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Let us get started. So, welcome to another lecture as part of our ME 6151 computational heat 

and fluid flow course. So, in the last lecture, we solved sample problems a couple of three 

exercise problems from Patankar’s book; we have also looked at the corresponding programs, 

ran them and understood them. So, in today’s lecture, we are going to look at couple of variants 

of the simple method and then we will kind of see how do we extend the staggered grid 

approach to curvilinear meshes or to unstructured meshes. 

So, or the essentially the difficulties associated by in extending this staggered grid approach to 

unstructured meshes is what we will look at towards the end of the lecture today, alright. So, 

we kind of look at a variants of simple algorithm today, that is basically one of them is called 

simple R that is simple revised algorithm, ok. 

So, essentially this kind of tries to address some of the shortcomings of the original simple 

algorithm. So, one of the approximations we made in the simple algorithm was; when you write 



the velocity correction equation that is 𝑎𝑒𝑢𝑒
′ = ∑anbu𝑛𝑏

′ + Δ𝑦(𝑃𝑃
′ − 𝑃𝐸

′ ). We said the 

contribution of the neighbouring cells for the velocity corrections would be taken as 0. 

Essentially this is to make, this is to avoid the global dependence of the of the pressure 

corrections, right. So, we said these two are 0’s; ∑anbu𝑛𝑏
′  and ∑anbv𝑛𝑏

′  are 0 and then kind of 

derived the velocity corrections in terms of only pressure corrections.  

And as a result we got a pressure correction equation; kind of we got a pressure correction 

equation from the continuity equation, right. But this was ok; although the downside is that, 

the pressure corrections alone are responsible for correcting the velocities. 

As a result the pressure corrections were large. So, we ended up with large changes in pressure 

correction, which would eventually result in large changes in pressure; 𝑃 = 𝑃∗ + 𝑃′ is what we 

will use to correct the pressures. As a result we have to kind of under relax the pressure right; 

we had to under relax the pressure and because of the under relaxation, we will end up with 

slow convergence, right. So, this is one of the downsides of the original simple algorithm. 
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Another thing is basically; if you look at the momentum equation, so what we have is we have 

𝑎𝑒𝑢𝑒
∗ . So, so that this is basically the first issue, this is basically the first issue. The second one 

is basically; if you look at the momentum equation, we have 𝑎𝑒𝑢𝑒
∗  equals ∑anbu𝑛𝑏

∗ plus the 

pressure gradient that is Δ𝑦(𝑃𝑃 ∗ −𝑃𝐸
∗) plus be, right. 



Similarly, we have the y momentum equation is 𝑎𝑛𝑣𝑛
∗ equals ∑ anbv𝑛𝑏

∗  plus Δ𝑥(𝑃𝑃
∗ − 𝑃𝑁

∗ ) plus 

bn, right. So, this is basically your momentum or discretized momentum equations right for x 

and y or for u and v, right. One thing what we see here is that, even if you have a you basically 

have to come up with a pressure guess and a guess for the velocities, right. 

You have to come up with star values for u, v and pressure. Now, what we see is that, although 

we have a good velocity guess; this velocity guess will be has to be accompanied by a good 

guess for the pressure, right.  

If you do not have a good guess for pressure; then this pressure guess field who is going to kind 

of destroy the velocity guess that we have, because eventually you will get a new 𝑢∗ values at 

every cell. Although there will be some contribution coming from the velocities, but will be 

kind of overridden or destroyed with the pressure guess values. 

As a result we have to. So, even if you have a good velocity guess; unless you it is accompanied 

with a good pressure guess, it is not going to survive, right. So, then it is not a good idea; 

because usually it is easy for any problem for us to kind of easy to guess the velocity field, ok. 

Essentially the guess fields for velocities can be intuitively guessed; whereas it is not easy to 

come up with a good guess for pressure field. 

So, as a result this is not an ideal scenario ok; so that means a good velocity guess is destroyed, 

if even if you do not have a good guess for pressure, ok. So, as a result what we would like is, 

we would like to essentially have an equation which will kind of recover the pressure field; that 

means which is difficult to guess from a good velocity guess, ok. That means, we are looking 

at obtaining a pressure field directly from the velocity field somehow, ok. 

So that, that pressure field can be used and then on together with the velocity field and you can 

obtain the, you can solve the momentum equations with that new pressure field which is kind 

of good, alright. So, that means, the idea here in simpler or simple are suggests that, we obtain 

essentially correct velocity field using let us say velocity field ok; obtain the correct pressure 

field using velocity field, using a known velocity field. 

And then limit the use of this 𝑃′ that we have the pressure corrections only to correct the 

velocities ok; because you already have an equation for pressure, do not use the pressure 

corrections to correct the pressure again, ok.  



As a result the 𝑃′ equation after it is converged will be used only to correct the velocities that 

is 𝑢′ and 𝑣′, and use another equation which is for the pressure to solve for the evolution of 

pressure, ok. So, essentially that is the basic idea, we will look at this in detail. 
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So, if we go back to the original momentum equation. So, of course, this is again your x and y 

momentum equations that is 𝑎𝑒𝑢𝑒 = ∑anbu𝑛𝑏 + Δ𝑦(𝑃𝑃 − 𝑃𝐸) + be on the staggered mesh. 

Similarly, on the north face we have 𝑎𝑛𝑣𝑛 = ∑anbv𝑛𝑏 + Δ𝑥(𝑃𝑃 − 𝑃𝑁) + bn, ok. So, this is your 

on the east face and the north face for the staggered mesh, the moment discrete momentum 

equations. 

