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Lecture – 04
Review of governing equations: Navier-Stokes equations and energy equation

We looked at derivation of conservation of mass, momentum and energy right. Today we are

going to see if we can solve the fluid flow and heat transfer using these equations with the

required number of unknowns that we have ok.
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So, we have looked at conservation of mass, momentum and energy right. So, essentially how

many equations we have? We have 1 equation for mass right and momentum equation is how

many? 3 of them right, we have one in each direction and then energy equation is 1 equation.

So, essentially we have 5 equations at our disposal and how many unknowns we have? So,

how  many  unknowns  do  we  have?  We  have  what  are  the  unknowns  we  have,  for  a

compressible fluid right general compressible fluid that we have derived u right.

So, essentially u mean u bar right essentially u v w. So, that is 3 unknowns right and then we

have  pressure  is  an  unknown right;  pressure  is  an  unknown and  then  density  rho  is  an

unknown, then we have an equation for internal energy e right. So, little e is an unknown and

then temperature T is also an unknown right, unless we have a special relation which relates

internal energy to the density we do not know the relation between these two right.



So, as a result e is an unknown and T is an unknown. So, how many of how many unknowns

do we have in total?  We have 3 plus 4 right we have total  of 7 unknowns whereas,  the

number of equations we have are only 5 right. So, can we solve for this 7 unknowns with

these  equations?  We  cannot  of  course,  solve  for  this.  So,  we  need  to  invoke  further

assumptions right.

So, we need to invoke something known as thermodynamic equilibrium we need to invoke

something  known  as  thermodynamic  equilibrium  right.  What  does  thermodynamic

equilibrium mean? It means that if you have a simple compressible system right assuming

that is in thermodynamic equilibrium then we just need two independent intensive properties

to completely specify the state of the system ok.

So, essentially from, essentially the state principle what we have is we need two independent

intensive properties to completely specify the state of the system right if we have a simple

compressible system right; that means, there are no other external forces acting on it on this

particular system ok. So, we just need two independent intensive properties and all  other

properties can be obtained from these independent properties that we have specified ok.

So, if we choose as our properties as let  say density and temperature as our independent

properties, then what we can do is we can go about and write and relate the other properties.
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So, for example, we choose let say density and temperature as the independent properties.

Then the other two quantities that is the other two thermodynamic variables that is pressure

and internal energy; so, pressure can be obtained as a function of density and temperature,

similarly the internal energy e as a function of density and temperature right. 

So, essentially we have now two more equations right. So, this is the 6th equation and then

we have the 7th equation right. So, essentially we have 7 equations and 7 unknowns as we go

here  right.  So,  we  have  plus  2  here  which  gives  us  7  equations  and  7  unknown.  So,

theoretically in principle we can solve for all the set of variables ok.

So, what does the so, what is the principle that gives us these two? This is known as the

equation  of  state  right  essentially  equation  of state  for  a  particular;  for a particular  fluid

relates the pressure and internal energy to the density and temperature variations right. So,

essentially  equation  of  state  gives  us  these  extra  equations  which  I  probably  write  it  as

sometimes as EOS as a short form. Now, if you have a perfect gas then we know that the

pressure is related to the density and temperature using what?

Student: Ideal gas.

Ideal gas equation that isP=ρRT  p  and the internal energy for a fluid right for a perfect gas

is given ase=cVT   right so, the absolute temperature. So, we have these two equations which

we use to relate density and temperature to pressure and the internal energy alright. So, that is

good.

Now, what we can see from here is that the equation of state relates the energy equation on

one hand and the mass and the momentum equations on the other hand ok. So, essentially

equation of state is the kind of connecting link between these two ok. So, why do we say

that? We say that because the energy equation contains internal energy right e whereas, the

mass and momentum contain the density, pressure and of course, the energy equation also

contains the temperature right; so, we have these things.

Now, the changes in density;  the changes in density and the changes in pressure cause a

changes in temperature right now that is only possible if you have a compressible fluid or a

compressible flow right only under if you have a compressible flow or a compressible fluid

you have density changes which are caused by changes in pressure as well as temperature ok.



