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Let us get started. So, welcome to another lecture as part of our ME6151 Computational Heat 

and Fluid Flow course. So, in today’s lecture we are going to kind of extend the SIMPLE 

algorithm on Co-located grids for unstructured meshes, right essentially. This is the ultimate 

thing that we wanted to do because in order to be able to solve fluid flow equations on either 

unstructured meshes or on non-uniform meshes, we have kind of had a motivation that the co-

located grid approach would be most suitable. 

So, essentially we kind of come back to this picture where we have a cell which is sharing it is 

faces with 3 other cells ok. So, we concentrate on the primary cell that is 𝐶0 and we have a 

neighbouring cell 𝐶1 with face f here and the line joining 𝐶0 and 𝐶1 would be 𝑒ξ and the unit 

vector along the face would be 𝑒η and then the face normal that is pointing outwards from the 

cell would be 𝐴𝑓
⃗⃗⃗⃗   and we also denote a unit vector of this face normal using 𝑛̂ ok. 

So, that is the idea here and then we have our x and y coordinates which are the Cartesian 

coordinates as usual. So, in the simple algorithm we are going to store essentially both the x-



component of velocity and the y-component of velocity as well as pressure all at the cell 

centroid 𝐶0, right. And, similarly, we are going to store a similar Cartesian components at 𝐶1, 

𝐶2 and all other cells. So, that is the idea. 

(Refer Slide Time: 01:56) 

 

Now, if you look at the momentum equations we had in the x-momentum equation we had a 

−
∂𝑃

∂𝑥
. So, that was −î ⋅ ∇𝑃 and in the y-momentum equation we had −ĵ ⋅ ∇𝑃 that was −

∂𝑃

∂𝑦
, ok.  

So, we had used these things we have integrated on a particular control volume and then we 

have also invoked the gradient theorem, right. And, then converted them into a surface integral 

of the pressures right and the essentially multiplication of p f times A f or all the faces. 

Now, either these terms can be treated in that fashion using gradient theorem where the minus 

the ∇𝑃 dV or the control volume can be converted into a PfAf
⃗⃗  ⃗. Or alternatively it can also be 

taken this can also be treated similar to a source term where grad p can be represented by using 

the cell centroid value that would be grad 𝑃0 times once it is constant you can integrate this 

over the finite volume that would basically give you delta v naught ok. 

So, both these expressions are equivalent. So, we are going to for now use this in the in the 

formulation instead of what we had used before in the context of the Cartesian meshes ok, 

alright. 
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So, then essentially what we can do is we can we once we convince ourself that the pressure 

gradient term can be written as −∇𝑃0Δ𝑉0, then we can concentrate on the cell 0 here and we can 

write the x and y momentum equations in the discrete form for basically for the for this cell 𝐶0 

ok. 

So, that is basically going to give you your because it is cell 0 instead of 𝑎𝑃𝑢𝑃 we have written 

a0
uu0 equals ∑anb

u unb minus î ⋅ ∇𝑃0Δ𝑉0 remember in the in the previous lectures this was a kind 

of coming out to be after integration this was coming out to be because there is an i dot here 

we got basically if it if would if it were let us say co-located approach then we got something 

like p west minus p east, right. 

Essentially because of the minus we kind of absorbed it, but now because we are leaving grad 

𝑃0 as it is we still have this minus coming into play ok. So, that is what we have to keep in 

mind. This minus is associated with this ∇𝑃0 and in the previous lectures this minus was not 

there because that was absorbed into the when we have written the pressure as a summation of 

the faces plus we have some source term that is 𝑏0
𝑢. 

Now, to distinguish these coefficients we have included a superscript u for 𝑎0, 𝑎𝑛𝑏 and 𝑏0. So, 

let us call this equation 1 and similarly, we can write an equation for the y component of 

velocity that is for v 0 which would be a0
vv0 equals ∑anb

v vnb minus ĵ ⋅ ∇𝑃0Δ𝑉0 plus 𝑏0
𝑣 ok. 



