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Lecture – 05
Review of governing equations: General scalar transport equation

Over the last few lectures, we have seen the derivation of conservation of mass, momentum

and energy right. We have kind of finished that. So, today we are going to list down all the

equations and see if we kind of can find a common thread between them ok.

(Refer Slide Time: 00:31)

So,  the  conservative  form of  the  governing  equations,  we  will  see  what  we  mean  by  a

conservative form little later. So, these are being written down for a compressible fluid with a

Newtonian approximation ok. So, this is for a compressible flow with Newtonian fluid. So,

we have this assumption. So, what does the, how does the mass conservation or continuity

look like? 

So, we have conservation of mass is or the continuity equation is what?
∂ p
∂t

+∇ . (ρ u⃗ )=0 0

right  that  is  our  conservation  of  mass.  So,  let  us  call  it  cm and then our  x  momentum

equation,  if  I  expand the  total  derivative  that  is  rho d u dt  if  I  expand it  into  the  local

derivative and the convective term that would read like
∂
∂ t

( ρu )++∇ . ( ρuu⃗ ) This is rho times d



u dt equals on the right hand side we have minus partial p partial x plus. So, when I say x

momentum equation we are actually writing down the Navier-Stokes equations ok

So,  this  see  these  are  the  Navier-Stokes  equations  ok.  So,

∂
∂ t

( ρu )++∇ . ( ρuu⃗ )=
−∂ p
∂ x

+∇ . ( μ∇ u )+SMx  yesterday, we have substituted the shear stresses

in terms of the strain rates right and we have simplified the right hand side terms and that

would read as what?, where we realize that this prime here, would be a source that comes

from the body force plus a several terms that are gradients of velocity right or strain rates that

are also absorbed into this ok.

In the case if this was incompressible then S Mx SM prime x would be same as S Mx. So,

essentially whatever is the body force term that we get will only be there in that ok. So, that

we have to kind of keep in mind about this source terms here ok. Now, what about the y

component  of  the  Navier-Stokes  equation?  So,  the  y  component  is

∂ ( ρv )

∂t
+∇ . ( ρv u⃗ )=

−∂ p
∂ y

+∇ . ( μ∇u )+SMy.

Similarly,  we  have  the  z  component  that  is
∂ ( ρw )

∂ t
+∇ . ( ρw u⃗ )=

−∂ p
∂ z

+∇ . (μ∇w )+SMz.  Of

course, now we have the energy equation as well. So, the energy equation is in terms of the

internal energy that is dou by dou t of rho
∂ ( ρe )

∂t
+∇ . (ρe u⃗ )=−p (∇ . u⃗)+∇ (k ∇T )+ϕ+se 

So, essentially we have all these five partial differential equations that are also coupled right.

So, we have all these five equations and the unknowns are as we discussed before these are P

T rho e u v w right.

So,  these  are  all  the  unknowns  right;  essentially,  seven  unknowns.  In  addition  to  these

equations we also have the equation of state right. So, the equation of state is given by P

equals P of rho T as well as e equals e of rho T right. So, the internal energy and the pressure,

both of them are related to the equation of state ok. 



So, now, we have 5 plus 2, 7 equations and 7 unknowns right. So, the system is completely

balanced and we can solve for this ok. Alright, questions still now on this part. So, by the way

please feel free to ask questions ok. Any questions still now? Yes.

Yes, well I did not consider viscosity as a constant as such here right. Viscosity still could be

varying, because I have mu inside the divergence operator right. I only said shear stresses are

proportional to the strain rates right. The viscosity can still be varying with temperature or

with space that is why I still have not left the mu outside the divergence operator.

So, usually the viscosity is known, because the properties of the fluid are known right. So,

viscosity is not an unknown in these equations ok. It may vary, but you know how it varies

with temperature or with space that is known to you of course, if you include viscosity as an

unknown in these equations, then you would need a description for how viscosity varies.

Student: We already know.

You already know the viscosity of the fluid.

Student: (Refer Time: 06:25).

That with what you are solving for yes that is already known right. Now of course, if you like

what  we discussed yesterday,  if  you consider  a  constant  viscosity  and an incompressible

fluid, then you can further simplify these equations in the source terms that we have right.

Other questions? No, ok. 