(Refer Slide Time: 07:17)

So, essentially what we mean is that ok. So, the changes in density are caused by temperature

as well as pressure if you have a compressible fluid or a compressible flow. Now, this is what

relates the energy equation kind of links the energy equation to the mass and momentum

equations ok. 

Now, if you have a an incompressible flow or a fluid for which density is constant right. So,

if we have an incompressible fluid then what happens? Then what happens is basically you

do not have any density changes. As a result your energy equation right, the equation for

temperature or internal energy gets decoupled from your mass and momentum equations ok.

So, essentially this link is will not be there between mass and momentum and energy as a

result  temperature  right  the changes  in temperature  are not  brought about  because of the

changes in density or in pressure right if you have an incompressible fluid ok. So; that means,

for incompressible fluid the temperature or the energy equation gets decoupled from the mass

and momentum equations ok.

So, what is a consequence of that? The consequence of that is the energy equation can be

solved as a separate passive scalar transport equation ok. So, this can be solved separately

because  it  is  no  more  coupled  to  the  mass  and  momentum.  As  a  result  in  many

incompressible fluid flow problems we could just get away by solving only the mass and

momentum equations if we have an isothermal flow. 



If we are solving for a non-isothermal flow, then we have to solve for temperature as well as

a separate scalar with the with different boundary conditions that it has ok. So, that is kind of

the take away message now as far as the complexity of the solution procedures is concerned;

if you have a compressible flow system, then you have a equal number of equations and

unknowns right you have 7 equations 7 unknowns you can solve for them one by one ok.

Now, we will  see that  if  you have  an  incompressible  fluid  or  incompressible  flow your

continuity equation becomes just del dot u bar equals 0 right. As a result you do not have an

equation for density right your density is again now constant. And, what we will see is that

this will bring about another significant change which is basically your you have 3 equations

of the momentum which isρ
Du
Dt
. ρ Dv
Dt

 and so on right you have these 3 equations and you

end up with no equation for pressure ok.

So,  as  a  result  the  equation  for  pressure  is  only  again  another  equation  for  in  terms  of

velocities  ok.  So,  as  a  result  the  solution  procedures  for  incompressible  flows  are  quite

different from the solution procedures that you have to adopt for solving for a compressible

flow ok. So, that is what we are going to see in the rest of this course when we come to the

solution of fluid flow equations for incompressible flows. Questions till now? Ok. So, let us

move on ok. Then let us look at Navier - Stokes equations for a Newtonian fluid.
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Now, one thing we did not of course, consider was the shear stresses right, we talked about

tau i j, but when I have listed down the unknowns I have comfortably not listed down the tau

i js neither you told me that tau i js are still unknown right we all assume that tau i js are

known right that is kind of good, but we know that these are still unknown at this point of

time right.

(Refer Slide Time: 11:45)

The shear stresses that we have in the momentum equations are still unknowns nobody told

us how to evaluate these terms right, these are still unknowns at this point of time which we

kind  of  assumed  while  deriving  this  unknown  and  the  equations  balance  that  these  are

somehow known ok.

So, we assume that these are known which is what we are going to now discuss how do we

introduce or how do we model the shear stresses. So, the tau i j the 9 terms that we have out

of which the 6 are the independent ones for an isotropic fluid are the ones which needs to be

somehow kind of need a model right to specify them in terms of the other solution variables

that we have ok. So, we need a model to specify these in terms of solution variables ok.

Now,  by  introducing  a  model  for  this  we  are  going  to  derive  the  most  useful  form of

momentum equations alright.  So, a common commonly used model is to relate the shear

stresses to the deformation rates are the strain rates in a fluid. So, that is what we are going to

use as a model which was proposed by Navier and Stokes in the 19th century and then that is



what we are going to use and kind of substitute these back into the momentum equations and

derive the Navier - Stokes equations.

So, the local deformation rate is composed of what, is composed of linear deformations right

shear deformations as well as volumetric deformations right. So, the strain rate contains the

linear or the angular right deformations deformation rates as well as volumetric deformation

rate ok. So, this is a deformation rate ok.

