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Welcome back to mechanics and control of robotic manipulator. Last few classes we have seen 

how to derive the equation of motion. And in that two popular method we have seen one is 

Lagrangian Euler. The other one is Newton Euler. So, the Newton Euler, I said it is better for the 

computational perspective. So, in this particular lecture we are going to see how to derive the 

equation of motion for given example using Newton Euler method with the help of MATLAB 

codes. So, in the sense here we are going to see the MATLAB session. 
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So, in that sense we will move forward. So, we will be talking about dynamic model derivation 

using Newton Euler method through the help of MATLAB. So, in this sense we would be 

straightaway see the MATLAB code. And then I will move to the MATLAB environment.  
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So, in the sense so this is the example which we have derived in the you can say regular lecture. 

The same example I am taking it for simplicity, but it is not going to restrict you can actually use 

any you can say serial manipulator in this particular case only thing you have to change the DH 

parameter and then equation of motion in series. So, that I will show you in the MATLAB 

session.  

But right now, you can take it that planar serial manipulator we have taken. So, in that case so, 

what one can see like if I know this m1 m2 and if I know L1 and L2 and I assume that theta 1 

and theta 2 are the joint variable, I can derive the equation of motion with the help of forward 

propagation and backward propagation together.  
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So, for that I am rewriting that equation. So, first what we need to know. So, till now in velocity 

kinematics so, we have already shown how to derive you can say the DH parameter through the 

help of frame once you derive the DH parameter or once you obtain the DH parameter, you can 

substitute in one of the MATLAB code you can find the rotational matrix; rotational matrices 

and position vectors of the individual joints these are all we have seen. Further what we have 

seen?  

We can see how to propagate the angular velocity and linear velocity if we know the base 

angular velocity and linear velocity. So, we always assume that the base is fixed. So, these codes 

all we have seen in you can say the kinematic model derivation and as well as differential 

kinematic cases or you call velocity propagation model. So, in that sense what right now we 

required? We required what would be the centroidal location.  

So, in this case the mass is the link 1 mass is concentrated at the point J1 which is the mass is m1 

and there is no inertia it is a point mass. Similarly, the second link mass is concentrated at m2, or 

you can say J2 point as a m2. So, in that sense what one supposed to know. So, if you recall your 

frame arrangement so along the L1 whatever that is assigned is x1 axis along L2 that would be 

x2 axis.  

So, now, if I see the link 1, the centroidal location, so, from frame 1 that would be you can see 

along x there is a L1 distance y and z 0 0. Similarly, if I see the centroidal location of second link 



with respect to second joint or second frame that again like along x2 only L2 all other axes 0. So, 

that is what we have derived. So, here in our equation of motion we have written as link length 

as a1 and a2.  

So, in that sense the location of what do you call center of mass of link would be come with the 

two symbols. So, which is lc1 and lc2. So, here lc1 I consider as a1 and lc2 I consider as a2. So, 

in that sense so, the Pc1 and Pc2 vector I have derived in this way. So, then what else you need? 

You need actual like inertial and acceleration variable. So, what we have seen so far is only up to 

velocity.  

So, the inertial effect will come in this case one only two masses but the acceleration effort theta 

1 double dot and theta 2 double dot. So that is what we have written in the MATLAB code. But 

by default, these are all real variable not in complex. So, then you better define that as a real. So, 

that the conjugate term will not come when you square or do some operation. So, once these are 

all defined what we need to do you need to take the angular acceleration then linear acceleration 

then get the inertial forces and moments.  
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So, that is what we are trying to do. So, now the angular acceleration can be written in this form 

because this is having only rotary joint the rotary joint angular acceleration given in this relation. 

So, we are writing the same thing in MATLAB the same form. Because the angular acceleration 



at the zeroth frame we assume it is fixed. So, it would be getting 0 0 0. Then we are actually 

propagating the angular acceleration we call al which is alpha equivalent.  

So, alpha 0 we know then alpha 1 we can obtain with the help of this relation, the same relation 

we have written it in MATLAB syntax. So, similarly alpha 2 we can get it, So, alpha 3 there is 

no active variable so, you can see that the cross terms are vanished. So, this is what alpha 0 to 

alpha 3. So, now coming to the linear acceleration.  
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So, we know the rotary joint linear acceleration relation. So, we should be having you can say 

tangential acceleration then the radial acceleration and the previous joint you can see linear 

acceleration. So, in that case so, we can derive this equation in MATLAB, the same form. So, 

a00 we know which is again start from 0. But if you assume that this is a vertical manipulator, 

then the gravity direction you need to mention.  