So, what we observe from this is we have several of these equations and there is a good

amount of commonality between all these equations right. What do we see here is that all

these terms are on the left hand have a transient term and there is a convection term and on

the right hand side, we have some kind of a divergence term right del dot something and there

are of course, some source terms ok. 

So, the idea is can we write all of these equations with a single equation and then vary one

particular quantity ok, such that we can get any of the equation that we like from that single

equation ok. 

So, essentially our life will be simple, because then we have to only worry about developing

solution methods only for that equation and substitute the corresponding variables for that



particular  variable  that  we  consider  ok.  So,  what  are  we  what  I  am  trying  to  mean  is

essentially, what I am trying to say is we will now, replace all these equations with a single

equation which we call it as say for a particular property phi ok.

(Refer Slide Time: 07:47).

So,  I  would  write  an  equation  that  would  be∂ (( ρϕ))/∂t+∇ .(ρ ϕu    )=∇ .( Γ ϕ)+sϕ∇ .  So,

essentially what we have is we have an equation here, where the first term is again the rate of

increase of phi right, rate of increase of phi for a fluid element right, plus the net rate of flow

of phi out of the fluid element equals the net rate of increase of phi due to diffusion and the

net of increase of phi due to the source terms ok. That is what we have; we have all these four

terms.

Now, do you see that this equation can aptly describe all other equations? Is it in a similar

form? Yes, it is right it is in a similar form only thing is that we have to somehow assign a

particular value for phi as well as this diffusion coefficient gamma such that we can retrieve

the corresponding equations that we want from these all the five equations of conservation of

mass, Navier-Stokes equations and the energy equation right. So, that is are we going to do.

So, this particular equation that we have written down in terms of phi is known as the General

Scalar Transport Equation ok.

Of course, this general scalar transport equation can also model any other scalars that you

have in a flow. For example, you want to track for pollutants or you want to track for any



other species as part of your solution which will also have look similar to the equations that

we have written. 

So, you have to just assign phi to be equal to that species value and then you will be able to

model that extra equation that you would get as part of this general scalar transport equation

ok.

Now of course, we also realize that if I set different values, let us say phi equals 1 if I set phi

equals 1; I am going to get on the left hand side here, if I set phi equals 1. I am going to get

the conservation of mass right of course; I have to set the corresponding value for gamma

which would be what? 0, right. 

I would saidΓ=0 andsϕ=0 which would give me the conservation of mass similarly, if I set

phi equals u right and gamma equals what? Mu andsϕ=SMx−
∂ p
∂ x

 We have not yet figured

out, how to put this term. So, I am going to kind of dump, this pressure gradient term into the

source for now ok.

Then we are going to get if you plug in all these quantities, you are going to get the u x

component  of  the  Navier-Stokes  equations,  is  not  it  ok.  So,  this  would  give  you  the  x

component of the Navier-Stokes equation ok. 

Similarly, you can set phi equals v, little e or a species concentration and things like that and

obtain any of the equations that you want by accordingly setting the values for gamma as well

as the source terms S phi ok. So, those have to be accordingly assigned ok.

So, now this equation the general scalar transport equation is the fundamental equation that

we will be working with throughout this entire course. This is the basic equation that we will

use in the finite volume method that we are going to discuss as part of this course ok. So, this

is the starting point for all the things that we are going to develop yes, how does the general

scalar transport? The question is how does the general scalar transport equation show the

energy equation?

So, essentially that is a good question. So, essentially what do you set? You have to set phi

equals e right or T or h naught right. Now, the question is the confusion here is that the



divergence operator on the right hand side has temperature right whereas, on the left hand

side you have little e right. 

So, essentially if you write an equation in terms of e you would write the K as cv times T. So,

accordingly  you  have  to  set  the  gamma  as  cv  times  T or  K by  cv  right,  then  you can

essentially get the corresponding value for here right.

So, here the set phi equals so, I would set phi equals let us say e right or I can also set phi

equals T or h naught to get the energy equation. If I work with phi equals e, then my left hand

side is retrieved right whereas, on the right hand side. I have these two terms which is minus

p times del dot u capital Phi and Se, all of these will go into the source term right. We have

not yet so, essentially this part, this part and this part will all go to the S phi term right and

then what about this guy? How do you, how much do you set for gamma here?

It has to be in terms of T right. So, K cv right that would give you your temperature here or if

you write in terms of temperature, it should be K upon cv right. Accordingly, you have to set

these values and you can retrieve the energy equation also ok. There are only two unknowns. 