So, essentially if you take a fluid element in general you can model the change of a fluid

element at a time t naught to another time t naught plus delta t by a series of elementary super

positions right.  These super positions  would be you would recall  from a fluid mechanics

course that we will be composed of translation, a pure rigid body translation, a pure rigid

body rotation and fluid deformation. And this fluid deformation would be again composed of

two components, one is angular deformation right, another one is a volumetric deformation

ok.

So, essentially you have all these four we are only looking at only the later part which is the

fluid deformation the angular and the volumetric deformations because the other two do not

come into picture in modeling the shear stresses that we have for a fluid ok, alright. 
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So,  the  we  call  these  as  the  strain  rates  or  the  strain  rate  tensor;  which  has  again  9

components out of which 6 are independent if we have an isotropic fluid. So, how do we



represent these deformation rates? We have 3 components of we have 3 components of linear

elongation strain rates these are given as. So, we use the symbol S sub i j ok. So, we have just

like we have tau i j we use this S sub i j to represent the strain rates ok.

So, again i j go from x y z each of them. So, the linear elongation strain rates would constitute

Sxx=2
∂u
∂ x
,S yy=2

∂ v
∂ y
, Szz=2

∂w
∂ z

  could there be a 2 here? No, 2 right it is just; this is just,

this  is  just  partial  u  partial  x  partial  v  partial  y  partial  w partial  z  that  is  for  the  linear

elongation strain rates.
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And when it comes to the 6 components of shear elongation rates, elongation strain rates; so,

these are the angular deformation rate. So, that is S sub x y equals half of partial u partial y

plus  partial  v  partial  x  ok.  Now,  you  see  that  how  if  you  have

Sxy=
1
2 ( ∂u∂ y +

∂ v
∂ x ) S yz=( 12

∂v
∂ z

+
∂w
∂ y )Sxz=( 12

∂u
∂ z

+
∂w
∂ x ) S  sub x  x  how do  you get  partial  u

partial x where you have two of them summing up to one ok. So, there is no two in there as I

wrote before similarly S y z would be equal to half of partial v partial z plus partial w partial

y ok, similarly S x z would be equal to half of partial u partial z plus partial w partial x ok. 

Now, this looks like we can write in a convenient summation notation a very simple formula

that would be nothing, but S sub i j would be equal to what; half of right partial u i by partial

x j plus partial u j by partial x i right that is all where we plug in i equals i and j as x y z each



of them and get these 3 components of the linear deformation rates. And of course, I said 6

components of shear elongation strain shear rates right I am sorry I think I wrote elongation

here there is no elongation it is just shear strain rates all right.

So, what about the other 3? They are the same as this right because of the isotropy fine. So,

we have all these strain rates that we get.

(Refer Slide Time: 19:56)

And of course, we have this additional volumetric deformation rate which is given by what,

which is the sum of
∂u
∂ x

+
∂v
∂ y

+
∂w
∂ z

 . So, in a convenient form we can write this as∇ . u⃗  which

would be 0 for if you have an incompressible fluid or incompressible flow which is not 0 if

you have a compressible fluid right; we are still talking about a general compressible fluid,

alright.

Now, we have introduced this  model now we need to know how do we relate  the shear

stresses that we got the viscous stresses to the these strain rates right. So, if we have if we

consider if we consider Newton’s law of viscosity right, then the Newton’s law of viscosity

relates the viscous stresses that we have to the strain rates and in the strain rates are again we

have these linear or angular strain rates and we also have the volumetric deformation rate

right.



So, essentially the Newton’s law of viscosity relates the viscous stresses we have to each of

these strain rates as a result we end up with two coefficients of viscosity one relating to the

linear or angular strain rates that is known as the first or the dynamic coefficient of viscosity

which  is  denoted with the symbol  mu and the  other  one  which is  known as  the  second

coefficient of viscosity which is usually denoted with the symbol lambda ok.
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Now, we are assuming a Newtonian fluid. What is a Newtonian fluid? The viscous stresses

are proportional to the linearly proportional to the strain rates ok. So, essentially that is how

we get these things. So, we have a Newtonian fluid, but the fluid is still compressible right we

are still considering a compressible fluid, but a Newtonian fluid. Would that be possible or

should a Newtonian fluid be always incompressible? Need not be right, you can still have a

compressible fluid and it could be still a Newtonian fluid ok. So, we are still looking at a

compressible flow with as a and the fluid behaving as a Newtonian fluid ok.

