 q desired . red]:
36 % Desire
37 thl dot di j*tcl;
38 th2 dot d 1 _I | *te;
39 q dot des| &' dith2 dot desired
40 % Invers 1
41 q dot(:,i
42 qr:,141)
43 1% Forwar '
14 thi{i) = I VT ERZIY = 412,107
45 [%(1),y(1)] = PK2R(thl{i),th2(i));
(’d}. [xd(1),yd(1)] = FKZR(thl desired,th
-7 . s " AR
|

So, I assume that this is like a zero; it one it actually like will not go. So, in order to understand
this is the shortcut which I have used. So, it is not propagating why? Because we do not have any
push. So, that is why | said this inverse differential kinematic model call open loop control will
work or feed forward control will work when the q dot is desired is non-zero. And the initial
conditions of both desired and actual are same; so that is what we have seen. So, now even you

want to change this.

(Refer Slide Time: 11:32)

(= -]
't Joint po ics
! X 1; y0
10~ xf=-1; yf "‘T
11 xdotl LH
12 xdotf = 0; : l
13 (th10, th20]
14 (thlf, th2f]
15 = Ja
1¢ { JACoZR |
17 ot = inv (J0)*|XAEt0FVALLOT;
18 idotf = inv(Jf)* [xdotf;ydotf];

(g thldotd = gdotD(1}; thidotf = gdotf(]
) | P S
) thidot0 = qdotD(2}; th2dotf = gdotf

o

For example, I am trying to change this probably so 1; so, I am just changed this. So, you can see

it is trying to follow; so, this is what we did in the joint space inverse differential kinematic. So,

the same thing we can do it even in the task space. So, there would be a small change in the code.

So, that is what we are trying to see here.

(Refer Slide Time: 11:58)

Wi Desired Task-space positions

x_desired = [1,0(1),e(3)"2,8(8) 3] *tct;

y.desired = [1,t(1),t(1)"2,t(3)"3] +tc2;
[th_desired,th2_desired]=IX2R(x_desired,y_desired);
nu_degired(:,1) = [x_desired;y_desired]

J_d= Jaco2R(th]_desired,th? desired);

W4 Desired Task-space velocites

% dot_desired = [0,1,2#t(1),3*¢(1)"2)*tcl;
y_dot_desired = [0,1,2¢t(1),3%1(1)"2)o2c2;
nu_dot_desired(:,1) = [x_dov_desired;y_dot_desired};
W4 Inverse differential kinematic model

« inv(J_d)*nn_dot_desired(:,1);

So, this is the task space, so now what change you can expect? So, the thetal desired and theta2

desired become x desired and y desired. So, now thetal desired and theta2 desired you want;

then you can use inverse kinematics; so that is what we have done. And here mu desired and mu

desired dot would be found; so, this is what we have get it.

You can see mu desired and mu desired dot we have obtained; so, then so the g dot is inverse of
Jacobian multiply with mu dot desired, so, this is what we have obtained. So, the code; the prior
of this and after this we are not going to change; so, only this content is going to change. In fact,

| want to show it here.

(Refer Slide Time: 12:44)

dw» e - -e —_ ’ - 4
10 xf = =13 yf = 1,5
11 xdotD = 0; ydotQ = 0;

12 xdotf = 0; ydotf = (;
13 tel = Cubic 1

14 ibic TR{YO, ydotd,

15 %% Initial conditions

16 [th10,th20]=IK2R(x0,y0);

7 3{:,1) = [th10-0.1;th20-0.1};

18 t% Numerical Integration starts here
19 for i=1:length(t)

20 t% Desired Task-space positions

2] X desired = [1,t(i),t{1)"2,t(%)"3

P y desired = [1,t{1),t{i)"2,t(1)"3
.é& [thl desired,thZ desired]=IK2R{x

13 tcl = Cubic TR{x0,xdot0,xf,xdotf,tf); -
14 tc2 = Cubic TR(y0, ydot0, yf, ydotf, tf);

15 t% Initial conditions

16 [thi0, th20]=1K2R(x0,y0);