So, essentially density and temperature are the unknowns. So, instead of writing this equation

for temperature we have written in terms of internal energy e right. So, I could even write this

equation in terms of temperature right. 

If I write for, if I have a perfect gas right e equals cv T right, in which case I can rewrite this

equation as dou partial T of rho cv T right. So, the energy equation will be an equation for

temperature right. If you have a perfect gas, if you do not have then you have to use the

additional  thermodynamic  relations  given by the  equation  of  state  that  are  given here to

substitute for those values. Is that clear ok?

Other  questions?  Alright.  So,  now, we all  agree  that  we can work with a  general  scalar

transport equation in terms of a discretizing it and we can use these different terms that we

have  and  later  on  at  any  point  we  can  retrieve  whatever  equations  we  want  from  by

substituting the corresponding values for phi as well as gamma as well as the source term S

phi ok. So, this is the fundamental equation that we will be working with in finite volume

method which is known as a scalar transport equation or a general scalar transport equation

ok.



Now, the key step or the main step in the finite  volume method is the integration of the

general scalar transport  equation ok, which I write it as GSTE that is the General Scalar

Transport Equation. So, the main step or the key step in finite volume method is always to

integrate this or any equation that we get on a control volume ok. So, we would choose a

control  volume  and  we  would  integrate  the  differential  equation  that  we  have  on  this

particular; on this particular control volume ok.

So, that is the first step in finite volume method. Now, we are going to do the same thing ah.

So, I am going to integrate the general scalar transport equation that is given here on a control

volume ok. So, we are essentially performing a volume integral ok, so that it is going to give

me on a control volume.

(Refer Slide Time: 15:51)

The  first  term  is  the  transient  term  that  is

∫
cv

❑
∂
∂t

( ρϕ ) dv+∫
cv

❑∇ . ( ρϕ u⃗ )dv=∫
cv

❑∇ . (Γ∇ ϕ )dv+∫
cv

❑sϕdv on the right hand side we have

Here, a little v is the, dv is the differential volume of the control volume we have chosen. So,

this is the differential volume all right. Now, we have all these terms. Now what we do is; we

invoke the Gauss divergence theorem and we are going to replace the volume integral that is

the convection term as well as the diffusion term. 



These two volume integrals so, we are going to use the Gauss divergence theorem and then

we are going to convert the volume integrals to surface integrals ok. Now, why do we do this

stuff? I leave it to you to understand or else we can discuss later on why do we do this fine. 

So,  if  I  convert  this  thing,  what  does  Gauss  divergence  theorem say?  Gauss  divergence

theorem says that if you have a control volume right if you have divergence of a vector a bar

on a particular volume dv, this is equal to integration of this particular quantity on the entire

surface right in the direction of the surface areas, over the all the surface area that is bounded

that is bounding this control volume right. 

So, essentially this is a control surface a bar dot d A bar is what we have right. So, this is your

Gauss divergence theorem, where the divergence of a vector and integration on a particular

control volume would be equal to the sum of the a right in the direction of the surface areas.

This control surface is bounding this control volume. Now.

Student: (Refer Time: 18:27).

Which one?

Student: (Refer Time: 18:30).

What is not matching, dimensions? Why are there not matching? So, the left hand side is a

scalar or a vector? Velocity where is velocity? This one dv to dv is a volume, this little v is a

volume ok. So, I would use this v for velocity, this one for volume. 

So, essentially we are talking about divergence of a vector right, summed over the entire

volume by taking these differential volumes right. That is what we have done here. These are

all these dv’s are the differential volumes not the velocities right.

We are not integrating with respect to velocity ok. So, is that clear right, everybody agrees,

this is correct? Gauss divergence theorem ok. Now of course, I can also write it in a different

way, I can write this as integral over the control surface if the surface has n cap as the surface

normal this would be equal to a bar dot n cap times d A right, where d A now, you say scalar

right. So, where n cap is the surface normal or a unit surface normal that is what we have

either I can write it as a dot d A bar or a bar dot n cap times d A ok.



What this says is that the divergence of a vector summed over the entire control volume using

differential volumes is nothing, but the component of a bar right, the component of a bar in

the direction of the surface normal right, summed over the entire surfaces that bound the

control volume ok. So, that is what we have from the Gauss divergence theorem. So, we are

going to use this and replace the convection term and the diffusion term of the general scalar

transport equation ok.