Of course, these have to be kind of come up with you, basically have to write stars for the 

pressures and stars of the velocities which I have not written here; but it is understood that, 

given if you have a velocity guess and a pressure guess, you can solve for the momentum 

equations. That is understood; now we kind of try to come up with an equation for pressure 

from the velocities, ok. 

So, as a result I want to kind of divide this first equation with 𝑎𝑒 everywhere. So, basically 

divide, send this 𝑎𝑒 to the right hand side. So, what we get is, 𝑢𝑒 equals ∑anbu𝑛𝑏  plus 𝑏𝑒 divided 

by 𝑎𝑒 ok; I am dividing with a e throughout plus we have Δ𝑦/𝑎𝑒 times (𝑃𝑃 − 𝑃𝐸).  



Now, here we call again essentially this term; this is ∑anbu𝑛𝑏  plus 𝑏𝑒 divided by 𝑏𝑒 as some 

�̂�𝑒, ok. So, this is some �̂�𝑒 plus we already know, we were calling this Δ𝑦/𝑎𝑒 as 𝑑𝑒 right, some 

other coefficient. 

So, we can write essentially your momentum equation, rewrite the momentum equation for 

velocity on the east face as 𝑢𝑒 equals �̂�𝑒 plus 𝑑𝑒 times 𝑃𝑃 − 𝑃𝐸, ok. So, this is your now the new 

momentum equation, right. So, this is your new momentum equation, and we have rewritten 

as 𝑢𝑒 equals �̂�𝑒 plus 𝑑𝑒 times 𝑃𝑃 − 𝑃𝐸, alright. Then let us look at the other equation that is the 

y momentum equation. 

This also we can send a n to the right hand side, basically divide the right hand side with a n; 

then we can write 𝑣𝑛 as 𝑣𝑛 equals some  v𝑛 plus 𝑑𝑛 times 𝑃𝑃 − 𝑃𝑁, right. So, that is basically 𝑣𝑛 

equals ∑anbv𝑛𝑏 + bnby 𝑎𝑛 plus Δ𝑥; essentially Δ𝑥/𝑎𝑛 times 𝑃𝑃 − 𝑃𝑁 plus bn, that is your new 

equation here. 

So, this is your new, essentially this is basically the same y momentum equation; but written 

in a different way right, because we have absorbed all the neighbouring coefficients and the 

source terms into this hat equation here, alright. And of course, we have divided with the a p 

coefficient or a east or a north coefficient in this context, alright. 

Then what we can do is now that, we have the velocities in terms of the; we have the face 

velocities in terms of the pressure differences and the hat velocities right, both for u and v. 

What we can do is, we can multiply these two equations, essentially each of these equations 

with the density times area to get an expression for flow rates, right. 
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So, I multiply, essentially I start off with 𝑢𝑒 equals �̂�𝑒 plus d times 𝑃𝑃 − 𝑃𝐸 that is this equation, 

right. We start off with this and then we multiply entire equation with ρΔ𝑦, right. 

So, what we have is  ρ𝑢𝑒Δ𝑦 equals ρ�̂�𝑒Δ𝑦plus ρ𝑑𝑒 times Δ𝑦 times 𝑃𝑃 − 𝑃𝐸. Of course, we know 

that this quantity rho 𝑢𝑒 Δ𝑦 is nothing, but your mass flow rate across east face equals rho �̂�𝑒 

Δ𝑦; we would like to represent that as, represent it as represent it as some F𝑒 ok, which is 

basically mass flow rate defined based on �̂�𝑒 as the velocity plus we have ρ𝑑𝑒Δ𝑦 times 𝑃𝑃 − 𝑃𝐸, 

ok. 

So, let us call this equation 1. Similarly, if you if you start with the y moment, rearranged y 

momentum equation; then we have 𝑣𝑛 equals �̂�𝑛 plus 𝑑𝑛 times 𝑃𝑃 − 𝑃𝑁. Again if you multiply 

on both sides by the density times the corresponding area, the normal area for this velocity; 

then what we get is 𝑣𝑛 equals ρΔ𝑥�̂�𝑛 plus ρ𝑑𝑛Δ𝑥 times 𝑃𝑃 − 𝑃𝑁, ok. 

Again we can call this as the mass flow rate through the north face equals mass flow rate 

through the north face based on hat velocities on the face, that is �̂�𝑛; so that means 𝐹𝑛 equals 𝐹𝑛 

hat plus ρ𝑑𝑛Δ𝑥 times 𝑃𝑃 − 𝑃𝑁, ok. 
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So, similarly we can write equations for the west face and the south face; then essentially we 

can invoke the continuity equation. The continuity equation is the mass flow rates, all the mass 

flow rates through the faces should sum to 0. So, that is 𝐹𝑒 − 𝐹𝑤 + 𝐹𝑛 − 𝐹𝑠 = 0. Then you plug 

in the definitions for flow rates in terms of hat velocities ok; that means F e equals 𝐹�̂� +

ρ𝑑𝑒Δ𝑦(𝑃𝑃 − 𝑃𝐸). So, substitute that here. 

Similarly, for F west we would, we would basically get 𝐹�̂� plus ρ𝑑𝑤Δ𝑦; but there is a minus 

here, so both the terms become minus times 𝑃𝑊 − 𝑃𝑃 plus essentially 𝐹�̂� + ρ𝑑𝑛Δ𝑥(𝑃𝑃 − 𝑃𝑁) 

minus 𝐹�̂� − ρ𝑑𝑠Δ𝑥(𝑃𝑆 − 𝑃𝑃) equals 0, ok. 

So, this basically looks very similar to what we have done before for the pressure correction 

equation, right. I mean instead of writing 𝑢 = 𝑢∗ + 𝑢′; we basically came up with some equation 

that is relating velocities to pressures right, using hat velocities and then we invoke the 

continuity equation and somehow got an equation for pressure. 