So, the viscous stresses are proportional to the linear deformation rates and as well as the

volumetric deformation rates ok. Now, if this is the case we can again list down the viscous

stresses that we have as using Newton’s law of viscosity asτ xx=μ (2
∂u
∂ x

) tau. So, that is the

coefficient  which  is  making  the  proportionality  constant  go  away  which  is  making  the

proportionality symbol go away you have this first coefficient of viscosity plus you have



lambda times del dot u bar ok. So, that is your shear stress right the normal stress we have

this is the normal viscous stress ok.

Similarly, we can  write downτ yy=2 μ( ∂ v∂ y )+ λ (∇ . u⃗) and we also haveτ zz=2 μ( ∂w∂ z )+ λ (∇ . u⃗)

tau z z. Of course, we have the shear components right that is the τ xy=μ (
∂u
∂ y

+
∂ v
∂ x

) right that

is what we have. Similarly,τ yz=μ (
∂v
∂ z

+
∂w
∂ y

) and of course, you can also write down what is

tau x z similarly ok.

Now, of course, the volumetric deformation rate only shows up in the normal stresses right

because that is a linear part of the deformation rate. Now, not a whole lot of stuff is known

about this second coefficient of viscosity ok.
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So, second coefficient of viscosity is usually taken to be from experiments usually taken to be

minus  two-thirds  mu this  is  a  good approximation  for  gases  for  flow of  gases.  Now, of

course, we know that if you have an incompressible flow what will happen to del dot u bar?

This goes to 0, so it does not matter what will be the second coefficient of viscosity anyway

ok. So, partially the success of the originally proposed minus two-thirds mu is related to the

observations right that delta u bar was even 0 in most of the compressible flows that were

there ok.



So, as a result the proposed lambda equals minus two thirds mu was a huge success for a for

over few decades ok. Now, we kind of tend to realize that that is because of this term going to

0  even  for  compressible  flows  ok.  Nonetheless  the  effect  of  the;  effect  of  the  second

coefficient of viscosity is small even in you know practical flows ok. So, the effect of lambda

is small as a result it is not going to make a whole lot of change or difference in the results

even if you have a compressible flow, but anyway we are not worried about it because we are

looking at simulation of incompressible fluid flows.

Now, can we also write down a simple expression in terms of the index notation for the shear

stresses from whatever we have proposed here? Right. We can write down one what would

that be that would beτij=2 μs ij very good ok. So, essentially what we have is 2 mu S i j

because S i j is again half of partial u i partial x j plus partial u j partial x i plus now how do I

bring in this extra component in here which is non-zero for normal which is 0 for the shear. I

use a delta function right that is Kronecker’s delta.

So, that will be what lambda right times delta i j times del dot u bar right can I write this

where delta i j is the Kronecker delta function which is equals 1 if i equals j which is 0 if I

naught equals j right. So, we can write down this one. So, this is a simple formula that relates

the shear stresses to the strain rates that we have alright.

Now, we have brought in Newton’s law of viscosity and related the shear stresses to the

strain rates; now what do we have to do? We have to plug back these shear stresses into the

which equations? Into the momentum equations right and of course, into the energy equation

as well ok. So, we will plug these back into the momentum equation and see if we can get an

I C equation that we can use to that we can use to further integrate ok.
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So, what was our x momentum equation? If you go back our x momentum equation was

ρ Du
Dt

=¿rho D u D t right equals; what was there on the right hand side? We had a pressure

term right that was minus partial p partial x I will first write down the equation in terms of the

shear stresses.  So,  ρ
Du
Dt

=
−∂ p
∂ x

+
∂
∂ x

( τ xx )+
∂
∂ y

(τ yx )+
∂
∂ z

(τ zx )SMx which is  a source for the

momentum equation in the x direction very good.