So, let us do that. So, that would give me, I would leave the first term as it is that is control

volume. So, essentially this is I am also making one assumption here, I am assuming that the

control  volume is  not  changing with  respect  to  time ok,  so that  I  can take  out  the  time

derivative outside this control volume. So, I am assuming that the time derivative and the

control volume commute.

(Refer Slide Time: 20:49)

So,  that  will  be
∂
∂ t
∫
cv

(ρϕ )dv+∫
cs

(ρϕ u⃗ ) . n̂ dA=∫
cs

❑ (Γ∇ ϕ ) . n̂ dA+∫
cv

❑Sϕdv this  is  the

differential volume plus over the control surface. Now, what is the; what is the a bar here that

we have; rho phi u bar is my a bar now right. So, I could write this as a del dot rho phi u bar

dv. 

I can write it as control surface. This particular term, I am writing it as gamma grad phi is a

vector right, gamma grad phi dot n cap d A right.



So,  this  will  alright  everybody,  with  this  equation  right,  we  have  just  used  the  Gauss

divergence theorem. 

So, we are going to do this for in the entire course ok. So, for each of the equations we get.

Now, what we see is that we see something very interesting ok. Now, we have performed an

integration and what we see is that the integration has resulted in a kind of a conservative or a

statement of conservation right. 

It is essentially it resulted in a statement of conservation ok. Why do we say it is a statement

of conservation? Because if you look at the terms, what does the first term indicate? The first

time indicates that for the control volume that we have the rate of change of rho phi right or

the phi inside the control volume is the first term.

So, this is rate of increase of phi inside the control volume is the first term plus what does the

second term mean? Second term means that the rate of phi that is going through the surfaces

right, going out right, because n cap always let us say if you assume n cap always points in

the  outward  direction  of  this  control  volume then  all  this  is  leaving  the  control  volume

through the surfaces.

So, this is rate of let us say decrease of phi out of the control surfaces right of the volume or

we can say out of the control surfaces of the boundary or we can just say control surfaces that

is fine, control surfaces equals, then what we have here; diffusion term. So, this is again rate

of increase of phi due to diffusion right, plus we have again here rate of increase of phi due to

source  terms  right.  So,  that  is  what  we  have.  So,  essentially  this  is  a  statement  of

conservation.

Now, you may not be surprised, because what is the big deal in this, we have started off with

a  similar  term  right,  but  we  have  ended  up  with  a  similar  conservation  equation  right.

Initially,  we started  off  with  without  the  control  volume terms,  we started  off  with  one

equation,  which  was  also  a  conservation  statement,  but  now again  we  ended  up with  a

statement of conservation for the control volume ok.

So, this is important which is the main characteristic of the finite volume method, in which

for each of the control volumes you choose, the conservation will be satisfied for the phi ok,

for the property phi ok.  So, this  is  the characteristic  of the finite  volume method.  So, it

essentially satisfies conservation per control volume basis ok. So, every control volume that



you take; that means, every cell or you know the mesh cell that you take is going to satisfy

conservation ok.

So, there is a physical reasoning behind the solution that you obtain ok. Now, this was all

possible, because in the first place we have left the equation that we had before, if you go

back we had these equations right. We wrote the equation as del dot rho phi u bar right. We

have  written  this  as  del  dot  rho  phi  u  bar,  as  a  result  of  which  we can  use  the  Gauss

divergence theorem and we could get rho phi u bar dot n cap right.

Now, if you go little further up, we started off with saying ok. We are going to talk about

conservative form ok. Now, conservative form refers to this particular convection term that is

this del dot rho u u or del dot rho v v and so on. All these things when you have divergence of

something as one term this is the conservative form ok. Now, you may ask ok, then what is a

non conservative form? A non-conservative form is one where you do not write like del dot

rho u u bar right.

For example; now, you can expand this del dot rho u u bar as two terms right, like what we

have done before. You could consider rho u bar to be together and you could write this as rho

u bar right dotted with del dot u and so on right. So, you can write this as a two expressions in

which case you would get, you can use again continuity equation to simplify and so on. So, if

you expand it out like that then it is not a conservative form ok, that is a non conservative

form ok, where in you would not write the equations as del dot rho u u bar ok.