Now, this equation for pressure again looks very similar except that there are no primes here; 

because this is the pressure itself to what we have done before in the simple algorithm, ok. 

Now, only thing is that now if I rearrange this; I can of course write this as in the standard form 

as 𝑎𝑃𝑃𝑃 = ∑𝑎nbP𝑛𝑏 + 𝑏 ok, where b of course is all these hat flow rates taken to the right hand 

side.  



And 𝑎𝐸 = ρ𝑑𝑒Δ𝑦; 𝑎𝑊 = ρ𝑑𝑤Δ𝑦; 𝑎𝑁 = ρ𝑑𝑛Δ𝑥; 𝑎𝑆 = ρ𝑑𝑠Δ𝑥 and 𝑎𝑃 would be of course again sum 

of all these coefficients, right. Basically all the neighbouring coefficients will go to the right 

hand side and the 𝑎𝑃 will remain on the left hand side. So, this is basically 𝑎𝑃 would be equal 

to ∑ anb. 

(Refer Slide Time: 13:41) 

 

Then your b term of course is now basically minus 𝐹�̂� when it is sent to the right hand side plus 

𝐹�̂� minus 𝐹�̂� plus 𝐹�̂�, ok. So, this is your b term. Remember in the pressure correction equation, 

the b term was minus 𝐹𝑒
∗ plus 𝐹𝑤

∗ minus 𝐹𝑛
∗ plus 𝐹𝑠

∗, right. 

These were all based on the star velocities, where we said that the b term in the pressure 

correction equation is basically the mass imbalance right or the mass imbalance or the amount 

of mass, or the amount by which the momentum equation or the velocities obtained by the 

momentum equations do not satisfy the continuity equation right; that is the amount that b 

denotes in the pressure correction equation b term. 

Whereas here this is although it looks like some mass flow rate; this is basically not the mass 

imbalance, right. Because, because �̂�𝑒 here is basically not the velocity of the face, rather it is 

only some component of it right; because if you go back, your �̂�𝑒 is defined based on ∑anbu𝑛𝑏  

plus be by ae, right. 

So, this is not exactly the velocity flow rate; because you have this pressure term as well which 

is not incorporated to this thing. So, that is why this hat velocity is kind of used for working of 



the algorithm; but it is does not represent a physical velocity through the face right, because 

the pressure gradient is not involved in this, alright. 
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So, essentially we realize that the flow rates based on the hats, hat velocities is not the mass 

imbalance like or similar to the you know unlike the flow rates based on the star velocities 

which was representing a mass imbalance, alright. Now, essentially what we did is, in the 

process we came up with an algorithm.  

Basically we obtained a an equation for pressure itself right with a pressure itself, using 

essentially u and v as the values right; u and v basically meaning 𝑢∗ and 𝑣∗ right, because these 

𝑢∗ , 𝑣∗ will go into u hat v hat and u hat v hat will eventually go into b. 

So, depending on those b values, you will get a pressure field and this pressure field if you 

converge this thing; you are going to get a pressure field that is coming from the guessed 

velocity fields, right. So, what we did is basically, because it is difficult to come up with a good 

pressure guess; but it is easy to come up with a good velocity guess, we use the velocity guess 

and solve for the pressure using the pressure equation here and obtain the pressure guess. 

Now, this pressure guess that is coming out of this converge solution and this velocity guess 

can be used in the momentum equations directly, so that the velocity guess this guess is not 

going to be destroyed and we can somewhat hope to converge faster, ok. Of course, what we 



have done is in the process; we introduced another equation which requires solution of Gauss 

Seidel again, right. 

So, already we have to solve for two Gauss Seidel’s; two system of linear equations that is for 

x momentum and y momentum, then we had to solve for one system of linear equations for 

pressure correction. Then in the simple revised algorithm, we are introducing another system 

of linear equations that is 𝑎𝑃𝑃𝑃 = ∑𝑎nbP𝑛𝑏 + 𝑏 this is one equation for pressure. So, essentially 

we added one more system to be solved in the, into the algorithm. 

With a hope that this although we are doing work here, essentially you get paid off when you 

solve for the momentum equations; because the good velocity guesses that you obtain would 

be eventually help you converge quickly, ok. So, that is the idea; that means now use the 

guessed velocity field to obtain pressure field ok, that is what we just discussed. Now, use the 

converged P to solve for the momentum equations to obtain u star v star, ok. 
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So, essentially now once you solve for the momentum equations; then you obtain 𝑢∗𝑣∗  fields, 

then use these to calculate the b term and solve for the pressure correction, right. And use this 

pressure correction only to obtain or only to correct 𝑢∗ and 𝑣∗, not pressure; because pressure 

we will use whatever you get from here, alright. 
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So, let us see the complete algorithm for simple revised. So, we similar to simple we start off 

with the guess values for 𝑢𝑒
∗  and 𝑣𝑛

∗ fields; then we calculate from once you have this guess 

values, you calculate the 𝑢�̂� velocities that is ∑anbu𝑛𝑏
∗  plus 𝑢𝑒 plus be upon ae and 𝑣�̂� equals 

∑anbv𝑛𝑏
∗  plus bn upon an, ok. 
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So, we just basically guess the velocities and obtain the hat velocities; then we solve for the 

pressure equation, ok. So, the pressure equation is 𝑎𝑃𝑃𝑃 = ∑𝑎nbP𝑛𝑏 + �̂�; this �̂� contains these 

hat velocities, which is basically minus 𝐹�̂� plus 𝐹�̂� minus 𝐹�̂� plus 𝐹�̂�. So, essentially you need 



one Gauss Seidel or solution of linear system here to solve for pressure equation with the guess 

values for 𝑢∗𝑣∗ which are going in as basically �̂� and �̂�, right ok. 