So, I assume that the g is the gravity that is acting in y axis. So, in that sense you can see so, a0 is 

no longer 0 vector so, 0 g and 0. So, now based on this equation I can derive you can say the 

joint one linear acceleration second and the third one so, all linear acceleration I derived. So, 

now, what we need to know? We need to know a1 c in the sense the linear acceleration now, 

center of mass of link 1 and center of mass linked 2. So, we call a1 c and a2 c. 
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So, this can be derived in this form. So, for inertial force you need the centroidal acceleration. 

So, we have derived the ac1 and ac2. Which is based on this equation we have written in the 

general syntax. So, now you can see that this omega 1 multiply with or you can say cross 

multiply with Pc1 and Pc2. Similarly, alpha 1 cross multiply with Pc1 and Pc2 in the sense this is 

going to give a tangential, this is going to give a radial and this is the joint linear acceleration.  

So, in this sense it is very clear. So, now, once you obtain the linear acceleration of the center of 

mass of links. So, then what you can do? You can multiply with the inertia. So, here only mass 

so that would give the inertial force. So, that we have obtained. So, now till this what we have 

done is the forward propagation. So, now, we will come back to the backward propagation.  
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Where we assume the end effector forces and moments are 0’s just for simplicity. But later on, 

you can consider some vector also. But right now, we consider these all 0. So, then you can see 

this is the equation to back propagate once you know the end effector velocity and the inertial 

forces then you can back propagate. So, now we have written this equation.  
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So, the similar way we can do the back backward propagation for the moments. So, you can do it 

again you can do n2 2 to n1 to 1. So, that you can derive so, in a sense you can do n2 n1. And if 

you want to have a what you call shaking force and moment. Then you can do it up to you can 



say 0. This is equal to shaking forces and this is equal into shaking moments. So, once you all 

obtained what you required. You required the joint torque relation.  

So, for that we will use this. So, the tau 1 is since the first joint and second joint as a rotary joint. 

So, the n of the third term would be equal into that joint torque. So, now, we are talking about tau 

1. So, then n1 of the third term would be the tau 1 you can make a simplification it will give an 

equation. And similarly, tau 2 is n2 of third term. In the sense, z axis term would be equal to tau 

2 this is very clear. So, now, we will move to MATLAB code original MATLAB code which we 

have returned okay. 
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So, now, this is the MATLAB code which we have returned earlier. So, this is the direct 

kinematic relation. So, we have taken as actual like symbols which is having a generalized 

symbol. Then based on your DH parameter we have derived the symbol. And since it is a 2R 

serial manipulator the end effector frame is the third frame. So, you have excluded 0. So, then 

you have total number of frames is 3.  
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And you can give your DH table as per the derivation earlier.  
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Then you know the arm matrix, I hope that arm matrix is nonstandard form which we derived in 

the beginning of the DH representation.  
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Then as usually the cell and then you have derived, and you can get up to you call the 

transformation matrix. Once you are obtain the transformation matrix. What we have done?  
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We have tried to see the kinematic model this is what we have seen in the direct kinematic 

method or direct kinematic code.  
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So, after that we have tried to do the velocity kinematics for that we need to know the; you can 

say rotational matrices and as well as position vectors we have taken.  
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And we have started understanding that for propagation, you need the velocity information. So, 

here there are two variables theta 1 dot and theta 2 dot so that we have derived.  
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So, then we have propagated based on the; you can see the velocity propagation model. So, 

initially we have done the angular velocity then end effector velocity we obtained.  
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Then we have done the linear velocity propagation and the linear velocity of the end effector we 

have derived.  
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Then we are coming to the dynamic model. For the dynamic model what is the first step we did 

we did the center of mass or you can say location of center of mass so, that we have already 

derived. So, that equation or that vector we have substituted here. So, right now, this you can say 

definition is not required. But if you want you can even write lc1 x lc1 y lc1 z. Similarly, you can 

write in that so, these are all you can write it in here.  

If you know the exact you are what you call model solid model and you know the exact location 

of the center of mass, you can do it right now we have taken a line diagram. So, based on that the 

