## Computational Fluid Dynamics Using Finite Volume Method Prof. Kameswararao Anupindi Department of Mechanical Engineering Indian Institute of Technology, Madras

#### Lecture - 38

#### Finite Volume Method for Fluid Flow Calculations: SIMPLE algorithm – Part III

(Refer Slide Time: 00:14)



Hello everyone. Welcome to another lecture as part of our ME6151 Computational Heat and Fluid Flow course. So, in the last lecture, we looked at 3 problems from Patankar's book, right. From chapter 6, we looked at the 6.4, 6.5 and 6.7, these 3 problems we percolated them, kind of set the simple algorithm loop. So, in today's lecture we are going to see the corresponding programs for these problems and kind of run and obtain the answers, ok.

So, the first problem, we will tackle today is the problem number 6.4 that is the flow through a porous a 1-dimensional flow through a porous material. Essentially, this is governed by the equation  $C|u|u + \frac{\partial P}{\partial x} = 0$ , right. And we were given the pressure points which are 1, 2, 3 and the velocity points which are B and C, right.

And, the continuity equation was given as  $\frac{d(uA)}{dx} = 0$ ,  $\Delta x$  that is  $x_2$  minus  $x_1$  or  $x_3$  minus  $x_2$  was given as 2. And we were also given the constants the porosity coefficients, right,  $C_B$ ,  $C_C$  as 0.25, 0.2.

(Refer Slide Time: 01:23)



And the cross sectional areas  $A_B$ ,  $A_C$  are given as 5 and 4. And the pressure boundary condition is given at the points 1 and 3 that is 238, right. And we were given an initial guess that is  $u_B^* = u_C^*$  equals 15 and  $P_2^*$  equals 120, right. And we have to find what is the converged value for the velocities  $u_B$  and  $u_C$ , and also the pressure 1,  $P_2$ , right. That is what we have to find. So, the corresponding code the program with they have is in FORTRAN.

(Refer Slide Time: 02:04)

| 3 ⊕ ⊙ emacs@kamesh-laptop<br>ile Edit Ontions Buiffers Tools F90 Helo | h 🖗 🖗 🖬 🛎 🕾 🎮 🕻 |
|-----------------------------------------------------------------------|-----------------|
| 🗜 🚔 🗃 🗶 📖 Save 🔸 Undo 🐰 🎼 🎁 🔍                                         | NPTEL           |
| p2 = 120.0                                                            |                 |
| ! uB = 50.0                                                           |                 |
| ! uC = 100.0                                                          |                 |
| ! p2 = 1000.0                                                         |                 |
| ! Given parameters                                                    |                 |
| cB = 0.25                                                             |                 |
| cC = 0.2                                                              |                 |
| A B = 5.0                                                             |                 |
| $A_{C} = 4.0$                                                         |                 |
| p1 = 200.0                                                            |                 |
| p3 = 38.0                                                             |                 |
| deltax = 2.0                                                          |                 |
| ! set under-relaxation, tolerance                                     |                 |
| tolerance = 1.0e-6                                                    |                 |
| alphaP = 0.8                                                          |                 |
| alphaU = 0.9                                                          |                 |
| imax = 200                                                            |                 |
| do i = 1. imax                                                        |                 |
|                                                                       |                 |
| ! calculate/update momentum coefficients<br>aB = cB*abs(uB)*deltax    |                 |
| : simplePorous.f90 16% L16 (F90)                                      |                 |

#### (Refer Slide Time: 02:06)



All the programs that I have that I am going to show you today are in FORTRAN. So, I do not have the C counterparts of these, but if you want you can easily write them by looking at by looking at the code that this code that I will share with you. So, if you want you can write a C counterpart of it or you can even run use the FORTRAN programs to kind of play with them and see how they are written and how whether it will work for different values or not, and then kind of learn from it, ok.

So, essentially what we are looking at this code for simple porous that is problem 6.4. So, we have we kind of, so essentially this is the declaration part, so essentially we are declaring these variables that is the cross sectional areas  $A_B$ ,  $A_C$  and the porosity cB, cC and the pressures  $P_1$ ,  $P_2$ ,  $P_3$ ;  $\Delta x$  is basically your  $x_2$  minus  $x_1$  and so on and your tolerance and  $a_B$ ,  $a_C$  here with little a these kind of correspond to the coefficients, right, in terms of the  $a_B$  is the coefficient for the  $u_B$ , right whenever we write.

And then  $u_B$ ,  $u_C$  are the velocities at B and C locations.  $u'_B u'_C$  are the corrections for velocities for  $u_B$ ,  $u_C$ , and  $P'_2$  is the correction for pressure at the location 2. Then, we have the under relaxation that is  $\alpha_u$ ,  $\alpha_p$  the coefficient.

And then we also have something known as residual which is both for u as well as for continuity, ok, for the u momentum equation and for the continuity equation. And then we have this b, b corresponds to the b term on your in your continuity equation, right, ok.

And then we have we kind of make use of couple of integers i and imax, ok. So, what is given to us? The initial guess was given as  $u_B$  equals 15,  $u_C$  equals 15 and pressure equals 120, right that is what was given, essentially  $u_B$ ,  $u_C$  is equal to 15 and pressure equals 120. So, we initialize to that we have another set here which have we will try later, and anything in an exclamation series a comment, ok, so you do not have to worry about that.

(Refer Slide Time: 04:04)



Then, the given parameters are the porosities cB, cC is 0.25 and 0.2, that is basically given here. And the cross sectional areas are 5 and 4, that is basically  $A_B$  is 5,  $A_C$  is 4 and pressures the Dirichlet boundary condition for pressure that is  $P_1$  is 200 and  $P_3$  is 38, ok. So, that is basically taken here. And the  $\Delta x$  is equal to 2 that is your  $x_2$  minus  $x_1$  or  $x_3$ minus  $x_2$  equals 2, ok. So, these are all the data that is already given in the problem. So, this data is given.

Next, what we do is we kind of set these values the tolerance values, so what is the smallest value we want to converge this code 2, that is 1 into 10 power minus 6. Then, the under relaxation values for the pressure we kind of set it as 0.8, for the velocity we set it set it as 0.9, ok.

Then, we would also need to do some iterations. Here I put the iteration limitation as 200, and hopefully we will kind of break out of the loop before we reach the 200 iterations, ok; that we need to see. If we do not break out of all these, then we have to increase this number to something like 500 or 1000, and then run them.

#### (Refer Slide Time: 05:26)



So, here we have a do loop this is basically similar to your for loop in C, ok, in C programming language or C plus plus, fine. So, this is similar to a for loop. Essentially we are going from i equals 1 to imax in steps of 1, ok. So, that is what we have. And then, we need to calculate what is this coefficients for the momentum equations, right.