Then we obtained a pressure. So, this pressure that you get here, we can we can call it of course 

𝑃∗; but we will just leave it as P. So, this P and these two converged velocity guesses right, that 

is whatever you get out of this equation is the pressure and this converged pressure and the 

guess to 𝑢∗ 𝑣∗ are now kind of in a good form; because this pressure now is consistent with the 

with the guessed velocity field, ok. 

So, that means then we can solve for the momentum equation. So, as usual this is basically; 

this was the fourth step here is basically was the first step for simple right, because we started 

off with once you have the guessed velocities and guess pressures you, you went to directly to 

solving the momentum equations. 

But now what you do is, you converge the pressure correction; then use those pressures and 

the guessed velocities and solve for the momentum equations. Of course, I have written the 

equations here; but you have to write them in the under relaxed version of these for the 

momentum equations. That is because you still have to use under relaxation for momentum 

equations; because you know linearity in the convection term or the nonlinearity that may come 

up in the source terms or something like that, alright. 
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Then once you have the converged 𝑢∗𝑣∗, you calculate for pressure correction. Now, why do 

we need pressure correction? Because we still need pressure correction to collect correct our 

velocities right; we do not need pressure correction to correct pressure itself, because we 

already have a pressure field. 

So, we still solve for pressure correction, again you have another solve for another Gauss Seidel 

here; solve for pressure correction till convergence, obtain the converged P prime field, ok. 

Which is basically 𝑎𝑃𝑃𝑃
′ = ∑anbP𝑛𝑏

′ + 𝑏, where the b; here I represent using b star to kind of 

distinguish it from the �̂� that we have used in the pressure equation. So, 𝑏∗ is basically minus 

𝐹𝑒
∗ plus 𝐹𝑤

∗ minus 𝐹𝑛
∗ plus 𝐹𝑠

∗, ok. 

So, once you have the pressure correction, you correct your velocities from the pressure 

correction. So, 𝑢𝑒
′  is again expressed in terms of p primes right, same as before right; we had 

𝑢𝑒 equals 𝑢𝑒
∗  plus 𝑢𝑒

′ ; 𝑣𝑛 equals 𝑣𝑛
∗ plus 𝑣𝑛

′ , but do not correct the pressure. 

So, do not correct pressure here; because we already know, we can already obtain pressure 

from the velocities, ok. So, once you have this 𝑢𝑒 ; 𝑣𝑛, we can directly obtain the pressure.  

The idea is basically you do not have to correct for pressure; so as a result the pressure would 

not come with large changes in the pressure, as a result we can avoid the slow convergence of 

the pressure equation or the pressure correction equation or in terms of destroying a good 

velocity guess, ok. So, these are the things that are addressed. 

Now, using the this continuity satisfying field, like after you correct the velocities, this satisfies 

continuity; then of course, you can solve for any other scalar, such as temperature, species 

transport or any other ϕ in the flow field. Now, then we essentially come and update your star 

values with the updated values, the corrected values; that means 𝑢𝑒
∗  equals 𝑢𝑒, 𝑣𝑛

∗ equals 𝑣𝑛 and 

if it is not converged, go back to step 2.  

Now, now again you got a new velocities that are just corrected as the guesses. So, with these 

guess velocities and the pressure, you go back to step 2 ok. And what you do? You use the 

updated velocities and calculate the hat velocities; then you solve for pressure, ok. So, this is 

where basically pressure field gets updated, fine ok. So, that means we do not have to under 

relax for pressure; but we still have to relax for the momentum equations to account for the 

non-linearity in the problem, ok.  



Of course, we understand that in this process we have introduced one extra equation which 

requires Gauss Seidel as well, ok. So, simple revised kind of essentially fixes this problem that, 

of the slow convergence, of the pressure equation and also fixes the problem that there is 

essentially a it kind of obtains a kind of good pressure field from a guessed or good velocity 

field. So, as a result we are not trying to find the good pressure field after destroying the velocity 

field, ok.  

So, that is kind of the advantage of simple revised; of course the computational effort goes up 

because of the Gauss Seidel ok. A Gauss Seidel loop that has come up because of solid in the 

pressure equation, alright. Let us look at another variant of simple that is known as simple 

corrected or simple C. 
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So, simple corrected kind of addresses the neglect of the neighbouring contributions that is; 

remember you ∑anbu𝑛𝑏
′  and ∑anbv𝑛𝑏

′  were neglected in the 𝑢𝑒
′  and 𝑣𝑛

′  equations, ok. But of 

course, we realize that we do not want to include them; because if you include them, you end 

up with this unmanageably long equation, which leads to global dependence of pressure, right. 

Again that is not what we want to do; because we want to keep things to the near neighbouring 

cells. 

So, as a result we cannot come, but at the same time we do not want to neglect them completely; 

because if you neglect them all this completely, then the entire burden of correcting the 

velocities falls on the pressure. 
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So, as a result a simple character proposes that, you approximate ∑anbu𝑛𝑏
′  with ∑anbu𝑒

′ . So, 

essentially it says, the contribution of the neighbouring cells times the neighbouring corrections 

can be taken as the neighbouring, the primary cell correction itself multiplied by the 

coefficients of the neighbouring cells. 

So, that means you see now this will simplify things right; because you do not have to, because 

the moment you write u𝑛𝑏
′  as 𝑢𝑒

′ , you do not have to solve for a system. And you do not have 

that recursion of including for the neighbours and its neighbours will not come into picture, ok. 

But the as an approximation, the coefficients are accounted for, ok. 