17- qts,1) = [thio-0:th20-0,1);

18 %% Numerical Integration starts here

19 for 1=1:length(t)

20 3 Desired Task-space positions

21 X desired = [1,t(L),t(L)*2,t(1)*3]*tecl;
22 Y. desired = [1,t(L),t(i)*2,t(1)*3) *te2;
23 [thl desired,th? desired|=IK2R(x desired
24 mu_desired(:,1) = [x desired;y desir

29 J_d= Jaco2R(thl desired,th2 desire

-
3

% Desired Task-space velocites

-

So, this is the inverse differential kinematics of the task space. You can see like this segment are

same and the input whatever we have taken is same. So, only thing the trajectory coefficients we

are calculating for x and y; so, because of that the x desired and y desired we are getting.

Similarly, x desired dot and y desired dot we are getting. The same profile we have given and

here also we have given induced this error.

(Refer Slide Time: 13:13)

4

13

A
4

17
18
19

tel = Cubicliode gl v
tec2 = Cubi
¥t Initial | - BN
[th10, th20] Ny TN
qi:;1) = [t : T
t% Numerica ' l
r 1=]:len

%% Desire
X desired ’

desired ‘ ;

[1) G Y5 L — _ S——— |
mu desired(:,1) [% desired;y desir

J l'.LlﬂuPl’ﬂlihﬁllPd,'h.‘UHJ[U"\
Wik "m“‘ﬁ
Y. :

tcl = Cubic TR{x0,xdot0,xf,xdotf,tf);

tc2 = Cubic TR(y0,ydotD,yf, ydotf,tf);
t% Initial conditions

(th10, th20]=IK2R(x0,y0);

qis; 1) = [thlD;th20];

%% Numerical Integration starts here

r i=1:1length(t) I

t3 Desired Task-space positions

X desired = [1,t(1),t(1)"2,t(1)"3]*tc];
v desired = [1,t(L),{1)*2,0(L)*3])*ted;
[thl desired,th? desired]=IK2R(x desired

my_desired(:,1) = [X desired;y desir
] d= Jaco2R(thl desired,th? desire

¥4 Desired Task-space velocites

So, you can see that so now, so you can see like the profile is actually straight line; so earlier it

was not. So, now if you are look at it this, you can see like it is non-zero or non-zero error |

suppose to say; or you can say the desired initial position and desired or actual initial positions

are not same. So, this is the desired initial position, and this is the actual initial position; these

two are same, so that is why the profile is not supposed to be followed here.

So, now in order to make it that the condition what you have seen is this. If the velocity is non-
zero and the initial actual and desired are same; so, then you will find that this would be a good
control. That is why it is actually we call open loop control, because it is a feed forward.

So, there is no compensation for the actual case. So, now even | introduce a small friction or
some kind of uncertainty; this will not be following it. So, that is what we want to get it here; so,

will go to the slide. So, then we can see how we can use this as a kinematic control.

(Refer Slide Time: 14:25)

Kinematic Control Model

Trajectory | f.mm'v‘A&< iq', " Ml] _q—. Jobotic System _q_.
Aq
Qy q
{ Algg-ql

Y
et
So, for the kinematic control what we have taken? So, one of the conditions we have taken that.
So, if the first order error dynamics is going to be stable; so, for that what we have taken? So,
lambda is the one of the positive constants we have considered. So, then this is the kinematic
control model; so, this is going to be a feed forward term, which we have seen inverse
differential kinematics. Now, this is the feedback term, this is what we are going to call as a

proportional control.

(Refer Slide Time: 14:56)

yy

&4 Initial conditione

q(:,1) = [th10-0.1;th20~0.1];
W% Control paraneters

lanbda = §;

W% Joint position errors
q.vilda(: i) = q_desired(:,i)-q(:,1);
W kinematic control based on computing velocity
q.dot(:,1) = (q_dot _desired(:,1)+lanbdasq_tilda(:,1));

q:,141) = q(:,1) + q.dot(:,1)edt;

So, what code would be changing? So, the initial thing all are same. So, only thing we are adding
the control parameter, where we have seen the lambda, that lambda is coming here; so | have
taken as 4. And further these all same; so only added thing is the joint position error we have
added. And you call the g dot change to q dot desired plus lambda into q tilde; the q tilde is q

desired minus g.