So, you remember the momentum equation was aB,  $u_B$  equals something, right, where the coefficient aB was cB times mod cB times  $\Delta x$ , right. So, if you go down I think when you discretize the equation.

(Refer Slide Time: 06:14)



So, these are the equations we got, right. Essentially, the coefficient here aB is basically how much was it? aB was  $C_B \mod u_B \Delta x$ , right. So, that is what we have written here.

(Refer Slide Time: 06:21)

So, cB mod  $u_B \Delta x$  is your coefficient aB. Similarly, aC, cC mod  $u_C$  times  $\Delta x$ , also these are the coefficients for the velocities at the staggered locations, for uB and  $u_C$ . Now, we will not worry about this at the moment. So, these this is basically the residual I will come back to this in little while. So, before we do that, so let us not worry about this part here. So, let us look at the solution of the momentum equation. So, how do we solve for the momentum equation?

(Refer Slide Time: 06:49)



Momentum equation is basically you have aB  $u_B$  equals  $P_1$  minus  $P_2$ . So, you calculate  $u_B$  as  $P_1$  minus  $P_2$  by  $a_B$ , right. But of course, this does not look like that because these are under relaxed equations, ok. So, we have to look for the under relaxed equations that we have written towards the end of the formulation, so that is basically this one, ok.

(Refer Slide Time: 07:22)

$$\frac{\partial \mathbf{r}}{\partial \mathbf{r}} = \frac{\partial \mathbf{r}}{\partial \mathbf{r}} = \frac{\partial$$

So, we are talking about  $a_B/\alpha_u$ ,  $u_B^*$  equals  $P_1^*$  minus  $P_2^*$  plus  $(1 - \alpha_u)/\alpha_u$  times  $a_B u_B^*$ . So, if you want to calculate  $u_B^*$ , then you take this entire thing and then multiply that with  $\alpha_u$  by a B, right.

That is going to give you what is  $u_B^*$  for a guess value of pressure and velocity, ok. So, that means, if you look at here, so what we have is  $u_B^*$  equals you have  $P_1$  minus  $P_2$  same as what we had here plus we have 1 minus alpha by alpha times aB  $u_B^*$  that is this scan it as is  $(1 - \alpha_u)/\alpha_u$  times  $a_B u_B^*$ , ok. So, this is  $a_B u_B$ .

Now, this entire thing of from here to here, right has to be multiplied with  $\alpha_u/a_B$  because this is coming from the left hand side, right. So, essentially you multiply with  $\alpha_u/a_B$  on the right hand side to get  $u_B^*$ . That is what we have. Essentially, you multiply with  $\alpha_u/a_B$ , ok.

Similarly, we write the equation for cell C that is  $P_2$  minus  $P_3$  plus  $(1 - \alpha_u)/\alpha_u$  times  $a_c$  $u_c^*$  and the entire thing has to be multiplied with  $\alpha_u$  and divided by  $a_c$ , ok. So,  $u_c$  equals  $P_2$  minus  $P_3$  these are the guess values. So, we do not have this star notation here because we know that eventually the star is basically what we have is there as the current iterate value and that is what will be used here, ok.

So, we have  $P_2$  minus  $P_3$ , and then plus we have  $u_c$  times aC times  $u_c$  into 1 minus alpha by alpha and this entire thing will be now multiplied with alphaU by aC to get what is  $u_c$ value, ok. So, this is the solution of a momentum equations, right. So, once we obtain these thing we got a new values for  $u_B^*$  and  $u_c^*$ , ok, alright.

Then, let us calculate what is the value of the continuity equation. So, the continuity equation is nothing, but  $A_B$ ,  $u_B$  minus  $A_C u_C$ , ok. So, let us also not worry about this residual at the moment. And we know that somehow we will kind of exit this loop if the sum of the residuals is less than the tolerance we have specified, ok.

Then, we say that the solution is converge. Now, we will come back to what is this residual, why we are using this as a check we will come back to that in little while, ok, ok. Then, once you have the star values for  $u_B$  and  $u_C$ , then you essentially go down and solve the pressure prime equation, right. What was the pressure correction equation? The pressure correction equation was  $P'_2$  equals  $u^*_B A_B$  minus  $u^*_C A_C$ .

(Refer Slide Time: 10:00)

$$\frac{h}{2} = \frac{h}{2} = \frac{h}$$

So, that is  $P'_2$  equals  $A_B$  uB minus  $A_C u_C$  divided by  $A_B$  by  $A_B$  plus  $A_C$  by  $A_C$ , ok. So, A, B, C is  $A_B$  by  $A_B$  plus  $A_C$  by  $A_C$ . So, that is what we have. So, we are solving for pressure correction equation because we have only one cell, we essentially do not have this solve for a system rather whatever we have would be fine, right. Essentially, whatever essentially we can just write it as an explicit equation, right. We do not have to solve for a system here.

(Refer Slide Time: 10:39)



But once we know the pressure correction, then we can correct the velocities using whatever we know, right.

(Refer Slide Time: 10:46)

$$\frac{\partial \Phi}{\partial t} = \frac{\partial \Phi}{\partial t} =$$

So, what is the relation between pressure correction and velocity correction? Once you know  $P'_2$  your  $u'_B$  would be minus  $P'_2/a_B$  that is written here and this is minus  $P'_2/a_B$ , that is  $u'_B$  and  $u'_C$  equals  $P'_2/a_C$ , right this is basically your  $P'_2/a_C$ , ok.

Then,  $u_B$  equals  $u_B^*$  plus  $u'_B$ . So, here by the time I come here  $u_B^*$  and  $u_B$  are the same, right. So, here what I am using is this is  $u_B^*$ , when you add it to  $u'_B$  the new value you would get I am still I am again storing it in  $u_B$ , ok. So,  $u_C$  gets all written. So,  $u_C^*$  plus  $u'_C$  would give me  $u_C$ , fine. Then p 2 equals p 2 plus  $\alpha_P$  times  $P'_2$ , ok. So, this is the pressure correction equation and these are the velocity corrections and pressure correction, fine; so far so good.

Then, what do we have? Then we have to check, so basically we have done now one iteration, after one iteration we need to check whether we satisfy continuity or not. What is the continuity equation that we have? Continuity equation is basically if you go back to the problem; where is the continuity equation? Continuity equation is this one this is basically A C  $u_c$  minus  $A_B u_B$ , right. That is basically your  $A_B u_B$  minus A C  $u_c$ .