So, again essentially these coefficients might be different from the coefficients of the x 

momentum equation. As a result we wrote v to distinguish this right essentially we have a0
vv0 

equals ∑anb
v vnb with v and so on let us call this y momentum equation as equation number 2. 

So, we know how to discretize these two equations and solve for them for a known guessed 

pressure field ok. 

Because you know how to calculate the gradient this can be calculated and essentially this will 

𝑎nb’s will have components of convection and diffusion and you know how to calculate the 

central coefficient that is 𝑎P and essentially we know how to solve for equations 1 and 2 for a 

guessed pressure value, alright. 

Now, what comes next is basically we need to now come up with an equation for the face 

velocities right we need to come up with the face velocity because these velocities on the faces 

will be used in the discretization of the continuity equation ok. So, as a result let us look at an 

equation for obtaining face velocities ok, especially in the direction that is normal to the face 

that is in the n cap direction we would like to get an expression for the velocity which can be 

used in the continuity equation ok. 

So, now, let us define the face normal vector essentially a unit face normal vector ah. Face 

normal unit vector can be defined as 𝑛̂ equals 𝐴𝑓
⃗⃗⃗⃗  upon magnitude of 𝐴𝑓 right that is basically 

constitute a unit vector; that means, this 𝑛̂ can further also be written into it is Cartesian 

components as 𝑖̂𝑛𝑥 + 𝑗̂𝑛𝑦 ok, where 𝑛𝑥 and 𝑛𝑦 are the x and y components of the unit vector 

that we would obtain and this will be different for each face ok, but this can be computed and 

stored at one place, alright. 

Then using the two equations we have that is equation 1 and equation 2, we can also write an 

equation for the velocity u0 in the direction of 𝑛̂ ok; that means, this u0 is different from this 

u0 ok; this u0 is the x-component of velocity, v0 is the y-component of velocity. Now, we are 

writing fall for cell 0 we are writing an equation in the 𝑛̂ direction ok. We are writing the 

momentum equation in the 𝑛̂ direction. 

We already have it in the x direction and y direction. So, we can of course, write an equation 

in any other direction right using these x and y equations. So, that equation would be of course, 

we will see how to calculate these coefficients, but that equation would be a0
nu0

n equals ∑anb
n unb

n  



minus instead of i dot and j dot you have n̂ ⋅ ∇𝑃0Δ𝑉0 because this is in the direction of n̂ in the 

direction of the face normal n̂ ⋅ ∇𝑃0Δ𝑉0 plus 𝑏0
𝑛 ok. 

So, that is basically is a momentum equation for cell velocity for 𝐶0 cell velocity in the direction 

of the normal. So, basically in this direction we have written a a component of momentum 

equation in this direction from the equation we have in the x direction and the y direction 

alright.  

So, now, how do we calculate of course, a0
n and anb

n  and b0
n? We basically already have these 

two essentially we have to multiply an with 𝑛𝑥 with this and 𝑛𝑥 with the second equation and 

then somehow obtain what is a0
n ok. So, that is what we would do. 
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So, a0
n would be you have a0

uu0 and a0
vv0 if you form a vector which is basically for the î 

component and the ĵ components then you basically take a dot product with the n̂. And. then 

you divide you know that the velocity in the direction of the face normal would be 𝑢⃗ 0, this is 

this is basically 𝑖̂𝑢0 + 𝑗̂𝑣0; if you take take a dot product with n cap you are going to get a 

velocity in the direction of the face normal right. 

This is basically nothing, but this is what this is your u0
n right 𝑢⃗ 0 dot n̂ would be your u0

n, right. 

Essentially this is this is nothing, but your û0
n right not hat essentially to the power superscript 

n ok; that means, we already have 𝑎0𝑢0 and 𝑎0𝑣0, this entire component divided by u that is 

going to give you the a0
n the coefficient here, right. 