Now,  can  we plug in  these  shear  stresses  that  we have  obtained  here  into  the  into  this

equations and see what happens ok. So, how does these equations look? So, if I plug in these

we have minus partial p partial x plus partial partial x of how much was tau x x? This was

(2 μ ∂u
∂ x

+ λ∇ . u⃗) as well is not it ok, which I have missed out. 

So, p plus
∂
∂ y

¿ 
∂u
∂ y

+
∂v
∂ x

¿+partial partial y of what we had? Mu times partial u. So, this was

tau y x this would be partial u partial y plus partial v partial x
∂
∂ z (μ(

∂w
∂ x

+
∂w
∂ z ))+SMx 

Very good I will write down the v momentum equation also for the sake of completeness. So,

that  would  be  rho  D  v  D  t.  So,  this  is  the  y  momentum  equation



ρ
Dv
Dt

=
−∂ p
∂ y

+
∂
∂ x (μ (

∂u
∂ y

+
∂ v
∂ x ))+

∂
∂ y (2 μ ∂v∂ y +∇ . u⃗)+ ∂∂ z (μ(

∂ v
∂ z

+
∂w
∂ y ))+SMy I  will  directly

write in terms of the shear stresses in terms of the velocity gradients that would be what?

Partial partial x of this should be tau x y right. 

I would not write down the rho D w D t which you can complete later very good.

Now, we have obtained all these equations which are only in terms of velocities right. On the

right hand side now we do not have this shear stress vector anymore as a result our unknown

velocity and its gradients appear on the right hand side which could be obtained somehow if

we know the velocity field at a particular time. Now, we are going to do some kind of a

rearrangement here, so that these equations look somewhat nicer and also clean and also they

look in a more nicer way for to work with incompressible fluids ok. So, for that we are going

to work kind of rearrange some of these terms.

So, I would go back to the x momentum equation and what we what I would like to do is I am

going to split this 2 mu partial u partial x term into 2 terms ok. So, mu dou u dou x plus mu

dou u dou x ok. And then I am going to collect one of that partial u partial x term from here,

from here and then the other the term I am going to take it is this one this is first term of the

this term which is mu times dou u dou y and then I think there is some mistake in here is it no

ok. 

So, I would take the second term here I were not consistently so, this is dou u dou z ok. So, I

would take down write down these 3 terms together and I will write down the remaining

terms separately ok.
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So,  can  you  help  me  write  this  equation  by  looking  at  this?  So,

ρ
Du
Dt

=
−∂ p
∂ x

+
∂
∂ x (μ ∂u∂ x )+

∂
∂ y (μ ∂u∂ y )+

∂
∂ z (μ

∂u
∂ z )+{

∂
∂ x (μ

∂u
∂ x )+ ∂

∂ y (μ ∂v∂ x )+
∂
∂ z (μ

∂w
∂ x )+ ∂∂ x ( λ∇ . u⃗)+SMx }

Is that correct, yeah?

So, we have partial partial x of mu dou u dou x then partial partial y of mu dou u dou y and

then partial partial z of mu dou u dou z right these 3 terms I have written down together, then

what do we have? We have one more term remaining here right which is again mu dou u dou

x operated by partial partial x. And then we have one term here this is partial partial y of dou

v dou x then partial partial z of this guy right. In all these terms I would like to interchange

the order of differentiation for example, here instead of writing partial partial y of mu dou v

dou x assuming that I will come to that point.

So, let me first write down these things. So, what do what is that remains here? So, plus what

is the first term I would write down in some brackets here So, that is what remains plus I

think we had this del dot u which is also remaining, is not it this guy right. So, that guy would

be what?

Student: (Refer Time: 35:49).



Yeah. So, that will be that is the remaining term, do we have any other terms left out?

Student: Source term.

We have the source term of course, so, that would be what? That would be plus S M x I have

written all of these into curly braces ok. So, is this correct? This is correct very good. Now,

let say if we have a so, this entire thing in the curly braces I am going to write it as denote it

with a new source term called S M prime x fine.