(Refer Slide Time: 11:59)



So, if this b satisfied by the new velocity is that is  $u_B$  and  $u_C$  that we just calculated here then that means, we got a continuity satisfying flow field, ok. So, that is the idea, ok.

(Refer Slide Time: 12:25)

| ♥⊜⊙ emacs@kamesh-laptop<br>File Edit Options Buffers Tools F90 Help                                                                                          |                                                                     | 🍿 🎓 🖬 🗢 📓 📼 🏈 🕸       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------|
| 🔋 🚔 🗃 🗶 🕮 Save 🔸 Undo 🐰 🖷 🎁 🍳                                                                                                                                |                                                                     |                       |
| ußprime = -p2prime/aB<br>uCprime = p2prime/aC<br>uB = uB + uBprime<br>uC = uC + uCprime<br>p2 = p2 + alphaP*p2prime<br>! check whether continuity is satisfi | ied                                                                 |                       |
| b = A_B*uB - A_C*uC                                                                                                                                          |                                                                     |                       |
| <pre>! write(*, *), 'It, corrected uB, uC,<br/>if (i == 1) then<br/>write(*, *), 'It, uB, uC, p2, u_<br/>end if</pre>                                        | p2, u_residual, c_residual are =', i, uB,<br>_residual, c_residual' | uC, p2, u_residual, b |
| write(*, *), i, uB, uC, p2, u_residua                                                                                                                        | al, b                                                               |                       |
| end do                                                                                                                                                       |                                                                     |                       |
| end program main                                                                                                                                             | ¢                                                                   |                       |
|                                                                                                                                                              |                                                                     |                       |
| -: simplePorous.f90 Bot L82 (F90)                                                                                                                            | )                                                                   |                       |

Then, we kind of print off the values after every iteration. So, i is our iteration count and  $u_B$  and  $u_C$  are the velocities, p2 is the pressure. So, essentially the program the problem asked us to calculate all these 3 values. Then, we print something known as the u residual that is basically the residual coming from the momentum equation and b is nothing but is

the amount by which the flow field satisfies the continuity equation or not, ok. So, that is what we are printing after every iteration.

Now, let us get back to the u residual and c residual, ok. So, this is nothing but the u residual is nothing but, if we define something as residual if you have an equation let us say ax equal to B then the amount by which ax is not equal to B is known as residual. So, if you take all the terms to one side that means, the residual for ax equal to B would be B minus ax. So, B minus ax if it is not equal to 0 that means, the x that you got is not satisfying the solution.

So, that means, we have to still improve the x such that B minus ax equal to is equal to 0, ok. So, that is what is residual which should be used to see whether the system is satisfying the solution is satisfying the system or not, ok. So, that means, u residual is nothing, but the entire equation that you have taken to one particular site so that means, we have aB  $u_B$ , aB  $u_B^*$  by alphaU. This is basically your left hand side.

So, we are taking everything in to the left hand side. So, we have on the right hand side essentially  $P_1$  minus  $P_2$  plus this is all the under relaxation part. So, this entire thing, right, from here to here is the entire momentum equation which is basically taken to the left hand side. And similarly, we have we are looking at momentum what is the; what is the residual for the other cell. So, this is the residual for cell B and this is the residual for cell C, ok.

So, we are taking an absolute value of these residuals because we do not want the residual of this to be subtracted by this one, ok. So, we want to see how much is the amount by which this is not satisfied and how much is the amount by which the C cell, values are not satisfied then we calculate these two, ok.

That is the sum. So, u residual gives you the residual for cells B and C. Then, we are also updating u residual by it is absolute value of the central coefficient, that means a p, u p, a p, right, that is  $u_B$  a B by alphaU. So, we are kind of normalizing this.

This is only kind of a normalization, so that like a small quantity that is coming up from these terms would not be over seen, ok. So, as a result, we are just taking the first two terms, essentially the left hand side values and we are trying to normalize whatever u residual we have computed here such that even if this comes out to be small it is with respect to what is computed here and we would know that the value that you got here is not really small compared to this, ok. Such that we still have to kind of converge.

This is basically to take care of this is to take care of the numerical errors or the round off errors, right. So, we do not want very small values to be seen as, this is 0 or something, ok. So, this is basically. But by the time u residual goes to let us say less than the tolerance that means, we are satisfying the momentum equation, that means, the calculated  $u_B$  and  $u_C$  now satisfy the momentum equations to the up to the tolerance, ok. That is what it tells us, right.

So, that means, if we if u residual comes out to be 0 or the tolerance value that means, the  $u_B u_C$  that we have calculated now satisfy the momentum equation, right. That is what it is, ok, ok, alright, ok. And you also realize that before when I do this thing I have already used the aB as the updated values, ok. So, you may have a question here in terms of well we talked about the discrete momentum equation and the momentum equation.

So, we are talking about the discrete momentum equation in this context, but I have just updated the aB values here, ok. That means, what I use here in this equation is the latest value. So, this is the non-linear value whatever we have, right. The non-linear value would be computed here because this is the same  $u_B$  that is used to check for this, ok. So, that means, it will satisfy the same non-linear equation as such, ok. So, we have just plugged in these values, alright.

Now, let us also look at the continuity residual. So, we want to see whether the continuity value that is  $A_B u_B$  minus A C  $u_C$  whether this is 0 or not, ok. Again, we are kind of taking a average of  $A_B u_B$  and A C  $u_C$  and multiplying with half essentially this is to take care of the relative value of  $A_B u_B$  minus A C  $u_C$ , right.

This is basically the normalization here is to take care of a small values that may come which may really look small, but they are actually not small in comparison to what is the each of the flow rates, ok.

Further, we are doing this thing. Otherwise you can even check with  $A_B u_B$  minus A C  $u_C$ , ok, fine; essentially, these two the continuity residual and the momentum residual. This is basically what tells us that if these two together are less than the tolerance that we have specified which was some 1 E minus 6 or something, right which was a 1 E minus 6 here.

So, that means, if that is if both of them are less than the tolerance then the then that means, we have kind of converged to a particular solution, ok.

And then we are going to print what is the value of  $u_B u_C$  and pressure at the cell and we also going to print the b, b is nothing but the value of the continuity equation, ok. So, that is what we are going to do, alright. So, that is as far as the program is concerned.

(Refer Slide Time: 18:48)



Now, let us look at running this program. This is simple for us. So, I have these programs here. So, I use gfortran, gfortran simple porous dot f90 and then I would run it, ok.