Similarly, anb
n  can be found by taking components of these two and 𝑏0

𝑛 can be found by taking 

components of these two, right. So, that means, we can of course, calculate all these coefficients 

and write a discrete equation in the direction of the face normal for the velocity at the cell 

centroid 𝐶0 ok, alright. Now, once we have this can we divide this entire equation with a0
n yes, 

we can.  

So, if I do that we are going to be left over left out with u0
n on the left hand side that is basically 

u0
n equals on the right hand side we have ∑anb

n unb
n  plus 𝑏0

𝑛 all at in the direction n divided by 

a0
n that is this coefficient coming here minus we have n̂ ⋅ ∇𝑃0 times Δ𝑉0 right, that is basically 

this component. This candidate divided by a0
n that is nothing, but your Δ𝑉0/a0

n times n̂ ⋅ ∇𝑃0 ok. 
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So, again we can of course, denote this using some ûn. So, this is some ûn this term is basically 

similar to your d terms that you have written before right. You remember in the equations for 

the Cartesian x and y discrete momentum equations we had something like one by a e east right 

that we called as e east. 

Now, that one was coming because of there was the volume was coming out to be getting 

cancelled out essentially you have Δ𝑉0 as the volume here right. So, that is why you got Δ𝑉0/a0
n. 

So, this is similar to your d term. So, we will not substitute it at the moment we will leave it as 

it is. 



Of course, we can rewrite this momentum equation for the cell velocity in the direction of the 

face normal as u0
n equals û0

n plus or essentially minus Δ𝑉0/a0
n times n̂ ⋅ ∇𝑃0. So, this is basically 

if you know this is basically this is the momentum equation for 𝐶0 cell velocity right in the face 

normal right direction right basically in the direction of face normal that is in the direction of 

n what will be the velocity component that is u n in the for cell 𝐶0 ok. So, that is what this is. 

This is basically momentum equation for cell 0 velocity in the direction of the face normal. 

That is u0
n equals û0

n minus Δ𝑉0 divided by a0
n times n̂ ⋅ ∇𝑃0. So, let us call this equation 4. Then 

of course, we can write a similar equation for the neighbouring cell that is basically 𝐶1 cell 

right.  

So, because these two cells share a common face and that common face has one particular n 

cap direction we can write a component of velocity that is in this direction momentum equation 

and similarly for the velocity components here we can find a velocity component in the 

direction of n cap and write a momentum equation right. 

So, if we do that essentially do the same process again for cell 𝐶1 which is also sharing the 

same face with the cell 𝐶0, then what we get is essentially the same equation with 0 replaced 

with 1, ok. So, what we get is u1
n equals û1

n minus Δ𝑉1/a1
n times n̂ ⋅ ∇𝑃1, ok. Let us call this 

equation 5.  

Now, this is basically if you try to connect to the previous Cartesian equations we had this is 

more like an equation for u p and this is more like an equation for u capital E right. Now, we 

are using p and capital E to calculate little e right, the face value that is what we do here. 
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As well we want to essentially find we want to find the velocity on the face ok. Now, if again 

if you assume a uniform mesh we can take an arithmetic average. So, that will be if you have 

an arithmetic mean that will be 𝑢⃗ 𝑓 would be equal to û0
n plus û0

n by 2 this is basically similar to 

u little e equals u p plus u capital E by 2 right. 

Of course, if you do not have a uniform mesh then you know you basically have to use a ∇𝑢0 

∇𝑢1 and the corresponding Δ𝑟0 Δ𝑟1 and calculate what will be the face values, right. Or else you 

can use some kind of a if you are dealing with Cartesian mesh, but with non uniform mesh then 

you would get some factor here right. You get f times u0
n plus 1 minus f times u1

n and so on, 

where f would be calculated based on the distance between the corresponding cell centroids 

and the face centroid, right. 

So, that we know how to do. So, for now without loss of generality we will assume that the 

mesh is kind of uniform although it is unstructured. So, it will be kind of simple for us to do 

then what we can do is we can substitute for u0
n and u1

n from these two candidates, right. This 

is basically u P and u capital E. Substitute these two that is substitute for these two in this 

definition. So, this is basically your arithmetic average or linear average right. 