So, now this is the change which we expected; so now based on that what we can look at it. So,
the code would be getting change; so, we can see this is the, so kinematic control we are trying to

see. So, what we can see here? So, these all same, whatever we have done earlier.

(Refer Slide Time: 15:49)

Y —————————————
43 q tilda(:,1) = q desired(:,L1)-q(: %)} g
44 ¥% kinematic control based on computing velocity contro
45 g dot(:,1) = (g dot desired(:,i)+lambda*q tilda(:,1));
4o ql:,i+1) = q{:, i) + q dot(:,d)%dt;

4 t% Forward kinematics

48 thi{i) = q(l,1); th2(i) = qi2,1):

19 [x(1),y(1)] FEKZR(th1{i),th2(L));

50 [xd{i),yd(1)] = FKZR(thl desired,th2 desi
51 =i lumerical intharatior

52

53 figure iy

54 for i=1:length{t)

(§3 plot ([0, Li*cos(thl(i)),x{1)], [0,
wib hold

I

So, even we have end up with the initial actual position is different from the desired position; and

he lambda we have taken as 4. We will see if we change what will happen; and the joint position

error is coming here, and the kinematic control is changed here.

(Refer Slide Time: 16:06)

d

13 q tilda(:29¥e8a843 g
44 % kinema g velocity contro
45 q dot(:,1 htq tilda(:, 1))
4% ql:,141)
7 % Forwar)
48 thi{i}) = |
43 [%(1),y(1
50 [xd{i),yd
51 t
52
53 filgure g s e s e s g
54 for i=1:length(t)
(§ﬂ plot ([0, Li*cos(thl (1)), x{i}], [0,
10 hold

iF ¢

T P 0

43 q tilda(;[994e Q0843 g
44 t% kinema — g velocity contro
45 q dot(:, 4 o o h‘q»t:ldu(:,l)):
46 q(:,441) | ol

47 t% Forwar| |

48 thi{1i) = |

49 [x(1),y(i

50 [xd (i), ydf "\ b

51 r T ooy

59

53 flgqure VNCSSUI——. | SS———

54 for i=1:length(t)

A5 plot ([0, Li*cos(thl (1)), x{i)], [0, §
\.:.t, hold

So, now if | run this, you can see that even though the initial is change; but you can see it is
trying to follow it. So, that is what we can look at it. So, if you look at the error, initially it is 0.1
radian in both thetal and theta2 that is converge to 0. But it is having a small error, so that error
can be neglected by introducing some integral control. So, now if | increase this lambda or

decreased my lambda, so what will happen if I increase?

(Refer Slide Time: 16:40)

d
[o e & B
31~ lambda = 102946808143 g
32 &% Numerica
33 for i=1:1en|
34 % Desire
35 thl desir) £l
36 thZ desir ' . £2;
37 q desired red];
38 % Desire
39 thl dot df | *t
40 thZ dot di ‘ . N
41 q_dot deSieuyvrep—pdfitiuwiusesswart 1 sd);
i t% Joant position errors
Al q tilda(:,1) = q desired(:,1)-gq{:, &
“-’, % kinematic control based on comp

,

3 lambda = 1;/99«dea a8y

% Numerica

i3 for i=1:len| t
4 ¥% Desire E
thl desir \ Bi;
Lr _ G | £é;
q desired i redl;
38 4% Desire
39 thl dot d e =
40 th2 dot dj «
11 1 dOF . G gl impmwerarprmyyilioumerapenmment) ;
42 i1 Joint position errors