(Refer Slide Time: 18:56)

0

| 00 | kanupind@kam | esh-laptop: ~/Desktop/SIMPLE | PATANKAR_EX         |            |                | h 👌 🖬 🗱 🗟 🖪     | ₽ <i>.6</i> 1) (⊅. |
|----|--------------|------------------------------|---------------------|------------|----------------|-----------------|--------------------|
|    | 31           | 11.9987926                   | 14.9984903          | 128.000000 | 2.26324148E-04 | 3.81469727E-06  | (*)                |
|    | 32           | 12.0009661                   | 15.0012064          | 128.000000 | 1.81107418E-04 | 3.81469727E-06  | NOTEL              |
|    | 33           | 11.9992275                   | 14.9990349          | 128.000000 | 1.44850404E-04 | 0.0000000       | HP TEE             |
|    | 34           | 12.0006170                   | 15.0007715          | 128.000000 | 1.15812159E-04 | 0.0000000       |                    |
|    | 35           | 11.9995060                   | 14.9993830          | 128.000000 | 9.25604618E-05 | -3.81469727E-06 |                    |
|    | 36           | 12.0003939                   | 15.0004930          | 128.000000 | 7.40112155E-05 | -3.81469727E-06 |                    |
|    | 37           | 11.9996853                   | 14.9996061          | 128.000000 | 5.91663011E-05 | 3.81469727E-06  |                    |
|    | 38           | 12.0002508                   | 15.0003147          | 128.000000 | 4.72199499E-05 | -3.81469727E-06 |                    |
|    | 39           | 11.9997988                   | 14.9997473          | 128.000000 | 3.77215365E-05 | 3.81469727E-06  |                    |
|    | 40           | 12.0001612                   | 15.0002012          | 127.999992 | 3.02218941E-05 | 0.00000000      |                    |
|    | 41           | 11.9998713                   | 14.9998398          | 128.000000 | 2.42014830E-05 | -3.81469727E-06 |                    |
|    | 42           | 12.0001020                   | 15.0001278          | 128.000000 | 1.92434400E-05 | 0.0000000       |                    |
|    | 43           | 11.9999180                   | 14.9998980          | 128.000000 | 1.53432975E-05 | -3.81469727E-06 |                    |
|    | 44           | 12.0000648                   | 15.0000811          | 128.000000 | 1.22071970E-05 | 0.00000000      |                    |
|    | 45           | 11.9999485                   | 14.9999361          | 128.000000 | 9.74856539E-06 | -3.81469727E-06 |                    |
|    | 46           | 12.0000410                   | 15.0000505          | 128.000000 | 7.67184520E-06 | 3.81469727E-06  |                    |
|    | 47           | 11.9999676                   | 14.9999590          | 128.000000 | 6.14585906E-06 | 3.81469727E-06  |                    |
|    | 48           | 12.0000257                   | 15.0000315          | 128.000000 | 4.87436182E-06 | 3.81469727E-06  |                    |
|    | 49           | 11.9999790                   | 14.9999743          | 128.000000 | 3.85706608E-06 | -3.81469727E-06 |                    |
|    | 50           | 12.0000172                   | 15.0000200          | 128.000000 | 3.09415373E-06 | 3.81469727E-06  |                    |
|    | 51           | 11.9999866                   | 14.9999828          | 127.999992 | 2.50073890E-06 | 0.0000000       |                    |
|    | 52           | 12.0000105                   | 15.0000134          | 128.000000 | 2.03450963E-06 | 0.0000000       |                    |
|    | 53           | 11.9999924                   | 14.9999895          | 128.000000 | 1.61064690E-06 | 3.81469727E-06  |                    |
|    | 54           | 12.0000067                   | 15.0000086          | 128.000000 | 1.22918186E-06 | 0.00000000      |                    |
|    | 55           | 11.9999952                   | 14.9999943          | 128.000000 | 1.01725141E-06 | 0.0000000       |                    |
| he | converged    | solutions is uB.             | uc. $p_2$ , b are = | 12.0000048 | 15.0000048     | 128,000000      | 0.                 |

00000000

kanupind®kamesh·laptop:-/Desktop/SIMPLE\_PATANKAR\_EX\$ gfortran simplePorous.f90 kanupind®kamesh·laptop:-/Desktop/SIMPLE\_PATANKAR\_EX\$ ./a.out

| 🛑 💷 👘 kanupind@l | kamesh-laptop: -/Desktop/SIM | IPLE_PATANKAR_EX  |                  |                  | // 👌 🛤 ¥ 🖘 🖬 🖦  | 1) (j |
|------------------|------------------------------|-------------------|------------------|------------------|-----------------|-------|
| simpleNozzle     | .f90 simplePipe              | Network.f90 simpl | ePorous.f90      |                  |                 | *     |
| kanupind@kam     | esh-laptop:~/Desh            | top/SIMPLE_PATANK | AR_EX\$ gfortran | simplePorous.f90 |                 | PTEL  |
| kanupind@kam     | esh-laptop:~/Desk            | top/SIMPLE_PATANK | AR_EX\$ ./a.out  |                  |                 | 1.4.4 |
| It, uB, uC       | , p2, u_residual             | l, c_residual     |                  |                  |                 |       |
| 1                | 11.0699997                   | 13.8374996        | 120.180000       | 0.180000007      | 0.0000000       |       |
| 2                | 12.8143177                   | 16.0178967        | 125.810402       | 0.157571599      | 0.0000000       |       |
| 3                | 11.3951187                   | 14.2438974        | 127.386909       | 0.110751033      | 3.81469727E-06  |       |
| 4                | 12.5128031                   | 15.6410036        | 127.828331       | 9.80845839E-02   | 0.0000000       |       |
| 5                | 11.6086712                   | 14.5108395        | 127.951935       | 7.22564757E-02   | 0.0000000       |       |
| 6                | 12.3249350                   | 15.4061689        | 127.986549       | 6.17007315E-02   | 0.0000000       |       |
| 7                | 11.7477627                   | 14.6847029        | 127.996231       | 4.68297191E-02   | 3.81469727E-06  |       |
| 8                | 12.2066631                   | 15.2583294        | 127.998947       | 3.90628725E-02   | 0.0000000       |       |
| 9                | 11.8378181                   | 14.7972727        | 127.999710       | 3.02166604E-02   | 0.0000000       |       |
| 10               | 12.1317444                   | 15.1646814        | 127.999916       | 2.48294994E-02   | -3.81469727E-06 |       |
| 11               | 11.8958921                   | 14.8698654        | 127.999977       | 1.94409862E-02   | 0.0000000       |       |
| 12               | 12.0841055                   | 15.1051321        | 127.999992       | 1.58217456E-02   | 0.0000000       |       |
| 13               | 11.9332428                   | 14.9165535        | 128.000000       | 1.24844322E-02   | 0.0000000       |       |
| 14               | 12.0537415                   | 15.0671778        | 128.000000       | 1.00977691E-02   | -3.81469727E-06 |       |
| 15               | 11.9572220                   | 14.9465275        | 128.000000       | 8.00743327E-03   | 0.0000000       |       |
| 16               | 12.0343599                   | 15.0429506        | 128.000000       | 6.45117043E-03   | -3.81469727E-06 |       |
| 17               | 11.9726000                   | 14.9657488        | 128.000000       | 5.13202325E-03   | 3.81469727E-06  |       |
| 18               | 12.0219765                   | 15.0274715        | 128.000000       | 4.12418973E-03   | -3.81469727E-06 |       |
| 19               | 11.9824543                   | 14.9780684        | 128.000000       | 3.28757521E-03   | -3.81469727E-06 |       |
| 20               | 12.0140591                   | 15.0175734        | 128.000000       | 2.63760192E-03   | 3.81469727E-06  |       |
| 21               | 11.9887667                   | 14.9859591        | 128.000000       | 2.10514292E-03   | -3.81469727E-06 |       |
| 22               | 12.0089960                   | 15.0112448        | 128.000000       | 1.68730377E-03   | 0.0000000       |       |
| 23               | 11.9928083                   | 14.9910107        | 128.000000       | 1.34787243E-03   | 0.0000000       |       |
| 24               | 12.0057573                   | 15.0071974        | 128.000000       | 1.07970857E-03   | -3.81469727E-06 |       |
| 25               | 11.9953966                   | 14.9942446        | 128.000000       | 8.63115594E-04   | 3.81469727E-06  |       |