So, linear interpolation; that means, what you have is 𝑢⃗ 𝑓 equals if you substitute for u0
n in terms 

of û0
n and this quantity and û1

n and this quantity. What you get is you get û0
n plus û1

n by 2 minus 

you have these two quantities which are added up and then multiplied with the one half right 



essentially that is what you get essentially u f bar equals û0
n plus û1

n upon 2 excuse me minus 1 

by 2 times Δ𝑉0/a0
n times n̂ ⋅ ∇𝑃0 plus Δ𝑉1/a1

n times n̂ ⋅ ∇𝑃1 ok. 
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Now, let us call this entire thing this is half of this entire summation u with a new value that is 

represented on the face as Δ𝑉𝑓/af
n times n̂ ⋅ ∇𝑃0

̅̅ ̅, where ∇𝑃0
̅̅ ̅ is basically a face value of the 

pressure gradient ∇𝑃0
̅̅ ̅ would be some combination of ∇𝑃0 and ∇𝑃0 and Δ𝑉𝑓 would be face value 

for Δ𝑉0 and Δ𝑉1 volumes. 

Similarly, af
n would be some face value for 𝐶0 and 𝐶1 cells ok. So, that means, what we get is 

𝑢⃗ 𝑓 equals û0
n plus û1

n upon 2 minus including this half we are calling this as minus Δ𝑉𝑓/af
n times 

n̂ ⋅ ∇𝑃0
̅̅ ̅ alright. So, this is basically your arithmetic average, right. This is your arithmetic 

average; that means, we still have on the left hand side 𝑢⃗ 𝑓 is basically equals u 0 plus u 1 upon 

2 right. 

So, this is basically this value and then we have divided by 2 right. So, we have. So, this is 

what we have for 𝑢⃗ 𝑓 right in terms of hats this is what we getû0
n plus û1

n by 2 minus minus 

Δ𝑉𝑓/af
n n̂ ⋅ ∇𝑃0

̅̅ ̅ right. 

So, if I send if we send basically so, this is your arithmetic average, but what we want to do is 

we want to do we have to find a momentum interpolated average right we want to use 

momentum interpolation; that means, this pressure gradient we have we have to subtract this 

quantity and then add an adjacent pressure value ok. 



So, but unfortunately here we already have a minus. So, subtraction means that you are doing 

a minus of minus. So, you are doing a plus ok. So, again we will not work with u 0 hat u 1 hat 

here we will we would like to work with u 0 and u 1 ok; that means, for this quantity we have 

to subtract this minus quantity and then add a quantity that represents an adjacent pressure ok. 

So, that means, I can write I would not write u f bar anymore because u f bar denotes an 

arithmetic average I will just write u f which will denote a momentum interpolated value that 

is nothing, but your u 0 n these are all n’s these are all n plus u 1 and by 2 and then we subtract 

off this quantity that is subtracting minus of this guy would be basically plus, right or else you 

can think of it as sending to the left hand side, right. 

You remember in the last lectures we had we subtracted minus of this quantity and then added 

the addition pressure on both sides, right. So, you can also think of it like that because there is 

already a minus when you subtract it off on the left hand side direction what you get is a plus, 

you get a plus Δ𝑉𝑓/af
n times n̂ ⋅ ∇𝑃0

̅̅ ̅ and then you. So, this is subtracted and then you add. 

So, when you say add you already have that minus in there right because we did not use the 

expansion for grad p and then you add the adjacent pressures, right. So, now adjacent pressure 

this is where we would add it as a d times that is basically Δ𝑉𝑓/af
n times 

∂𝑃

∂𝑛
 on the face ok. So, 

this is your subtract the non continuous pressure gradient and then add the continuous pressure 

gradient ok. 

So, this may require you to basically you may have to go through this again and double check 

that this is correct. So, whatever I have done here you basically have to just double check it is 

correct you just have to make sure you understand it, fine alright.  