Al q tilda({:,1) = q desired(:,1)~q{:
‘&E 1% kinematic control based on comp
I
(TR FalNT)
43 q tilda(:,1) = q desired(:,1)~q(:,1); B
44 %% kinematic control based on computing velocity contro
45 q dot(:,1) = (g dot desired(:,i)+lambda‘q tilda(:,1));
4% ql:,141) = q{3,1) + q dot(:,1)*dt;
47 % Forward kinematics
48 thi{i} = q(i,1); th2(1) = q(2,1);
49 [x(1),vy(1)] = FE2R{thi|{
50 [xd(i),yd(i)] = FK2R
51
53 flgure
54 for i=1:length(t)
A5 plot ([0, sithl (1)), x{1)
“)' hol
|

So, you see it is like much faster; and as well as that the error would be eliminated very fast.
Earlier it was going here, but now it is coming and error magnitude also very much reduced. So,
like that you can take it, so instead of that lambda | consider as a 1. So, then also you can see the

error would be taking; it is very significant, it is not followed.

And the time taken for the error also converges; in fact, it is not even converged; if | by 10
second, some error is there. So, these all what we have seen as a kinematic control. So, what we
have changed in the inverse differential kinematics? We have added the proportional control,
where you have taken error multiplied with one of the positive constants; that is what we have

done. So, now we will go to the slide; so, where we have considered only proportional control.

(Refer Slide Time: 17:40)

&% Initial conditions
(:,1) = [th10-0.1;th20-0.1];
y

A% Control parameters

4

Rp = 4,
q.vilda(:, i) = q desired(:,i)=q(:,1);
W kinematic control based on computing velocity control

q.dot(:,1) = Kpeq_tilda(:,1);

ql:,441) = q(:,1) + q.dot(:,1)edt;

)
Wh Initial conditions
(:,1) = [th10-0.1;th20-0.1];
%% Control parameters
Kp = 4; ¥1 = 4; ei = [0;0];

+
A4 Joint position errors

q.tilda(:, L) = q desired(:,1)~-q(:,1);
el = el + g_tilda(:,i)+dt;) integral error

W% kinenatic contrel based on computing velocity contr

q.dot(:,i) = Xpeq tilda(:,i) * Kivei;
ql:,i41) = q(:,1) + q.dot(;,1)edt;

You are assuming that the g dot desired is unknown to us. So, then what happened the Kp we
have taken; and Kp q tilde is the q dot. So, the q dot desired will not be coming into a picture; so,
this would be having what we have seen in the last lecture. This would be having some steady

state error; so that steady state error can be overcome with the integral control.

So, where we have brought the integral control term, and then you can see this is compensated
with both the terms. So, here we need to know the integral error. So, initially we assume that the
integral error is ei equal to 0, O; then it would be propagated. So, in order to get understand this
will go to again MATLAB window.

(Refer Slide Time: 18:26)

TN
jesired(-ude red]; g
1% Desirel
t di j*tel
10 t ot o i+t
i1 i les Lhi]
42 % Joint |
43 11da{:
44 % kinema contro

q ot (:,1
ql:,i41)
LL T 1 9 TF T S ——

thi{1) qi,)¢ thi{l) 1{2,4) ¢

e ey

You can see this is the proportional control; so, where you can see Kp equal to 4. And this is the
same thing what we did, only thing the q dot desired is taken away. So, now so since this is cubic
polynomial, where g dot desired is there; but you have not considered. So, that there would be a

error which would be some what visible to us.

So, since it is fast moving, so there is a error which is significant. So, this error you want to
eliminate even without q dot desired; so, then we can go with the integral error. Or, you can say

integral error with integral control. So, this is what we can see; so now what we have added.