Now,  we  will  see  that  that  S  M  prime  x  should  be  equal  to  S  M  x  if  we  have  an

incompressible  fluid  that  is  what  we  are  going  to  look  at.  So,  let  say  if  we  have

incompressible fluid or flow plus we have a constant viscosity so; that means, our mu is also

constant if you have a constant viscosity as well as incompressible fluid; that means, both my

what properties are constant, density is constant as well as mu is constant ok.

So, if my mu is constant I can interchange the order of differentiation here right instead of

writing. Can I write; can I write these terms like this right; these terms underlined in red as

can be rewritten like this by just interchanging the order of differentiation because viscosity is

now constant plus we have of course, this extra term is also in here.

So, I would go back and write this guy here which is plus I have lambda times del dot u bar

right plus S M x is the term in the curly braces. Now, we can of course, simplify this little bit

better this would be dou by dou x of mu times what would the; what would be these 3 terms

together?

Student: (Refer Time: 38:32).

Del dot u right this is del dot u bar which is actually 0 plus we have lambda times del dot u

bar right plus S M x. So, as we just discussed, this term would be 0 right so, as this term right

if we have incompressible flow or fluid with constant viscosity ok. So, these are 0 in which

case your S M prime x is what?

Student: (Refer Time: 39:01).

Is the same as a sum x ok. So, this is what you have to keep in mind. So, we are throwing

everything all these extra strain rate terms that we do not like into this curly braces we are

throwing them into the source term. But you have to keep in mind that that source term would



be the same as a source term that is brought about by somebody forces or any other forces,

but it would not be the just the same it would have these extra terms in case you have a

compressible fluid or if you have a non constant viscosity in those things your source term is

not just coming out of the body forces very good.

Now, this looks good of course, you can again use if you look into some textbooks they

would use this lambda equals minus two-thirds mu in which case you have one mu here and

minus two-thirds mu which would give you one thirds mu and so on that is kind of a some

simplification, but nonetheless that will term the term will go to 0 ok. So, can we now rewrite

this in a more compact way?

Now, if you take a look at these 3 terms can we kind of gain some insight here. So, all these 3

terms are operating on only one component of velocity that is u right, they are all operating

on u and then there are two derivative operators right one is operating inside one is operating

outside of course, we are saying that we are looking at a constant viscosity fluid. So, this mu

can be kind of taken out or it can be left inside ok.

Now, what would can we write this in a compact way/ So, this if you have dou u dou x dou u

dou y dou u dou z that is nothing, but a gradient of u right which will give you a vector right.

So, essentially these 3 terms can be written as gradient of u which is a vector and then it has

to be multiplied with mu right. Now, eventually we have to get a scalar out of this and they

have to sum together then if I take again we have dou by dou x dou by dou y dou by dou z we

have another gradient right. So, that would be should be another del, but that should operate

as a.

Student: (Refer Time: 41:07).

Dot product it should operate as a divergence right divergence of mu times grad u kind of

aptly puts these 3 terms into one term right. So, this is del dot mu grad u ok.



(Refer Slide Time: 41:24)

Now, we have made a tremendous simplifications. So, we are going to come down and then 

write this in a nice way which isρ
Du
Dt

=
−∂ p
∂ x

+∇ . ( μ∇u )+SMx ¿ I am writing the source term

which is S M x prime, but we know that this is same as S M x because we have 

incompressible flow with constant viscosity. So, even if I leave out the prime sometimes so, 

do not get confused this is same as S M x whatever is brought about by the body forces ok.

So, this is for incompressible fluid with constant viscosity now the equation looks much nicer

right much more pleasing. So, we can probably work with this than with the previous gigantic

expressions we had for the shear stresses ok. Now, if you tell me what would be an equation

foris ρ
Dv
Dt

=
−∂ p
∂ y

+∇ . (μ∇u )+SMy ¿ of course, you can complete the rho D w D t equation

yourself fine. 

Now, so, these are these are what these are the Navier - Stokes equations right Navier -

Stokes equations which are independently derived by these two scientists by introducing this

model for the shear stresses ok. So, that is important.