Pc1 and Pc2 return in this form. Then we are going for a dynamic model. So, the gravity is one 

additional acceleration. Then you have two joint acceleration and there are two masses. So, here 

we consider only point mass that is why the inertial value is not coming or you can say second 

moment of inertia and product of inertia are not coming here.  
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So, then we are doing the angular acceleration vector. So, where we can say alpha 0 to alpha 3, 

we have used and derived.  
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Then you can see the linear acceleration we assume that the gravity pulled vertically act down on 

the y axis. So, that is what we have substituted. So, in that sense you can get the linear 

acceleration vector in a propagated model. Then we have calculated the linear acceleration of the 

center of mass.  
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Then we have calculated the inertial forces of the link.  
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So, far what we have calculated these all-linear acceleration vector of joints. And this is linear 

acceleration of center of mass here link has come.  
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So, now, link inertial forces we have calculated. Now, we are coming backward to the joint 

forces and moment.  
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So, that is what we are starting with the end effector then the joint forces and moments we are 

calculated.  
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Then the third element of the joint moment or joint moments that would be equivalent to your 

input. So, that is what we have derived. Further you want to write it in a matrix form, then you 

can always bring this you can say.  
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Further command called equation to matrix and then take the coefficient. So, these all can be 

done. But right now, you can see the tau 1 and tau 2 we you can say derive. So, I will run this 

code I hope there will not be any error. So, if we run, then it would be giving the output in the 

MATLAB window.  
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So, you can see this is the; your what you call you can say the kinematic model.  
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And what right now we are interested is trying to find out what you call tau 1. So, tau 1 is you 

can see you can write it in the same form. And similarly, you can see tau 2. So, I will just make 

it. 
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So, tau 2 so, now you can even cross verify these equations what we have obtained right now. 

The same thing what we have obtained here also.  
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So, in the sense you if you go back to your equation. So, is whatever you have derived for this 

particular system. So, the same equation what we are obtaining in the MATLAB output also. In 

the sense of what the benefit you can use MATLAB for you can say deriving the equation of 

motion. So, now we have derived this as very simple model. If you want to do it the same thing 

for more complicated for example there is an inertia. 
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So, for example, I am saying that the first link is having inertia. So, in the sense I am saying that 

there is only a second moment is there. I say only link so now what I got the second moment of 

inertia is there. So, now I am saying that the product of inertia also there then Iyz1. So, these all 

the terms I have included these all real variables.  

(Refer Slide Time: 15:14)  

 

So, for what we have taken the only inertial force. But right now, I have inertial moment also. 

So, in the sense inertial moment is what so, you can write i so, i here is the bigger matrix. So, I 

can write I1is you can write Ixx Ixy and I you can write xz and since it is a 1. So, I will write it 1 



in fact we will put a minus sign here that you can get it even in the unit itself. So, now, I am 

writing this is tensor. So, what we can write I you can write xy1 Iyy and Iyz1.So, then you have 

you Ixz1 Iyz1 and Izz1. This is the inertial value. So, now you are N1.  
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So, your N1 would be I1 multiply with alpha 1. In fact, if you strictly go so, it would be come as 

you can see omega 1 you can see cross. So, I will write it that itself so cross off omega 1 into 

multiply with the I 1 omega 1. But anyhow in this case, this will not give any term. But this will 

be making sense.  
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So, now in that case so, what happened here? So, in this case, it would be just added as; so, N1. 

So, if I add this so, what you can see that inertial term all would be coming. So, I just want to run 

this I hope so, there is no error.  
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So, I will assume that there is no error. So, now if I see tau 1 you can see that I is at terms all 

coming appearing. So, the other product of inertias are not coming because it is in a plane. And 

you are theta 1 dot theta 1 double dot all in only you can say z axis that is why you can see it is 

having only Izz.  

So, now if you assume that you have a link, that link is having even inertia which is mass not 

concentrated at one point it is actually distributed mass. Then you have a second moment of 

inertia that is also included. So, now the similar direction you can go further and further for 

example, you want even further.  
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So, in the sense I want to add even N2 I can add or here instead of; you can say the location. So, 

this location I assume that this is not a1 the mass is concentrated some location in x axis. So, 

now you can see this so, it will be changed. So, now I again I am running it. So, now earlier what 

you can see it is a product.  
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So, now that product is modified you can see. So that al c1 is coming and l1 or l2 is going out. 

So here you can see it. So, this is the way we can derive the equation of motion in Newton Euler. 

Newton Euler is easy because it is everything is in sequence even you can do the algorithm based 

you can write it in recursive base. But recursive although it is simple number of codes is very 

small. But I prefer to write it in a lengthy way. 

In that way, even if any minor mistake happened that can be rectified. But if you write in a code 

in algorithm base if a small mistake happened it is very difficult to find. And when you 

compared to Lagrangian Euler. This is very simple because you no need to back and forth from 

partial derivative to time derivative. So, anyhow in the next lecture we are going to see the; what 

you call Lagrangian Euler formulation method using MATLAB.  

The same example we will take but right now what you have seen is how to use Newton Euler 

method in the MATLAB environment and derive the equation of motion. So, probably if time 

permits in the example class, we will see the same code how we can extend for higher order 

system. In the sense higher degree of systems so that we will see until then thank you and see 

you, bye, take care. 