(Refer Slide Time: 19:10)

18 it n whas S/ N o s Mo "

43
44
45
45

48

end

q tilda(:,1) = q desi

el =1 ¢

q dot(:,1) = Kp*q_tilda(:,i) 4 Ki‘ei;
q(:,141) = qfi,1) + q dot(:,i)*dt;

% Forward kinematics

thi{i) = q(l,1); th2(i) = q(Z,1);
[%(1),y(i)] = FK2R(thl{i},th2(i));
[xd{i),yd(1)] = FK2R(thl desired,thZ des

here

fiqure % manipulator motion animatlon
for i=1:length(t)
plot ([0, L1*cos (thl(i)),x{1)], [0,

tel = Cubic : pri)e
te2 = Cubic T AN pef)e

% Initial |) X

qi:,1) = [t 4

%% Control |
Kp = 4; Ki e
$% Numerica !

for i=l:len

7 drrmine

%% Desire

q desired(:,1) = (thl desired;th2 ¢
%% Desired Joint-space velocites

Cubi | tf);:

Cubi ‘ " jti);

t% Initial |
1{:,1) t

30 ¥ Control |
31 Kp = 4; Ki

32 tt Numerica ‘ "

r i=l:len|

% Desire

thl destrve—rayrvyeryeyer—spvrsr—er=—
th2 desired (1,e(1),tti)*2,t(1)*3}4
q desired(:,1) (thl desired;th? d

% Desired Joint-space velocites
|

So, we have added Ki into ei; so, for that we have taken ei. Ei is ei of previous plus q tilde
integrated; so, this is the integral error. So, now if | add Ki some value, so here we have taken as
4. If 1 added this what you can see the same condition; so, you can see like the error would be
reduced. So, when t tends to infinity, it would be like see.

So, it is like reduced significantly; so earlier it was somewhere here; so now it is reduced. Even if
we increase Ki further, so then this would be converged somewhere closer. So, if you want, we
can check it; so | am just putting 8 just for understanding, just to see whether that you can see it
is already somewhat it is faster. So, that is what we can look at it here.

(Refer Slide Time: 20:10)

T
4ed 8L ®
£ Cut ek
"1!,.‘ A prf)
§% Initial | ol
29 ,],f:'i| 1

30 %% Control |2
31 Kp = §; Ki
$% Numerica |

L i=llien|

34 1% Desire|

thl desirie—— TErvyarpeYsr s pv sy —opoal o)
36 thZ desired [1,641),602)%2,8(1)"3) 4
37 q desired(:,1) [thl desired;thZ d

#% Desired Joint-space velocites

So, you can see it is trying to converge to 0; so, these all the benefit of proportional and
proportional integral. So, in that sense what is desired and what is actual and then you can
compensate. So, let us move the final part, where we are seeing the same thing, where the
desired trajectory is given in the task space.

(Refer Slide Time: 20:29)

Kinematic Control Model

1

T
Teajectory Planned (g lll‘n 4 f"‘| l——q Robotic System j—

;rp

[|}‘u "}

Y

So, then we can do the computed velocity control, where the J of g inverse is coming. So, this is

one peculiar because some cases the J of g can be probably infinity; so, where for example in

two are serial manipulator. So, if the theta2 tends to be very close to 0 or 180 degree or even 0
and 180; so, this J of g inverse may be tends to infinity. So, that is why we always avoid this kind

of cases; but this is what the one additional input, where this control law we can do it.

(Refer Slide Time: 21:05)

W% Initial conditions
[th10,th20]=IK2R(x0,y0) ;

1) = [th10-0,1;th20-0.1];
Wh Control paraneters

Ganpa = 4;

Wh end-effector position errors
omu_tilda(:, 1) = nu_desired(:,1)-mu(:,1);
¥4 Kinematic contrel in task-space
q.dot(:,1) = 1n1fJ_d&ffnu‘dut_ue51reaf:.11.
+Gannasyu_tilda(:, 1)),

ql:,it1) = q(:,1) + q.dot(:,1)wdt;

So, for that what we are doing? So, we are taking one simple addition. Just for comparison we
are taking q; so, then we are taking a gamma and mu dot desired plus gamma into mu tilde; and
inverse of Jd. So, this is what we have taken, in fact instead of taking Jd, even we can take J so
both will be the same result. Just to get that idea, we will go go to the kinematic control in the

task space. So, this is the change which we were saying.