It kind of took 55 iterations. So, the columns here are the first column is iteration the second one is  $u_B$  this is u velocity,  $u_c$  is the third column, then pressure is the 4th column, then we have the u residual and c residual, c residual is 0.

So, one thing you note is that for every iteration you see that the c residual that is the continuity equation that is the b term is always 0 or less than the tolerance, right; 0 0 1 E minus 6 0 that means, we are or simple algorithm is running driving these  $u_B$ ,  $u_C$  fields through continuity satisfying field.

So, at every location that is 0, right, it is always 0. And finally, the solution is converged to  $u_B$  of 12. So, velocity is at B cell is 12 and velocity at a C cell is 15 and the pressure is 128, ok, alright. So, that is what we have. And what about the; what about the momentum equation? So, the if you look at the momentum residual initially this is somewhat large value that is the large in the sense this is 0.18 and you can see that it continuously decreases.

So, as it converges down as the u and B where p get  $u_B$  and  $u_C$  and p get updated it kind of starts decreasing and the momentum residual comes down to 1 E minus 6, ok. So, but the momentum equation eventually satisfies at this condition, but you can see that the continuity equation is always satisfied by the velocity fields that we got; ok. And you can also see that the initial guess that we have given is kind of comes down from 15 and 12 or something and then it kind of comes down to these values, right. So, what was the initial guess again? Initial guess given was 15, 15 and 120.

(Refer Slide Time: 20:55)