So, that means, ∑anbu𝑛𝑏
′  it says approximate as 𝑢𝑒

′  time ∑anb and ∑anbv𝑛𝑏
′ , you approximate 

it as ∑ anb times 𝑣𝑛
′ , ok. So, these are the approximations that are proposed by simple corrected 

algorithm; that means our prime equations for velocities now get modified. 

So, instead of this was, this was earlier taken as a 0 right, this was taken as 0; but now we do 

not take it as 0, rather you write this as ∑anb 𝑢𝑒
′ . That means, if you take it to the left hand side; 

we can write 𝑢𝑒
′  times 𝑎𝑒 − ∑anb equals Δ𝑦(𝑃𝑃

′ − 𝑃𝐸
′ ).  

So, your 𝑢𝑒
′  is now Δ𝑦 by instead of simply 𝑎𝑒, you have 𝑎𝑒 minus ∑anb, ok. So, this is basically 

𝑢𝑒
′  equals some 𝑑𝑒(𝑃𝑃

′ − 𝑃𝐸
′ ), where 𝑑𝑒 equals Δ𝑦 by 𝑎𝑒 − ∑anb, ok 
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So, this is the new or the velocity correction right; this is velocity 𝑢𝑒
′  in terms of the pressure 

corrections, right. So, this is basically the velocity correction equation for simple corrected ok, 

where 𝑑𝑒 is not the same as before; it has now the neighbouring contributions as well. 

Of course, similarly we can write it for the north face 𝑎𝑛𝑣𝑛
′  equals ∑anbv𝑛𝑏

′  plus Δ𝑥(𝑃𝑃
′ − 𝑃𝑁

′ ). 

Then again instead of neglecting this completely, we say ∑anbv𝑛𝑏
′  equals 𝑣𝑛

′  times ∑anb. So, if 

you take it to the left hand side, you get 𝑣𝑛
′  times 𝑎𝑛 −∑anb equals Δ𝑥(𝑃𝑃

′ − 𝑃𝑁
′ ). 
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That basically gives you 𝑣𝑛
′  equals some 𝑑𝑛(𝑃𝑃

′ − 𝑃𝐸
′ ), where 𝑑𝑛 equals Δ𝑥/(𝑎𝑛 −∑anb), ok. 

So, this is the correction equation for north face. 

Now, that is the only change that we do for simplex or simple C; otherwise everything else is 

the same as that of a simple algorithm. That means, we do not have an equation for pressure; 

we only have an equation for pressure correction. And we have to still correct the pressure as 

well as velocities and so on ok. So, simple C is basically a modification on top of simple, where 

the neighbouring coefficient contribution is not neglected in the velocity correction equation. 

So, this still simple C still suffers from the problem that, if you do not give a good pressure 

guess; then your velocity guess might be destroyed because of a poor pressure guess ok, which 

was addressed in the simple revised algorithm, ok. So, as a result that needs to be taken care 

here; of course simple C does not require an additional equation like what we had before in the 

simple revised, ok. So, as a result this is something quite different from the simple revised 

algorithm, ok. 

Of course, there are many other variants of simple called simple M simple and I think simple 

best and a lot of other things are also available, which we are not going to detail into all of them 

and we are basically just looking at simple R and simple C algorithms, alright. Now, then let 

us look at how do we extend the concept of staggered mesh for, let us say if you have curvilinear 

meshes or if you have unstructured meshes. 
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Now, let us look at extension of this staggered grid approach to unstructured meshes or to start 

with we will look at curvilinear meshes; of course things are much more complicated to extend 

them to unstructured measures,. So, with that in the back of the mind, we apparently say that it 

is not very easy to extend this concept of concept of staggered grid; because if you have a 

Cartesian mesh, it is much easier to do things in a staggered way. 

If you have a curvilinear mesh, we will see that we will run into problems and if we have 

unstructured mesh, the problems we run into are more so, ok. So, as a result let us kind of see 

some examples of a curvilinear mesh; here we look at let us say some kind of a curvilinear 

mesh like this, which is taken and the horizontal velocities here shown in blue kind of denote 

the u east and u west.  

And the vertical velocity vectors here denote the v north and the v south for any of the cells 

and the cells are have a centroid that is denoted using this filled circle here, ok. So, of course, 

right away we see one problem; basically if you start storing the horizontal velocities and the 

vertical velocities on the faces, then we see that as we keep going, we see that all of a sudden 

we come up with a cell, where for this cell the vertical velocity is instead of being out of the 

face, it is now parallel to the face, right.  

And similarly, the horizontal velocity instead of going out of the out of the face, it is now 

parallel to the face. Now, this is a problem, this problem will be difficult to address or 

essentially it shows up in solving the continuity equation; because now we do not have enough 

data to solve for continuity, right.  

Because up till now if you take this example, you had some flow rate leaving and from some 

flow rate entering and some leaving here to the north face and entering to the south face; 

whereas here all of a sudden you do not have a representation for flow rate, because now v n 

is parallel to the parallel to the this face. 

Now, of course, again this face happens to be, supposed to be some kind of an east face; now 

it happens to be north face right, because it kind of slowly developed into, because the mesh 

was turning, right. So, as a result you do not have enough data for the flow rates to be 

reconstructed from calculated from these velocities on the, this u e u east and the v north values. 



As a result continuity or discretizing the continuity equation, discretization poses a problem 

and we cannot simply solve this problem unless some more data is specified which we do not 

have for the system to be solved, ok.  

So, that is one problem that you see directly if you extend the concept of staggered mesh, that 

is basically storing the, storing the basically the Cartesian velocity components on the faces; 

just like the way we did for the Cartesian measures to essentially on the faces causes issues in 

the context of curvilinear and of course, for unstructured meshes as well, alright. 