So, but you usually work with a non conservative form in the context of finite difference

methods,  because  a  finite  difference  method does  not  involve integration  on a  particular

control volume ok. So, you never have to invoke Gauss divergence theorem at all ok. So, as a

result finite difference methods would not result in a statement of conservation on a cell by

cell basis, but of course, you cannot solve for something which does not satisfy the physical

laws.

So; that means, finite difference method would definitely satisfy principle of conservation on

the entire domain that you choose, but not on a element by element basis whereas, study

satisfied on a cell  by cell basis in finite volume method, because you are now using this

conservative form to integrate on a particular control volume and arrive at a statement of

conservation ok. Is that clear?



So, that is the difference between a conservative form and a non-conservative form. You do

not write this del dot as this thing. You expand this out as two terms, then you get a non

conservative form ok. So, it is only that so, if it is only that the final solution will be the same,

but in a finite difference method you would be going through you may not be going through a

conservative set of solutions.

So, for example, if you had stopped your simulation halfway between then a finite volume

method although may not be correct at that point would still give you a conserved solution on

every cells whereas, the finite difference method may not give you a conserved solution at

that iteration ok, but eventually essentially it is only difference between. So, the final solution

will the same whether you use finite difference or finite volume it is only that the path you to

the solution is different ok.

The path through the solution  goes  through sequence  of  conservative  solutions  for  finite

volume whereas; it need not be going through the same path if you take a finite difference

method that  is  the only difference.  We will  probably do one problem in the assignment,

where you can see the difference between conservative form and the non conservative form

and appreciate how they are different. 

And in fact, if you will again go through this little later if you discretize these forms, you see

that the resulting equations you get to solve both from finite difference and finite volume

method will  look the same,  as  long as  you have as long as  you have linearities  in  your

problems ok.

So, if you have the moment you start having nonlinearities you will see that the conservative

form is results in a very different equations than finite difference method ok, that is what you

will see in terms of these differences. Other questions ok fine, then let us move on ok. 

So, it kind of net rate of decrease of a phi essentially through the boundaries, I would not say

out of so, essentially decrease of phi through the control surface right. So, we say decrease,

because it is leaving right del dot u. So, this essentially is leaving the control volume that is

why through the surfaces that is why I call it as a decrease, right.

Student: (Refer Time: 29:41).



Phi, that is right. So, essentially it is the net rate of decrease, because it is kind of leaving the

it is going out of the control volume right, because it is positive ok, but of course, if you have

a negative term that is coming inside and that will be there as well. 

Well if you have a rotational flow, you can write it as a you know gradient of a potential

function right and so on for the diffusion equation,  but  in  this  context  when we say the

conservation is satisfies, we are doing is you have a balance equation, you know you have a

essentially, you have something that is created in the cell something that is leaving the cell

and something there is an accumulation in the cell. So, that balance equation is what we call

it as conservation here.

But of course, you can of course, write this as a gradient of a potential function and so on all

right, other questions ok?

Student: (Refer Time: 30:31).

Right.

Student: (Refer Time: 30:34).

That is the question, I asked you to think about it in your asking back ok. So, this is my

question back to me. So, why did I do the ok, you would probably be clear little later. So, the

thing is ok, if I do not do the Gauss divergence theorem what so, for example, if you see kind

of look through this thing what we kind of did is we kind of have one term for the control

volume right, one term for the control volume and these two terms, we have converted into

control surfaces right.

So, if  I  do not  have do not convert  them into control  surfaces,  I  just  leave it  as control

volumes, what will happen to the equation? I would get eventually; so, essentially I have

some terms, I am integrating them on a control volume right or the control volume could be

represented  with  one  cell  centroid  right.  Everything  will  become  dependent  on  this  cell

centroid that is all. So, essentially you do not have any connection to your neighbors right.

So, essentially you have a set of equations which are all disconnected right. Essentially, you

have for every control volume, you will have one equation. There is no connection between

the cells at all. Now, to bring in the connection between the cells, we are saying that we are



replacing this convection, which is going through the surfaces in a more physical way, where

I would say, write it as that is going to the surface.

Now, when we model this particular thing, this particular control surface we would again

make use of the corresponding control volumes that share this control surface right. As a

result we are bringing this, bringing in this connection between the control volumes through

this particular control surface ok. As a result, the equations you would get will be a set of

linear equations right, which are all connected, they kind of start depending on the neighbors

ok. That is how it is.