| 🙆 🗇 💿 kanupind@kar                      | nesh-laptop: ~/Desktop/SIMP                                                                                                | LE_PATANKAR_EX                                                                                                             |                                                                                                                            |                                                                                                                                                                | i 🧑 🎓 🛤 🗱 😤 🛅 🖻                                                                                                      | •) 🔊 🗘 |
|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------|
| 50                                      | 12.0000172                                                                                                                 | 15.0000200                                                                                                                 | 128.000000                                                                                                                 | 3.09415373E-06                                                                                                                                                 | 3.81469727E-06                                                                                                       |        |
| 51                                      | 11.9999866                                                                                                                 | 14.9999828                                                                                                                 | 127.999992                                                                                                                 | 2.50073890E-06                                                                                                                                                 | 0.0000000                                                                                                            | NPTEL  |
| 52                                      | 12.0000105                                                                                                                 | 15.0000134                                                                                                                 | 128.000000                                                                                                                 | 2.03450963E-06                                                                                                                                                 | 0.00000000                                                                                                           | in the |
| 53                                      | 11.9999924                                                                                                                 | 14.9999895                                                                                                                 | 128.000000                                                                                                                 | 1.61064690E-06                                                                                                                                                 | 3.81469727E-06                                                                                                       |        |
| 54                                      | 12.0000067                                                                                                                 | 15.0000086                                                                                                                 | 128.000000                                                                                                                 | 1.22918186E-06                                                                                                                                                 | 0.00000000                                                                                                           |        |
| 55                                      | 11.9999952                                                                                                                 | 14.9999943                                                                                                                 | 128.000000                                                                                                                 | 1.01725141E-06                                                                                                                                                 | 0.00000000                                                                                                           |        |
| The converged                           | i solutions is u<br>I                                                                                                      | , uC, p2, b are =                                                                                                          | = 12.0000048                                                                                                               | 15.0000048                                                                                                                                                     | 128.000000                                                                                                           | 0.     |
| anupind@kames                           | sh-laptop:~/Deskt                                                                                                          | op/SIMPLE_PATANK                                                                                                           | AR_EX\$ C                                                                                                                  |                                                                                                                                                                |                                                                                                                      |        |
| anupind@kames                           | sh-laptop:~/Deskt                                                                                                          | op/SIMPLE PATANK                                                                                                           | AR EX\$ ls                                                                                                                 |                                                                                                                                                                |                                                                                                                      |        |
| .out                                    | simpleNozzle                                                                                                               | .f90- simple                                                                                                               | PipeNetwork.f90~                                                                                                           | simplePorous.f90                                                                                                                                               | -                                                                                                                    |        |
| simpleNozzle.1                          | f90 simplePipeNe                                                                                                           | twork.f90 simple                                                                                                           | Porous.f90                                                                                                                 |                                                                                                                                                                |                                                                                                                      |        |
| kanupind@kames                          | sh-laptop:~/Deskt                                                                                                          | op/SIMPLE_PATANKA                                                                                                          | AR_EX\$ gfortran s                                                                                                         | implePorous.f90                                                                                                                                                |                                                                                                                      |        |
| anupind@kames                           | sh-laptop:~/Deskt                                                                                                          | OP/SIMPLE_PATANKA                                                                                                          | R_EX\$ ./a.out                                                                                                             |                                                                                                                                                                |                                                                                                                      |        |
| It, uB, uC,                             | p2, u_residual,                                                                                                            | c_residual                                                                                                                 |                                                                                                                            |                                                                                                                                                                |                                                                                                                      |        |
| 1                                       | 11.0699997                                                                                                                 | 13.8374996                                                                                                                 | 120.180000                                                                                                                 | 0.180000007                                                                                                                                                    | 0.00000000                                                                                                           |        |
| 2                                       | 12.8143177                                                                                                                 | 16.0178967                                                                                                                 | 125.810402                                                                                                                 | 0.157571599                                                                                                                                                    | 0.0000000                                                                                                            |        |
| 3                                       | 11.3951187                                                                                                                 | 14.2438974                                                                                                                 | 127.386909                                                                                                                 | 0 110751022                                                                                                                                                    |                                                                                                                      |        |
| 4                                       |                                                                                                                            |                                                                                                                            | **********                                                                                                                 | 0.110/51055                                                                                                                                                    | 3.81469727E-06                                                                                                       |        |
|                                         | 12.5128031                                                                                                                 | 15.6410036                                                                                                                 | 127.828331                                                                                                                 | 9.80845839E-02                                                                                                                                                 | 3.81469727E-06<br>0.00000000                                                                                         |        |
| 5                                       | 12.5128031<br>11.6086712                                                                                                   | 15.6410036<br>14.5108395                                                                                                   | 127.828331<br>127.951935                                                                                                   | 9.80845839E-02<br>7.22564757E-02                                                                                                                               | 3.81469727E-06<br>0.00000000<br>0.00000000                                                                           |        |
| 5                                       | 12.5128031<br>11.6086712<br>12.3249350                                                                                     | 15.6410036<br>14.5108395<br>15.4061689                                                                                     | 127.828331<br>127.951935<br>127.986549                                                                                     | 9.80845839E-02<br>7.22564757E-02<br>6.17007315E-02                                                                                                             | 3.81469727E-06<br>0.00000000<br>0.00000000<br>0.00000000                                                             |        |
| 5<br>6<br>7                             | 12.5128031<br>11.6086712<br>12.3249350<br>11.7477627                                                                       | 15.6410036<br>14.5108395<br>15.4061689<br>14.6847029                                                                       | 127.828331<br>127.951935<br>127.986549<br>127.996231                                                                       | 9.80845839E-02<br>7.22564757E-02<br>6.17007315E-02<br>4.68297191E-02                                                                                           | 3.81469727E-06<br>0.00000000<br>0.00000000<br>0.00000000<br>3.81469727E-06                                           |        |
| 5<br>6<br>7<br>8                        | 12.5128031<br>11.6086712<br>12.3249350<br>11.7477627<br>12.2066631                                                         | 15.6410036<br>14.5108395<br>15.4061689<br>14.6847029<br>15.2583294                                                         | 127.828331<br>127.951935<br>127.986549<br>127.996231<br>127.998947                                                         | 9.80845839E-02<br>7.22564757E-02<br>6.17007315E-02<br>4.68297191E-02<br>3.90628725E-02                                                                         | 3.81469727E-06<br>0.0000000<br>0.0000000<br>0.0000000<br>3.81469727E-06<br>0.0000000                                 |        |
| 5<br>6<br>7<br>8<br>9                   | 12.5128031<br>11.6086712<br>12.3249350<br>11.7477627<br>12.2066631<br>11.8378181                                           | 15.6410036<br>14.5108395<br>15.4061689<br>14.6847029<br>15.2583294<br>14.7972727                                           | 127.828331<br>127.951935<br>127.986549<br>127.996231<br>127.998947<br>127.999710                                           | 9.808458398-02<br>7.22564757E-02<br>6.17007315E-02<br>4.68297191E-02<br>3.90628725E-02<br>3.02166604E-02                                                       | 3.81459727E-06<br>0.00000000<br>0.00000000<br>0.00000000<br>3.81459727E-06<br>0.0000000<br>0.0000000                 |        |
| 5<br>6<br>7<br>8<br>9<br>10             | 12.5128031<br>11.6086712<br>12.3249350<br>11.7477627<br>12.2066631<br>11.8378181<br>12.1317444                             | 15.6410036<br>14.5108395<br>15.4061689<br>14.6847029<br>15.2583294<br>14.7972727<br>15.1646814                             | 127.828331<br>127.951935<br>127.986549<br>127.996231<br>127.998947<br>127.999710<br>127.999916                             | 9.80845839E-02<br>7.22564757E-02<br>6.17007315E-02<br>4.68297191E-02<br>3.90628725E-02<br>3.02166604E-02<br>2.48294994E-02                                     | 3.81469727E-06<br>0.0000000<br>0.0000000<br>0.0000000<br>3.81469727E-06<br>0.0000000<br>0.0000000<br>-3.81469727E-06 |        |
| 5<br>6<br>7<br>8<br>9<br>10<br>11       | 12.5128031<br>11.6086712<br>12.3249350<br>11.7477627<br>12.2066631<br>11.8378181<br>12.1317444<br>11.8958921               | 15.6410036<br>14.5108395<br>15.4061689<br>14.6847029<br>15.2583294<br>14.7972727<br>15.1646814<br>14.8698654               | 127.828331<br>127.951935<br>127.986549<br>127.996231<br>127.998947<br>127.999710<br>127.999916<br>127.999917               | 9.8045839E-02<br>7.22564757E-02<br>6.17007315E-02<br>4.68297191E-02<br>3.90628725E-02<br>3.02166604E-02<br>2.48294994E-02<br>1.94409862E-02                    | 3.81469727E-06<br>0.0000000<br>0.0000000<br>3.81469727E-06<br>0.0000000<br>0.0000000<br>-3.81469727E-06<br>0.0000000 |        |
| 5<br>6<br>7<br>8<br>9<br>10<br>11<br>12 | 12.5128031<br>11.6086712<br>12.3249350<br>11.7477627<br>12.2066631<br>11.8378181<br>12.1317444<br>11.8958921<br>12.0841055 | 15.6410036<br>14.5108395<br>15.4061689<br>14.6847029<br>15.2583294<br>14.7972727<br>15.1646814<br>14.8698654<br>15.1051321 | 127.828331<br>127.951935<br>127.986549<br>127.998947<br>127.998947<br>127.999910<br>127.999916<br>127.999977<br>127.999972 | 9.808458398-02<br>7.225647578-02<br>6.170073158-02<br>4.682971918-02<br>3.906287258-02<br>3.021666048-02<br>2.482949948-02<br>1.944098628-02<br>1.582174568-02 | 3.814597278-06<br>0.0000000<br>0.0000000<br>3.814697278-06<br>0.0000000<br>0.0000000<br>0.0000000<br>0.0000000       |        |

So, initially it kind of little bit oscillates here between 11 12 and then it kind of eventually reaches a value of 12, and  $u_c$  was given a value of 15 that starts off with from 15 it comes down to 14, 13.8, then 16 and then it kind of oscillates and the pressure was given as 120, so it starts with 120 and eventually it reaches a value of 128, ok. So, these are the final values for  $u_B$ ,  $u_c$  and the pressure, ok.