Then we can be clever, we say ok, we do not want to store; why should we store the Cartesian 

velocity components, I will come up with another way of doing it. Because we are dealing with 

curvilinear meshes, I will solve or I will store curvilinear velocity components, ok. 
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That means, we come up with something here, which is basically a curvilinear mesh. Now, we 

define the face velocities as not as the Cartesian components like u east and u west; rather as 

something that is normal to the particular face, ok. This is nice, because now every face has a 

normal and we define velocity vectors normal to that particular face. So, as a result red colours 

here denote your something like your east velocities, and the blue colour arrows here denotes 

something like your north, south velocities, ok. 

And as a result you have a description of all the velocities on all the faces for all the cells and 

you do not have a problem, right. So, essentially this is kind of a work around; of course this 



can be done, essentially store or define velocities that is basically normal to the faces of the 

cells right, rather than using the Cartesian velocity components. So, this was tried in the 

literature. 

So, this is tried in the literature and this kind of definition of velocities is known as contra-

variant velocity vectors. This, so this was tried in the literature, so this exists. So, essentially 

curvilinear measures with contra-variant velocity vectors can be solved using staggered 

approach. But one problem is that, with this the terms that you get in the equation, such as the 

diffusion and things like that will become; they will not, they will become basically non 

conservative. 

Because of the, because now the velocities are defined in a curvilinear fashion; as a result you 

end up with non-conservative form of equations or non-conservative discretized equations 

which are not very really good to work with for all sorts of meshes, ok. So, that is one issue 

and also it becomes non conservative; because now you end up with the control volumes that 

kind of overlap with each other because of these definitions and causes issues with non-

conservation, ok. 

So, as a result this is also not a; so this kind of storing and solving is also not a preferred way, 

because we end up with losing the conservation for the diffusion terms and things like that. So, 

as a result this is not very much preferred in the context of unstructured meshes at least, ok. 

Now, another thing is basically the, it is not very easy to generalize or what you get is basically 

not very not very easy to implement, ok. 

So, not very easy to generalize for different unstructured measures; as a result this is not 

preferred in the literature. Of course, then we can come up with another solution; another 

solution is basically, why not store both the components of velocities at all the faces?  

So, earlier we said if you only store the Cartesian x velocities at a particular face and y velocities 

at the particular face, like what we have done in the Cartesian case; then we end up with the 

problem. Then let us now be clever and say that, we will store both velocities at both the faces, 

at all the faces; that means both store x and y, x and y and so on. 

That means we end up, of course one thing you can clearly see is that, this will avoid the 

problem of mass conservation discretizing continuity equation; because although this becomes 

parallel, you have the other velocity which will give you in constructing the velocity vector at 



this particular face correctly, right. So, it is not a problem, now your face can be inclined at any 

angle; you have both the velocity vectors, then you can kind of obtain the correct mass flow 

rate through a face, ok. 
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So, this kind of addresses the discretization of continuity equation; however the problem you 

see clearly is that, this is increases the amount of equations we have to solve. For example, 

instead of solving for four equations right; essentially one for u east, one for u west, one for v 

north, one for v south four momentum equations, we are now solving for eight momentum 

equations. That means, the computational effort has is now doubled in 2 D; of course it will 

get tripled in 3 dimensions, ok. 

This is not very good. As a result, although this method was again tried in the literature, it exists 

in the literature; this is not an ideal way to move forward ok, because it increases the 

computational cost by several times. Of course, then what is the preferred way?  

That means extending the staggered approach to curvilinear unstructured measures is not very 

easy. So, extension of staggered grid to unstructured meshes is not easy and it is not worth 

pursuing, ok. So, as a result, so it is not worth pursuing in its own sense of creating a staggered 

velocities, ok. So, as a result people finally, came up with reverted back to the co-located 

approach; that is basically only store both components at the cell centroids, ok. 
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So, this is basically the co-located storage of velocities and pressures right, which we said is 

not good; because it causes pressure velocity checker boarding right, as a result we did not 

prefer that. But it looks like, if you use some kind of interpolation or interpolation techniques, 

using some interpolation techniques; the pressure velocity the checker boarding can be avoided. 

As a result the collocated or co-located storage of u, v and pressure all at the same location of 

the cell centroid and the use of the Cartesian components of velocities is preferred both for 

solving for curvilinear, of course for Cartesian and or for any unstructured meshes.  

Of course, we have to come up with some kind of an interpolation technique and this 

interpolation technique that we are going to see is basically does what the staggering has done 

through a separate grid; this interpolation technique will do through equations, ok. 

So, the interpolation technique is basically will do whatever is that is done by the staggering, 

but through equations, ok. So, we do not really have to store velocities here; but we somehow 

use interpolation techniques and construct the velocities on the faces from these velocities that 

are stored at the cell centers, such that we do not run into checker boarding, ok. 

So, that is the idea. So, we will revert back to the co-located approach for solving all the 

Cartesian curvilinear and unstructured meshes; because the extension of the staggered approach 

to curvilinear unstructured measures is completely not useful at all, ok. So, now we are going 



to see one particular type of interpolation in this course that is predominantly used in all the 

software for solving the incompressible fluid flow equations, ok. 

Now, if you look at all the packages that are out there, all of them use only this particular 

interpolation and all of them store co-located all the, all of them store the velocities and 

pressures in a co-located way, ok. 
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So, that is the idea. So, let us get back and look at the equations once again and the concept of 

the pressure and velocity checker boarding, before we kind of look at the particular 

interpolation technique, ok. So, let us see what is the problem again to understand it, such that 

from the equations; let us understand the problem again and then we will kind of devise a 

method that will fix the problem of the pressure and velocity checker boarding,. 