Otherwise, you would have one equation which is all in terms of one particular cell right, that

is what we did which you cannot do anything with it right it is so, we did ok. I thought you

will tell me the answer, but I have told the answer fine. Any other questions? No, ok. So, this

is kind of the fundamental equation. 

Now, of course, if you have a steady state problem; so, if we have a steady state problem then

the first term drops out, then all we have is control surface rho phi u bar dot n cap d A equals

control surface gamma grad phi dot n cap d A plus integral control volume S phi d little v ok,

that is a steady state problem which is obvious.

Because we have set essentially this term to go to 0 ok. Now, in general you would probably

have transient problems as well ok, you will have unsteady problems as well in which case

just like we have.



(Refer Slide Time: 33:40)

So, if you have a transient or unsteady problems, then just  like we have integrated on a

particular control volume we have to also integrate this partial partial t on a particular time

interval ok.

So, essentially we have to integrate from a known time t to another known time another time t

plus delta t by an interval delta t ok. So, we have to introduce a integration in time ok, as well

just like we have integrated in space for the control volume, you are integrated in time as well

for this equation, because we cannot leave partial partial t in there ok. 

So, if you integrate then you have to integrate each and every term that you have in the

equation ok. So, that is going to give you the most general form of the integrated general

scalar transport equation ok.

So,  that  is  essentially  now,  you  have  integral  delta  t,  then  we  have  a

∫
Δt

∂
∂ t

∫
cv

ρϕdvdt+∫
Δ t
∫
cs

( ρϕ u⃗¿¿¿¿). d⃗A dt=∫
Δt
∫
cs

(Γ∇ ϕ ) . d⃗A dt+∫
Δ t
∫
cw

sϕdvdt ¿¿¿¿ We  are

integrating with respect to space here and then we are integrating with respect to time ok. So,

we have this. So, we have double integration here plus integral over delta t integral over the

control surfaces right.

We have that  is  your  most  general  form of the transient  or the integrated  general  scalar

transport equation ok.



So, we will be using this for unsteady problems fine. Now, of course, we will make some

assumptions in terms of how do we evaluate the surface integrals, the volume integrals, and

how do we evaluate this time integration ok. 

All  these  things  we  will  make  certain  assumptions,  we  will  make  use  of  some  profile

assumptions and then integrate them right, because we are trying to solve for these terms and

of course, we do not know the terms themselves, how can we integrate them right.

So, essentially you make a profile assumption, assuming that the these unknowns that we are

solving for will vary in a certain manner and then we are going to say introduce that and

integrate these equations that is what we are going to see in the next lecture. So, we will work

with all this integration of time and space for all the diffusion equation convection, diffusion

equation and so on fine.

(Refer Slide Time: 37:24)

So, let us kind of move on to the classification of physical problems. Our classification of

physical  behavior,  because  in  order  to  solve  a  problem  we  not  just  need  a  governing

equations. We also need to know together with the governing equations we need to know

what? Boundary condition; so, we need to know the initial and are the boundary conditions

ok, only then we can form a well posed mathematical statement ok. 

So, now, the requirement of the initial and boundary conditions kind of stems from the kind

of the physical behavior or the type of the equation we are looking at ok. So, we will only



know do we need an initial condition or do we need a boundary condition that depends on the

type of the physical problem we are solving and also the based on the classification of the

problem itself ok.

So, let us kind of classify the physical behavior of the fluid flow and heat transfer problems

that we get often. So, we can kind of broadly categorize them into equilibrium problems and

marching ok, marching problems ok either equilibrium problems or marching problems. Let

us look at what is and what we mean by equilibrium problems ok.

(Refer Slide Time: 39:09).

So, few examples are the steady state heat conduction. So, all the steady state problems we

would call them as equilibrium problems ok. So, all the steady state problems for example,

steady state heat conduction problem or we have a the deflection of a solid object under a

load and so on or any other steady state problem ok.

Now the  governing equation  for  all  these  equilibrium problems or  we have  a  kind  of  a

representative equation is the Laplace equation and these are also known as elliptic problems

these are also known as elliptic equations or problems in the literature ok. So, all these are

governed by a representation that is known as a Laplace equation what is a Laplace equation?