So, essentially what we have done is we have subtracted off minus Δ𝑉𝑓/af
n n̂ ⋅ ∇𝑃0

̅̅ ̅ and added 

on both sides and added this quantity that is minus Δ𝑉𝑓/af
n 

∂𝑃

∂𝑥
 on both sides, and we are not 

working with hats anymore. We are working with for now; we are working with the original 

values ok; that means the u 0 and u 1 ok. 

Now, this is this u f is our momentum interpolated face value ok. So, this is our momentum 

interpolated face value. Now, once you have the momentum interpreted face value where 

would you use this thing? You will use this in the continuity equation, right. 



So, we need this in the continuity equation because only then continuity equation will not 

support checker boarding then we do not care if the momentum equation supports checker 

boarding because as one of the equations are not going to support it is not going to be there in 

the final converged solution alright. 

So, then of course, we did not introduce how do we calculate the average values that we have 

used here right that we have said these two would be represented using some face values. Now, 

this is one particular way of doing things ok. So, there are several ways of in fact, representing 

this interpolation ok. 

So, we are using one particular way; that means, we are using a arithmetic average where we 

are saying grad p on the face that is ∇𝑃̅̅̅̅  would be equal to arithmetic average of the neighbouring 

cells that is ∇𝑃0 pus ∇𝑃0 by 2. 
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Similarly, the coefficient af
n that we basically got here would be we say again it is an arithmetic 

average of a0
n and a1

n. And, the volume value kind of a representative volume value for the face 

that shares two cells we will again take it as Δ𝑉0 plus Δ𝑉1 by 2 this is not going to cause much 

of a difference, but there are several ways of doing this thing, ok. You can also use a scaling 

factor based 1 or linear interpolation and things like that, alright. 

Then if we go back and look at this equation what we have is uf equals u0
n plus u1

n by 2 plus we 

have this Δ𝑉𝑓/af
n common in these 2 terms. So, if we take it out we have Δ𝑉𝑓/af

n times n̂ ⋅ ∇𝑃̅̅ ̅̅  



minus we have partial 
∂𝑃

∂𝑛
, ok. So, that means, this is our non contiguous pressure and this is our 

continuous pressure right adjacent pressure term. 

Now, what do we wish to do? We wish to do essentially we want to represent this pressure 

gradient in the direction of the normal to the face that is 
∂𝑃

∂𝑛
 on the face f using the cell centroid 

values, but we know that for in general for an unstructured mesh this gradient right cannot be 

that is in the normal direction cannot be just simply represented using the cell centroid values 

you would get two gradients, one in xi direction one in the eta direction. 

You remember you get these quantities basically in the context of diffusion equation for 

unstructured meshes we got A dot A by A dot 𝑒ξ right, similarly we got A dot 𝑒ξ A dot A by A 

dot 𝑒ξ times 𝑒ξ dot 𝑒n. So, similarly we get these two components one is the primary gradient 

and the other one is the secondary gradient.  

Now, we know that the primary gradient can be expressed as p 1 minus p 0 by delta xi whereas, 

the secondary gradient term if we do not have a particular way of solving it then what we can 

do is we can express this entire secondary gradient as the total minus the primary gradient right. 

So, if I somehow know the total gradient on the face that is grad p bar then this entire secondary 

gradient can be written as total minus the primary gradient.  
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That means, n̂ ⋅ ∇𝑃 this is the; this is the total gradient on the face right minus we have the 

primary gradient right that is basically n dot n by n dot 𝑒ξ ∇𝑃 dot 𝑒ξ, ok. Now, what you have 



to pay attention here is that the ∇𝑃̅̅̅̅  this is somehow known ok. So, that is the idea here, right. 

We have gone through this discussion before in the context of a diffusion equation. So, we will 

not again go in detail here. But, of course, now we have replaced the secondary gradient as 

total minus primary. 