So, we revert back to the co-located grid, where we store the velocities and pressures and 

temperature and phi everything at the cell centroid. Of course, in the staggered mesh, even the 

code also does not look good; because now you have so many staggering’s that are available, 

which will make the code very difficult to read and understand as well, ok. 

So, in that sense also co-located is much more, much more nicer to work with, ok. So, we store 

all the velocity components pressure, temperature, any other scalar at the cell centroid, ok. 

Now, we are also considering a two dimensional Cartesian mesh and we will also for the sake 

of simplicity use a uniform mesh, alright. Then if you go back to the momentum equation. 



Now, let us, now we are back to the cell P ok; because, we do not write it for 𝑎𝑒𝑢𝑒 ok, we are 

back to the cell P. Then the momentum equation is basically 𝑎𝑃𝑢𝑃 equals ∑anbu𝑛𝑏  plus bP plus 

Δ𝑦(𝑃𝑤 − 𝑃𝑒) these are the pressures on the faces. Now, using linear interpolation, if you use a 

linear interpolation for pressures; then 𝑃𝑤 can be written as (𝑃𝑊 + 𝑃𝑃)/2  

𝑃𝑒 can be written as (𝑃𝐸 + 𝑃𝑃)/2, ok. So, it is basically an arithmetic average of the cell values 

of the pressure, because that is where pressure is stored. That means, our 𝑎𝑃𝑢𝑃 equation will 

read with these values substituted here as ∑anbu𝑛𝑏  plus bP times Δ𝑦(𝑃𝑤 − 𝑃𝑒). Note that I think 

in one of the previous lectures, I on the, I think in the introduction to fluid flow; probably I 

missed this factor half ok, somebody pointed it out, alright. 
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So, then you have this factor half when you use linear interpolation into the momentum 

equation. Then equation 3 is now your x component of momentum equation for a cell P. 

Similarly, now if I use the same concept for its east neighbour that is for cell E; I can write a x 

component of momentum equation, right. That is basically for the cell E, for the cell centroid 

of the east cell; that will be 𝑎𝐸𝑢𝐸  equals ∑anbu𝑛𝑏 , this will be the neighbours of East cell plus 

instead of 𝑏𝑃 I have 𝑏𝐸 plus we have Δ𝑦/2. 

And what would be these values? This will be the west cell and the east cell. So, the west cell 

for the east cell will be west cell for east cell will be P cell, ok. And what will be the east cell 

for the east cell? East cell of East cell will be East of East; that meanswe end up with the 



equation 4 which is basically the discrete momentum equation using co-located storage for east 

cell, ok. 

Now, we are doing this basically because, you have momentum equation for cell P and you 

have momentum equation for cell E from which you can calculate what is the cell centroid 

values 𝑢𝑃 and 𝑢𝐸 . But eventually if you write the continuity equation, then you would need the 

face value of u little e right; that means you need 𝑢𝑃 plus 𝑢𝐸  by 2 or something like that, which 

will of course lead to some kind of velocity checker boarding and pressure checker boarding 

that is what we are kind of going to see, alright. 

Now, again I can rewrite equation 3 as by dividing with 𝑎𝑃 everywhere; I can rewrite this as 

𝑢𝑃 equals ∑anbu𝑛𝑏 + 𝑏𝑃 upon 𝑎𝑃 plus you have 
Δ𝑦

2𝑎𝑃
 times (𝑃𝑊 − 𝑃𝐸). Like we have what we 

have done in this simple revised algorithm, let us call this coefficient as some hat velocity. So, 

your u at the cell centroid P, 𝑢𝑃 equals �̂�𝑃 plus; let us call this as some Δ𝑦/𝑎𝑃 as some 𝑑𝑃, ok. 

Some coefficient d, that is 𝑑𝑃/2 times (𝑃𝑊 − 𝑃𝐸), ok. 
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So, we obtained one equation for 𝑢𝑃. Similarly, I can write for 𝑢𝐸  as well right; that is basically 

divide this equation 4 by this center coefficient that is ∑anbu𝑛𝑏 + 𝑏𝐸 upon 𝑢𝐸  plus 
Δ𝑦

2𝑎𝐸
 times 

𝑃𝑃 − 𝑃𝐸𝐸 . That means, we got 𝑢𝐸  equals �̂�𝐸 plus 𝑑𝐸/2 times 𝑃𝑃 − 𝑃𝐸𝐸 , alright, where �̂�𝐸 is 

basically this quantity and 𝑑𝐸 is this 
Δ𝑦

𝑎𝐸
, ok. 



So, we left the factor two here, alright. So, now, we got essentially velocities at the cell 

centroids of P and the East cell. Now, we want to calculate what is the velocity on the face that 

is basically we want to calculate on the face little e; because your East cell is here and your P 

cell is here right, essentially we want to calculate on the particular face that is this one, ok. 

How do we do this? Of course, we can it is; because we have assumed it to be uniform mesh, 

we can take it as a an arithmetic average of the velocities of 𝑢𝑃 and 𝑢𝐸  to calculate 𝑢𝑒 right, 

essentially we have 𝑢𝑃 calculate 𝑢𝑒 from 𝑢𝐸  and 𝑢𝑃, right ok. 
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Let us do that; that means I can calculate what is velocity on the face as the arithmetic average 

of these cell values. If I do that, what I get is basically 𝑢𝐸  equals I have �̂�𝑃 plus �̂�𝐸 by 2 right; 

because I am adding these two up by 2. 