So, a typical Laplace equation would look like. 



(Refer Slide Time: 40:52)

Student: (Refer Time: 40:54).

Divergence of gradient of some scalar right, that is what we have so, I can rewrite this as

∂ϕ

∂ x2
+
∂ϕ

∂ y2
=0 So, that is a typical equation for this kind of problems. Now, what does this

represent? This represent of course, as we discussed the steady state heat conduction in 2

dimensions,  any other physical  behavior this  can be used to describe that we have come

across in; fluid mechanics at the Laplace equation, irrotational flow right.

We had∇2ϕ=0 in irrotational flow, if you have del square phi equals 0 this is the governing

equation for irrotational potential flow, essentially irrotational and incompressible flow right

and so on. So, we could use it to kind of represent, these steady state problems ok. So, one

example could be if you consider a, if you consider a 1 D problem.



(Refer Slide Time: 42:15)

For example let us say we have a solid rod, where we keep 1 and at T naught another end at a

higher temperature T L and if we insulate the all the sides of it right. So, in a steady state and

if you assume that there is no source as part of this thing so, if we have a steady state heat

conduction  the  solution  would  look something like  this,  if  you have,  if  there  is  no  heat

generation right fine.

So, this is your x naught and x L alright. Now, what kind of boundary conditions do we need

to specify or initial conditions do we need to specify for solving these problems? Do we have

to specify a condition on the solution variable that we are solving for let us say for example,

phi right by the way we have to specify either phi or it is derivative partial phi partial n right,

needs  to  be  specified  on,  do  we  have  to  specify  on  all  the  boundaries  or  only  on  few

boundaries?

Student: (Refer Time: 43:29).

You have to specify on all the boundaries right, in order to; in order to be able to solve this

equations right. So, because for example, here in the 1 D problem we have to specify T at x

equal to 0 and T at x equal to L right so that we can solve for this 1 D heat conduction

problem. So, these kind of do we have to specify a transient do we have to specify a initial

condition also?

Student: No.



For this we do not have to, because there is no over time derivative in this thing. So, there is

no need for an initial  condition,  but  we have to  specify a  boundary condition on all  the

boundaries that we have in terms of either you specify the variable itself or a derivative of

that right ok. Now, these kind of problems are known as what boundary value problems,

which require values to be specified on all the boundaries of the domain ok.

Now, these are these boundary value problems of Elliptic equations have a, elliptic equations

have certain characteristics.  So, these characteristics are kind of important to look at.  For

example, if there is a sudden increase of temperature in anywhere in the solution domain ok.

If you are let us say solving for a 2D problem and if there is a sudden increase of temperature,

because of a source or something like this.

Now, this sudden increase would be propagated in all directions ok. It will get; it will get

diffused in all  directions ok, as a result  the solution you are going to get will be always

smooth. So, because any disturbances you have in the flow field would be propagated in all

directions.  So,  the  solutions  obtained are smooth even if  you have discontinuities  in  the

boundary conditions.

So, even if you have even if there are discontinuities in the boundary conditions ok, even then

the solutions obtained are smooth and they have to kind of propagate in all directions. Now,

this  is  a kind of very convenient  thing to device numerical  methods to  solve for elliptic

problems ok; that means, the numerical methods that you would device have to take this into

account wherein.



(Refer Slide Time: 45:58)

So, the numerical schemes that you want to use have to be such that they produce these

smooth solutions right and also they should be able to send the information in all directions. 

So, if you have a numerical scheme that does not satisfy these things, then the solutions you

are going to get out of the elliptic solution would not be correct ok. So, that is; so, that is why

we are learning the physical classification of these problems ok, such that we can devise

better numerical schemes for our solution methods fine. So, these are kind of the insights

from an elliptic equation.

Now, what about the marching problems, marching or propagating problems; propagation

problems? So, all the transient problems are all considered as marching problems ok. So, we

have all the transient problems. So, where we have an unsteady term, these are known as

marching problems ok.

Now, in the marching problems we can kind of classify further into two different things; one

we call  it  as  parabolic  type  of  equations,  the other  one we call  it  as  hyperbolic  type  of

equations, but both of them kind of belong to the transient flow problems ok. So, we are

going to see how these two kind of differ and a working equation for it and the characteristics

etcetera in the ok.

Thank you. 