Now, let us see, let us not use what is given by the problem that is in the book that is basically 15, 15 120. Let us use these new values that is basically  $u_B$  is 50,  $u_C$  is 100, pressure is 1000, ok. So, remember that we have converged in 55 iterations. So, we are going to rerun this problem. So, this is gfortran simplePorous and then run it, ok, boom. So, it kind of converts this in just 61 iterations and it converts the same values that is a 12, 15 and 128. Did it start with what we have given?

### (Refer Slide Time: 21:58)

| 🛑 🖨 🛛 kan | upind@kar | nesh-laptop: ~/Desktop/SIMA | LE_PATANKAR_EX |            |                | 🥼 瀪 🖬 ¥ 👳 🖬 🗉   | 1 (M 12 |
|-----------|-----------|-----------------------------|----------------|------------|----------------|-----------------|---------|
| It, uB,   | uC,       | p2, u_residual              | , c_residual   |            |                |                 |         |
|           | 1         | 8.94399834                  | 11.1800022     | 345.120056 | 0.872228622    | -1.52587891E-05 | NPTEL   |
|           | 2         | 15.3845577                  | 19.2306976     | 188.793625 | 4.42267513     | 0.00000000      |         |
|           | 3         | 9.96248722                  | 12.4531078     | 145.022217 | 0.371808380    | 3.81469727E-06  |         |
|           | 4         | 14.0050488                  | 17.5063114     | 132.766220 | 0.405778408    | 0.0000000       |         |
|           | 5         | 10.6543102                  | 13.3178883     | 129.334534 | 0.239252210    | 0.0000000       |         |
|           | 6         | 13.2295208                  | 16.5368996     | 128.373672 | 0.241705969    | 7.62939453E-06  |         |
|           | 7         | 11.1192265                  | 13.8990326     | 128.104630 | 0.159514040    | 0.0000000       |         |
|           | 8         | 12.7674093                  | 15.9592628     | 128.029297 | 0.148228243    | -3.81469727E-06 |         |
|           | 9         | 11.4275856                  | 14.2844820     | 128.008209 | 0.104940914    | 0.0000000       |         |
|           | 10        | 12.4837360                  | 15.6046705     | 128.002304 | 9.24212411E-02 | -3.81469727E-06 |         |
|           | 11        | 11.6298809                  | 14.5373507     | 128.000641 | 6.83973953E-02 | 3.81469727E-06  |         |
|           | 12        | 12.3066969                  | 15.3833714     | 128.000183 | 5.81962951E-02 | 0.00000000      |         |
|           | 13        | 11.7615213                  | 14.7019024     | 128.000046 | 4.42990400E-02 | -3.81469727E-06 |         |
|           | 14        | 12.1951351                  | 15.2439184     | 128.000015 | 3.68670560E-02 | 3.81469727E-06  |         |
|           | 15        | 11.8467026                  | 14.8083773     | 128.000000 | 2.85714399E-02 | 3.81469727E-06  |         |
|           | 16        | 12.1244240                  | 15.1555300     | 128.000000 | 2.34429650E-02 | 0.00000000      |         |
|           | 17        | 11.9016104                  | 14.8770123     | 128.000000 | 1.83773115E-02 | 3.81469727E-06  |         |
|           | 18        | 12.0794439                  | 15.0993042     | 128.000000 | 1.49419606E-02 | 3.81469727E-06  |         |
|           | 19        | 11.9369144                  | 14.9211435     | 128.000000 | 1.17993187E-02 | -3.81469727E-06 |         |
|           | 20        | 12.0507679                  | 15.0634604     | 128.000000 | 9.53796227E-03 | -3.81469727E-06 |         |
|           | 21        | 11.9595776                  | 14.9494715     | 128.000000 | 7.56717985E-03 | 3.81469727E-06  |         |
|           | 22        | 12.0324612                  | 15.0405760     | 128.000000 | 6.09414931E-03 | 3.81469727E-06  |         |
|           | 23        | 11.9741106                  | 14.9676380     | 128.000000 | 4.84946184E-03 | 0.00000000      |         |
|           | 24        | 12.0207624                  | 15.0259533     | 128.000000 | 3.89604340E-03 | 0.00000000      |         |
|           | 25        | 11.9834232                  | 14.9792786     | 128.000000 | 3.10631539E-03 | 0.00000000      |         |
|           | 26        | 12.0132818                  | 15.0166025     | 128.000000 | 2.49168812E-03 | 0.00000000      |         |
|           | 27        | 11.9893875                  | 14.9867353     | 128.000000 | 1.98894367E-03 | -3.81469727E-06 |         |
|           | 28        | 12.0084972                  | 15.0106220     | 128.000000 | 1.59392809E-03 | 0.00000000      |         |

Yes, it does it kind of starts, but then you can see that very immediately it kind of comes down to the velocities come down to 8, 9 and 11 or something, right.

(Refer Slide Time: 22:16)