Now, what do we want essentially we want n̂ ⋅ ∇𝑃 minus (
∂𝑃

∂𝑛
)
f
 that is what the quantity we are 

looking for; that means, from here from this equation I can write n̂ ⋅ ∇𝑃 minus this guy that is 

if you bring this quantity to the right hand side and send these to the left hand side, then what 

you get is n̂ ⋅ ∇𝑃̅̅ ̅̅  there is a bar missing minus (
∂𝑃

∂𝑛
)
f
 that is essentially this quantity equals, what 

does it equal?  

It equals basically your n dot n by n dot 𝑒ξ that is common between this term and this term and 

it equals ∇𝑃 dot 𝑒ξ minus 𝑃1 minus 𝑃0 by Δξ. So; that means, we can replace for this quantity 

that is right here with ∇𝑃 dot 𝑒ξ minus 𝑃1 minus 𝑃0 by Δξ ok.  

Now, you see there is a difference between these two this is not equal to 0 right because 𝑃1 

minus 𝑃0 are the cell values and ∇𝑃̅̅̅̅  is a gradient of pressure evaluated on the face ok. So, this 

is not 0 alright. So, that we understand; that means, if we plug in back into the u f equation then 

what we have is you have u0
n plus u1

n by 2 u 0 1 plus Δ𝑉𝑓/af
n. 
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And, we are replacing this quantity that means, Δ𝑉𝑓/af
n by replace this quantity with this; that 

means, what you get is n dot n by n dot 𝑒ξ. And you multiply this with Δξ then you have Δξ in 

the denominator, then what you have is a ∇𝑃̅̅̅̅  dot 𝑒ξΔξ minus 𝑃1 minus 𝑃0, alright. 

Now, we got a very long expression for the for what is this one? This is basically momentum 

interpolated face value. This is basically your momentum interpolated face value for which we 

got a big expression, but nonetheless.  

We can rearrange this thing we can write this as u0
n plus u1

n by 2 can be written as 𝑢𝑓̅̅ ̅ right 

basically this quantity is your arithmetic average right. So, this can be written as 𝑢𝑓̅̅ ̅ plus we 

have Δ𝑉𝑓/af
n times n dot n by n dot e xi delta xi times this quantity minus this entire quantity 

times 𝑃1 minus 𝑃0 ok. 
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So, that is what we have now if you denote this entire quantity which is the same for both as 

some d f. So, that is Δ𝑉𝑓/af
n times n dot n dot n by n dot 𝑒ξΔξ as some 𝑑𝑓 this is similar to your 

𝑑𝑒 or 𝑑𝑤 in the Cartesian context. Then what we have is, you have 𝑢𝑓 equals we can write 

simplify this entire expression as if you if this is 𝑑𝑓 then this 𝑢𝑓̅̅ ̅ plus this entire quantity can be 

written as 𝑢̂𝑓 plus we have 𝑑𝑓 times. 

So, if you want to get rid of this minus I would switch the 𝑃1 and 𝑃0. So, we say 𝑃0 minus 𝑃1 

where of course, 𝑑𝑓 is this quantity Δ𝑉𝑓/af
n n dot n by n dot 𝑒ξΔξ and 𝑢̂𝑓 would be equal to 𝑢𝑓̅̅ ̅ 

plus 𝑑𝑓 times this quantity that is ∇𝑃̅̅̅̅  dotted with 𝑒ξΔξ ok. 
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So, we have now simplified it by defining two coefficient that we call it as 𝑢̂𝑓 and 𝑑𝑓 and we 

got this equation 7 which is basically similar to the equations that we got before, right. So, 

basically this is more like your 𝑢𝑒 equals right 𝑢̂𝑒 plus 𝑑𝑒 times something like 𝑃𝑃 minus 𝑃𝐸 

right something like this remember. So, this has very good resemblance to the Cartesian 

components. So, what we have is 𝑢𝑓 equals 𝑢̂𝑓 plus 𝑑𝑓 times 𝑃0 minus 𝑃1. 