So, this is these two up by 2, that is �̂�𝐸 plus �̂�𝑃 by 2 plus we have this plus this by 2; that is 

basically each of them is going to get a factor of 1 by 2 in the front. So, this will be 𝑑𝑃 by 4 

times pressure difference plus 𝑑𝐸 by 4 times 𝑃𝑃 − 𝑃𝐸𝐸. So, that is the final equation we get, 

basically the velocity on the face e is equal to �̂�𝐸  plus �̂�𝑃 by 2 plus 𝑑𝑃 times 𝑃𝑊 − 𝑃𝐸 by 4 plus 

𝑑𝐸 times 𝑃𝑃 − 𝑃𝐸𝐸 by 4. 

Let us call this equation number 7. Now, this equation is basically an arithmetic average of the 

cell centroid velocities to obtain the face velocity, correct. We basically have done not much 

here; basically what we have done is, we took the momentum equations, we have rewritten it 



such that we calculate the u at the P cell and the East cell and took an average of that, that is 

all we kind of use this concept of hats and pressures to make it simple to write, right ok. 

Now, this is the velocity for the East face; we will also need a velocity for the west face, right. 

And similarly you can write if you do the entire algebraic; you will get 𝑢𝑤 will be �̂�𝑊 plus �̂�𝑃 

by 2 similar to this plus you get d P by 4 and you get 𝑃𝑊 − 𝑃𝐸 coming from the d P. 

Then you get instead of 𝑑𝐸 by 4 you will get a 𝑑𝑊 by 4; instead of 𝑃𝑃 − 𝑃𝐸𝐸  for the East face, 

you will get for the west face you will get 𝑃𝑊𝑊 − 𝑃𝑃 ok. So, this is something you have to 

verify, alright. So, essentially you got an equation for 𝑢𝑤. 

So, each of these velocities what they suggest is basically; your the face velocity has pressures 

which are basically  𝑃𝑃, 𝑃𝐸, 𝑃𝑊, 𝑃𝐸𝐸 and 𝑃𝑊𝑊, right. If you look at East and West, the velocities 

are there now; that means if 𝑃𝐸 equals 𝑃𝑊, that means this term is zero. 
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Similarly, 𝑃𝐸 equals 𝑃𝑊 this term is zero; that means if 𝑃𝐸 equals 𝑃𝑊 equal to some constant  𝑘1 

and 𝑃𝑃 equals 𝑃𝐸 is equals 𝑃𝑊𝑊 equals some other constant 𝑘2 . Then if you have such a pressure 

field, then your face velocities will see that as zero pressure gradient, right. 

That means, if I have a pattern like this, if I have let us say my 𝑃𝑃, 𝑃𝐸, 𝑃𝑊, 𝑃𝐸𝐸, 𝑃𝑊𝑊 such that 

I have 50, 10, 50, 10; then essentially the 10 and here we, because both are equal will make 

this term to be 0 right as well as this term also to be 0, right. 



Similarly, the 50 coming from here, here and here will make 𝑃𝑊 equals 𝑃𝑊𝑊 equals 𝑃𝑃. So, this 

term will be 0 and also this term will be 0; that means the pressure gradient although it looks 

like a checker boarded pressure which is 50, 10, 50, 10 and 50, this will be not felt by the 

momentum equations, ok. 

That means, the momentum equations for u e and u w will perceive a checker boarded pressure 

as zero gradient of pressure; that means they support the checker boarding of pressure concept 

ok, the momentum equations. Now, the idea is how do we fix this? Now, what we do is we will 

not fix this in this particular case for the momentum equations; we will fix it for the continuity 

equation. 

(Refer Slide Time: 51:43) 

 

So, let us look at the continuity equation. The continuity equation is 𝐹𝑒 minus 𝐹𝑤 plus 𝐹𝑛 minus 

𝐹𝑠 equal to 0. So, that means if you look at the continuity equation; if you substitute for ρ𝑢𝑒Δ𝑦 

in terms of the flow rates, we get ρ𝑢𝑒Δ𝑦 minus ρ𝑢𝑤Δ𝑦 plus ρ𝑣𝑛Δ𝑥 minus ρ𝑣𝑠Δ𝑥 equals 0. 

So, again if you use linear interpolation for the face velocities, what you get is; 𝑢𝐸  plus 𝑢𝑃  by 

2, and so on. And the basically and then you have, if you plug in the face velocities back into 

this you get what you get is basically 𝑢𝐸 , 𝑢𝑊; because 𝑢𝑃 gets cancelled 𝑣𝑁 and 𝑣𝑆. 
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So, basically what you get is (𝑢𝐸 − 𝑢𝑊)Δ𝑦 plus (𝑣𝑁 − 𝑣𝑆)Δ𝑥 equals 0; that means there is no 𝑢𝑃 

or 𝑣𝑃 in this discrete continuity equation. So, as a result this supports velocity checker boarding, 

ok. So, that means the momentum equations support pressure checker boarding, and the 

continuity equation supports velocity checker boarding. 

Now, if both equations stops support the checker boarding; both the pressure and velocity have 

to be satisfied by both continuity and momentum equations, ok. So, as long as both are 

supporting it, then these may still remain in the final solution.  

As a result what we try to do is, we will let the momentum equation still support checker 

boarding; whereas we will fix the continuity equation to not support checker boarding of the 

velocities or the pressures. As a result the final solution will not have this checker boarding in 

the in the solution, ok. 

So, we will look at the Rhie Chow interpolation and we could not do it; I think we are already 

out of time. So, we will look at basically Rhie Chow interpolation that is also known as 

momentum interpolation and see how to formulate the co-located meshes in the next lecture, 

ok. 

So, I am going to stop here. I will, we will pick it up from the co-located approach for solving 

the incompressible flow equations using the Rhie Chow interpolation in the next lecture, 

alright. If you have any questions, do let me know through email; I will get back to you, ok. 



Thank you. 