(Refer Slide Time: 21:39)

T 1
4 x dot desired = [0,1,24t(1),3*t {1)"2)*tel; g
y dot desired -), 1,24t (1) ,3*t{1)*2] *tc2;
mu_dot desired(:, i) = [x dot desired;y dot desired);
t% end-effector position errors
mu tilda{:, i) mu desired{:, i)-mu(:,1});
39 i3 Kinematic control in task-space
40 q dot(:,1) = 1nw(J d)*(mu dot desired(:,i)...
41 tGamma*muitilda(:,i));

42 af:,i41) = q(;,1) + q dot(:,1)*dt;
43 i
44
45 filgure
Ab for i=1:length(t)
.ﬂk plot([D,Li*cos(q(l, 1))
|
a
(= . -] I
4 dt = 0,1; deQ a8 Ll
t = 0:dt:tf
)1"1 B
1 = 1; |
;) $% Joint po e z __I' ;jc8
J x0 = 1 gll‘.
10 xf = =17 y¢f
11 xdotl = 0;
12 xdot f 0;

13 tcl Cubic
14 tc? = CublC srerpwryuvewprivruvveypeerr
15 %% Initial conditions

Ab (thiD, th20]=IK2R(x0,y0);

W qis,1) = [th10-0.1;th20-0.1];

So, the mu tilde we calculate mu desired minus mu. So, then the g dot is inverse of Jd or inverse
of J, multiply with mu dot desired plus gamma into mu tilde. So, now again we see that he initial
is having error and this is a profile we want to follow, which is a straight line. We will see

whether this is following it or not.

So, it is like following it, whereas in the simple inverse differential kinematics it was not
followed; and the error is almost 0 in the mu tilde, x error and y error almost 0. So, now even we
want to check whether you want to use this only g dot, sorry J desired; it can be even can be use

J. So, in that case | will take it, so this like thetal and theta2. So, or | have to like to use it.

(Refer Slide Time: 22:38)

. (VEENSITSNT)
4% Desired Task-space positions
23 % desired = [1,t(l),t{i)*2,t(L)*3])*tel;
y desired = [1,t(L),t{i)"2,t(1)*3] ted;

_;' .l:»

[thl desired,th? desired]=IK2R(x desired,y desired);

2l
edl;

my desired(:,1) = [X
27 J d= JacoZ2R(thl desired,t

28 J= JacoZR(q(l,1),qi2,2))?
29 Wl e | e we
30 [thl desired(i),th2 desired(i)] = IKZR(x ie
3| %% Forward kinematics
[x(1),y(i)] = FK2R(q(1,1),q12,1));
33 mu(s, i} = [x{1)iy(1})
54 4% Desired Task-space velocites
:n X dot desired = [0,1,2*t(1),3't(l
|
— i (PP TN)
4 % Desire"@ e QARG B
x dot des tely
y dot des Led;
mu dot de \\\w . »Jm' lesired]|;
t% end-ef \
39 mu tilda{ g ’)i
40 %% Kinema '
41 q dot(:,1
42 +Ganm
43 (:,141)
44 1 '
45
Al flgure I 31
{}% for i=1:length(t)
|
Lo -

So, I will just write J, so which means so | just see this; so I will just take it. This is a J, which is
from the q; so, this is; so, g of 1 comma i comma g of 2 comma i; in the sense thetal and theta2.
So, now | calculated J, so J | calculated; and then this is going to give. So, now instead of this J if

I do it, so the nature will not be changing; so that is what | wanted to show it here.

So, | hope now you are clear what is kinematic control and what is inverse differential
kinematics, where we can use proportional control; and where we can use proportional integral.
And here also we can take it simple proportional in task space, and proportional integral these all

same cases. So, | hope you are clear on the kinematic control and inverse differential kinematic

of a serial manipulator.

The next class we will see what is dynamic control? and in the dynamic control extension we
will see the dual loop; where the outer loop will be doing in a kinematic level and the inner loop
would be in dynamic level. That is what we are going to see in upcoming lecture. So, this lecture
is on kinematic control with MATLAB simulation. | hope you have enjoyed; and see you then

thank you.