So, what you notice is you got a pressure difference of the neighbouring values that is 𝑃0 and 

𝑃1 and you got hat velocities and here we do not have the superscript, but u f itself denotes the 

velocity vector on the face in the direction of the face normal ok. So, this is already in the 

direction of n.  

So, we have not been writing this right. So, that means, if you multiply this with the area 

magnitude and you multiply with density then you are getting the flow rate already so that we 

can use this directly in the continuity equation ok, alright. 

So, then we have now computed a value for the velocity in the direction of the face normal 

from momentum interpolation with the help of adjacent pressure gradients, let us call this as 

equation number 7 ok. 
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So, once you have this the final step is basically to come up with a pressure correction equation 

pressure correction equation is basically where do we start for that? We start off with the 

continuity equation. So, the continuity equation would be if you have several faces then the 

continuity equation is ∑𝐹𝑓 equals 0 right, where your Ff is ρf this is a kind of a flow rate that is 

ρf𝐴𝑓𝑢𝑓 right if 𝐴𝑓𝑢𝑓 is always pointing outwards. 

So, if 𝑢𝑓 is going out this quantity would come out to be positive, if it is coming inside this will 

automatically come out to be negative ok. So, that will take care of the plus minus signs, then 

what we have is then the continuity equation is basically summation over f, Ff. So, this is your 

continuity equation right for the cell ah 0 ok. 

Then what do we do we split this into a star value and a prime value. So, we can write this as 

 𝐹𝑓
∗ + 𝐹𝑓

′ equals 0, then of course, the 𝐹𝑓
′. So, the stars are known values these are the guess 

values that are known ah. Of course, they do not satisfy a continuity equation. 

So, this sigma 𝐹𝑓
∗ would not be equal to 0, but 𝐹𝑓

′’s is what we want to express them as in terms 

of 𝑢𝑓
′ ’s right. So, now, we need an expression for 𝑢𝑓

′ , how do we get it? We basically get it from 

the momentum interpolated value. So, if you have 𝑢𝑓 if you want to take a prime here basically 

subtract this off from the star equation. So, then what you have is 𝑢𝑓 minus 𝑢𝑓
∗ that will give 

you 𝑢𝑓
′ . 



So, this equation, equation 7 if you rewrite for primes what you get is 𝑢𝑓
′  equals 𝑢̂𝑓

′  plus 𝑑𝑓 

times 𝑃0
′ minus 𝑃1

′ ok. So, this is what we get again keeping with the simple approximation then 

contribution of the neighbours is neglected. So, what you get is 𝑢𝑓
′  equals 𝑢𝑓 times 𝑃1

′ minus 𝑃1
′. 

This is more like your minus 𝑃𝑃
′  minus 𝑃𝐸

′  right. 

Then you plug in there is a star hat missing here so, that means, your 𝐹𝑓
′ prime equals ρf𝐴𝑓 𝑢𝑓

′  

equals ρf𝐴𝑓 times df times 𝑃0
′ minus 𝑃1

′ essentially substitute for 𝑢𝑓
′  from the equation above 

then you got an equation in terms of pressure corrections for flow rate correction, right. 

(Refer Slide Time: 31:41) 

 

So, this is basically flow rate correction in terms of in terms of pressure corrections fine then 

what do you do you basically substitute for 𝐹𝑓
′ in terms of pressure correction into this equation 

and rearrange them into our favourite standard form that is basically this is our standard form 

which is basically 𝑎𝑃𝑃𝑃
′  equals ∑anbP𝑛𝑏

′  plus b of course, you can write this as 𝑎0𝑃0
′, either of 

them is fine. 

Then what we have is a and b would be equal to ρf𝐴𝑓df right this the multiplication coefficient 

for 𝑃1
′ that is your a n b and there will be the same contribution to the cell 𝑃𝑃 or 𝑃0. So, as a 

result your 𝑎𝑃 would be summation of all the neighbouring coefficients; that means, 𝑎𝑃 equals 

∑anb then your b term would be because it goes to the right hand side will become minus 𝐹𝑓
∗ 

sub f ok. 