So, the distinction between momentum equations and the Navier - Stokes equations is clear

right essentially momentum equations have the shear stresses as the unknowns still whereas,

the Navier - Strokes equations do not have the shear stresses as unknowns right they have a



model for it which works very well and those are the Navier - Stokes equations which we will

use to solve for fluid flow equations in the incompressible fluid flow regime alright.

So, now of course, we still have if you go back to the equations we have the energy equation

which also contained shear stresses tau x x tau y y all these things which we are not going to

do, but rather I am going to kind of summarize the equation.

(Refer Slide Time: 43:48)

So,  if  you  look  at  the  energy  equation  which  you  have  to  solve  even  if  you  have  an

incompressible fluid only that this will be solved separately you do not have to kind of couple

them. So, what was the energy equation, if you will remember back rho times D little e D t

right; what was this? 

This was some I think minus p times del dot u bar or something like that right, initially we

had del dot p u bar, but then we subtracted off the kinetic energy term which gave us an

equation for the internal energyρ
De
Dt

=−p (∇ . u⃗ )+∇ . (k∇T )+SE rho . We have a lot of terms

in terms of shear strains right instead of viscous stresses right instead of viscous stresses tau i

j we had lot of terms about 9 or 10, 9 terms and I would like to call this all these terms as phi

ok.

So, what I mean by phi is a is the dissipation term which contains the tau i j terms right we

had these u times tau x x u times tau x y and so on right we had several terms. Now, what you



have to do is you have to plug in the tau i js viscous stresses in terms of the strain rates right

to eventually get all these terms in terms of partial u i by partial x j and so on ok.

If  you do that  what you would see is phi would read asμ{2( ∂u∂ x )
2

+( ∂v∂ y )
2

+( ∂w∂ z )
2

)+¿ mu

( ∂u∂ y +
∂v
∂ x )

2

+( ∂u∂ z+
∂w
∂ x )

2

+( ∂ v∂z +
∂w
∂ y )

2

}+ λ (∇ . u⃗ )
2 . So, this is something you have to derive or

rather kind of check it ok.

So, check this by plugging in the viscous stresses in terms of strain rates and then club all

these terms. So, this is the dissipation term which appears on the right hand side of the energy

equation ok. Now, what is the first thing you see you notice about the dissipation term? Of

course, it is composed of the strain rates ok, but what is the thing that is there that kind of

catches your eye?

Student: (Refer Time: 47.09).

Squares viscosity we have the viscosity we have the mu and del lambda that is there, but the

terms are all squared now right. So, what about the values we have? So, these are there. So,

essentially what will this term be if you have a if we have let say incompressible flow or a

fluid this term is anyway 0, the second term is anyway 0 right now what will happen to the;

so this term on phi is always a positive quantity right because of the square. So, this is always

a positive quantity.

Now, what is it actually doing? It is actually what it is actually doing is you have these strain

rates which are the deformation rates which describe the deformation of the fluid particles or

fluid as it flows through right. And, you are getting the deformations right which is described

by this phi which is acting as a source term on the right hand side of the energy equation

right.

So, this is basically dissipation because it is converting the mechanical energy which is the

partial u by partial x j right all these terms that is the mechanical energy right of the fluid into

thermal energy right it is creating the internal energy or temperature right essentially it is

increasing the internal energy of the system. So, the dissipation term always tries to increase

the internal energy of the fluid by extracting the energy from the mechanical component of

the fluid ok. 



So, that is responsible for the change in internal energy by converting the mechanical energy

into the thermal energy right ok. So, that is the only link fine. So, now we have looked at the

complete set of Navier - Stokes equations including the energy equation by introducing the

model for the shear stresses. So, what we are going to do next is we are going to list down all

the equations you know one by one and then see if we can kind of come up with a common

equation that can represent all these equations, right.

If you see there are several of these terms are common between all these equations right you

have an unsteady term, you have a convection term and then you have a divergence term and

so on right. So, we are going to kind of list down all these equations one by one and then see

if we can find some commonalities between them and then thereafter go from there so ok.

Thank you.