So, this is again basically the amount by which the star flow rates does not satisfy continuity 

equation ah. So, that is what we have then we basically solve for the pressure correction.  

Once you have the pressure corrections you basically put them here and calculate what is the 

velocity corrections and flow rate corrections once you have the velocity corrections for the 

face velocities you go back and correct your face velocities as well with the corrections ok. So, 

that is what we do. 
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So, once you have the pressure corrections you correct the cell pressures  𝑃0 = 𝑃0
∗ + 𝑃0

′. 𝑢𝑓
′  

equals. So, basically obtain the velocity corrections 𝑢𝑓
′  equals 𝑑𝑓 times 𝑃0

′ minus 𝑃0
′ of course, 

see this is for one face is what we have written, right. 

So, this is for one face now this has to be done for every face that we have right. So, that means, 

𝑃0
′ minus 𝑃0

′, 𝑃0
′ minus 𝑃2

′ and so on right for each of the 𝑢𝑓1
′ , 𝑢𝑓2

′ , 𝑢𝑓3
′  prime and so on depending 

on how many faces that the cell 𝐶0 has ok, alright. 

Similarly, once you have the face velocity corrections you can essentially correct the face 

velocity itself that is 𝑢𝑓 = 𝑢𝑓
∗ + 𝑢𝑓

′  right. So, this basically would be correct the face-normal 

component of velocity which will be later on again used in the continuity equation ok. And, 

then you have 𝑃𝑓
′ this is the correct the face pressure as the arithmetic average of the cell 

pressures 𝑃0
′ plus 𝑃1

′ by 2. 
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Now, in order to improve convergence we not only kind of correct the face pressures, but also 

correct the cell pressures. So, cell pressures are 𝑢0
′  equals. So, if we follow a similar approach 

instead of Δ𝑉𝑓/af
n we have −Δ𝑉0/a0

u times here I am using similar to this I am using a you 

remember we get this ∑𝑃𝑓
′ 𝐴𝑥, but because this is x component with only the if you have this i 

dot p of a f only the A x component survives. 

Similarly, 𝑢0
′  would be equal to −Δ𝑉0/a0

v times ∑𝑃𝑓
′ 𝐴𝑦 ok. So, this is basically correct the cell 

wall velocities to improve convergence ok. This is basically similar to the face velocity 

corrections that we have done above purely to improve convergence ok. So, once you have this 

thing then essentially you know what is the face velocity correction, then the cell velocities can 

be updated as 𝑢0 = 𝑢0
∗ + 𝑢0

′ . 

Similarly, 𝑣0 = 𝑣0
∗ + 𝑣0

′  ok. Then basically you update your new guess 𝑢0
∗ would be your 𝑢0 and 

𝑣0
∗ would be your 𝑣0 and then you go back to the previous step that is basically solution of the 

discrete momentum equations this one is right, equation 1 and 2 discrete momentum equations 

with the new guess values ok. 

So, that is the idea. It is basically very much similar to what we have done for the co-located 

mesh on a Cartesian arrangement and of course, you know how to discrete how to solve for the 

momentum equations 1 and 2 anyway right that is basically similar to the general scalar 

transport equation ok. 



So, that kind of finishes the this chapter on the on the computation of fluid flow equations, 

wherein we have seen the staggered mesh simple algorithm and the simple algorithm on co-

located meshes, then simple algorithm extended on co-located meshes to unstructured meshes 

and everything ok. 

So, the only thing remaining now is the multi grid method in chapter 5 ok. So, we will be taking 

maybe 2 to 3 lectures and then kind of motivate for why we need to go for a multi grid kind of 

method and what is the need for it and how does the multi grid methods work ok. So, that is 

probably another 2 to 3 lectures maybe and then we should be able to wrap up the syllabus 

alright. So, I am going to stop here if you have any questions do let me know through E-mail 

ok. 

Thank you. Talk to you in the next lecture. 