| 🛑 🔿 🗇 🛛 kanupind@ka | mesh-laptop: ~/Desktop/SI | MPLE_PATANKAR_EX |            |                | in 👘 🍦 🖬 🗱 👳 🖬 🗉 | (M) () |
|---------------------|---------------------------|------------------|------------|----------------|------------------|--------|
| 12                  | 12.3066969                | 15.3833714       | 128.000183 | 5.81962951E-02 | 0.00000000       |        |
| 13                  | 11.7615213                | 14.7019024       | 128.000046 | 4.42990400E-02 | -3.81469727E-06  | MOTEL  |
| 14                  | 12.1951351                | 15.2439184       | 128.000015 | 3.68670560E-02 | 3.81469727E-06   | He fee |
| 15                  | 11.8467026                | 14.8083773       | 128.000000 | 2.85714399E-02 | 3.81469727E-06   |        |
| 16                  | 12.1244240                | 15.1555300       | 128.000000 | 2.34429650E-02 | 0.0000000        |        |
| 17                  | 11.9016104                | 14.8770123       | 128.000000 | 1.83773115E-02 | 3.81469727E-06   |        |
| 18                  | 12.0794439                | 15.0993042       | 128.000000 | 1.49419606E-02 | 3.81469727E-06   |        |
| 19                  | 11.9369144                | 14.9211435       | 128.000000 | 1.17993187E-02 | -3.81469727E-06  |        |
| 20                  | 12.0507679                | 15.0634604       | 128.000000 | 9.53796227E-03 | -3.81469727E-06  |        |
| 21                  | 11.9595776                | 14.9494715       | 128.000000 | 7.56717985E-03 | 3.81469727E-06   |        |
| 22                  | 12.0324612                | 15.0405760       | 128.000000 | 6.09414931E-03 | 3.81469727E-06   |        |
| 23                  | 11.9741106                | 14.9676380       | 128.000000 | 4.84946184E-03 | 0.0000000        |        |
| 24                  | 12.0207624                | 15.0259533       | 128.000000 | 3.89604340E-03 | 0.00000000       |        |
| 25                  | 11.9834232                | 14.9792786       | 128.000000 | 3.10631539E-03 | 0.00000000       |        |
| 26                  | 12.0132818                | 15.0166025       | 128.000000 | 2.49168812E-03 | 0.00000000       |        |
| 27                  | 11.9893875                | 14.9867353       | 128.000000 | 1.98894367E-03 | -3.81469727E-06  |        |
| 28                  | 12.0084972                | 15.0106220       | 128.000000 | 1.59392809E-03 | 0.00000000       |        |
| 29                  | 11.9932070                | 14.9915094       | 128.000000 | 1.27327978E-03 | -3.81469727E-06  |        |
| 30                  | 12.0054379                | 15.0067968       | 128.000000 | 1.01976295E-03 | 3.81469727E-06   |        |
| 31                  | 11.9956522                | 14.9945641       | 128.000000 | 8.15097650E-04 | 3.81469727E-06   |        |
| 32                  | 12.0034809                | 15.0043516       | 128.000000 | 6.52574061E-04 | -3.81469727E-06  |        |
| 33                  | 11.9972172                | 14.9965200       | 128.000000 | 5.21971495E-04 | 3.81469727E-06   |        |
| 34                  | 12.0022268                | 15.0027838       | 128.000000 | 4.17648786E-04 | 0.00000000       |        |
| 35                  | 11.9982195                | 14.9977741       | 128.000000 | 3.33958713E-04 | 0.00000000       |        |
| 36                  | 12.0014248                | 15.0017805       | 128.000000 | 2.67150463E-04 | 3.81469727E-06   |        |
| 37                  | 11.9988604                | 14.9985752       | 128.000000 | 2.13657069E-04 | 0.00000000       |        |
| 38                  | 12.0009117                | 15.0011396       | 128.000000 | 1.70973290E-04 | 0.00000000       |        |
| 39                  | 11.9992714                | 14.9990892       | 128.000000 | 1.36757299E-04 | 0.00000000       |        |
| 40                  | 12.0005827                | 15.0007286       | 128,000000 | 1.09283152E-04 | 0.00000000       |        |

And the pressure is very high, this is basically the pressure correction has come down from 1000 to 345 in like one step, right. And then you can again see that the momentum residual comes down and the continuity is always satisfied and so on, ok.

(Refer Slide Time: 22:18)

| 😑 💿 🛛 kanupind@kamı | esh-laptop: ~/Desktop/SIMPLE | PATANKAR_EX     |            |                | - 🥼 🁌 🗉 🗱 🗟 🗉    | 1) (n 🗈 |
|---------------------|------------------------------|-----------------|------------|----------------|------------------|---------|
| 36                  | 12.0014248                   | 15.0017805      | 128.000000 | 2.67150463E-04 | 3.81469727E-06   |         |
| 37                  | 11.9988604                   | 14.9985752      | 128.000000 | 2.13657069E-04 | 0.0000000        | NPTEL   |
| 38                  | 12.0009117                   | 15.0011396      | 128.000000 | 1.70973290E-04 | 0.00000000       | IN THE  |
| 39                  | 11.9992714                   | 14.9990892      | 128.000000 | 1.36757299E-04 | 0.00000000       |         |
| 40                  | 12.0005827                   | 15.0007286      | 128.000000 | 1.09283152E-04 | 0.00000000       |         |
| 41                  | 11.9995346                   | 14.9994183      | 128.000000 | 8.74328471E-05 | 0.00000000       |         |
| 42                  | 12.0003729                   | 15.0004663      | 128.000000 | 6.98143704E-05 | 0.00000000       |         |
| 43                  | 11.9997025                   | 14.9996271      | 128.000000 | 5.59454129E-05 | 1 3.81469727E-06 |         |
| 44                  | 12.0002384                   | 15.0002975      | 127.999992 | 4.47189523E-05 | 0.00000000       |         |
| 45                  | 11.9998093                   | 14.9997616      | 128.000000 | 3.57295794E-05 | 0.00000000       |         |
| 46                  | 12.0001526                   | 15.0001917      | 128.000000 | 2.86111372E-05 | -3.81469727E-06  |         |
| 47                  | 11.9998779                   | 14.9998465      | 128.000000 | 2.29723664E-05 | 3.81469727E-06   |         |
| 48                  | 12.0000982                   | 15.0001230      | 128.000000 | 1.84380806E-05 | 0.00000000       |         |
| 49                  | 11.9999218                   | 14.9999018      | 128.000000 | 1.47499204E-05 | 3.81469727E-06   |         |
| 50                  | 12.0000629                   | 15.0000772      | 128.000000 | 1.17409436E-05 | 3.81469727E-06   |         |
| 51                  | 11.9999495                   | 14.9999380      | 128.000000 | 9.36710330E-06 | -3.81469727E-06  |         |
| 52                  | 12.0000410                   | 15.0000515      | 128.000000 | 7.50230038E-06 | 0.00000000       |         |
| 53                  | 11.9999676                   | 14.9999590      | 128.000000 | 6.18824379E-06 | 3.81469727E-06   |         |
| 54                  | 12.0000257                   | 15.0000315      | 128.000000 | 4.87436182E-06 | 3.81469727E-06   |         |
| 55                  | 11.9999790                   | 14.9999743      | 128.000000 | 3.85706608E-06 | -3.81469727E-06  |         |
| 56                  | 12.0000172                   | 15.0000200      | 128.000000 | 3.09415373E-06 | 3.81469727E-06   |         |
| 57                  | 11.9999866                   | 14.9999828      | 127.999992 | 2.50073890E-06 | 0.00000000       |         |
| 58                  | 12.0000105                   | 15.0000134      | 128.000000 | 2.03450963E-06 | 0.00000000       |         |
| 59                  | 11.9999924                   | 14.9999895      | 128.000000 | 1.61064690E-06 | 3.81469727E-06   |         |
| 60                  | 12.0000067                   | 15.0000086      | 128.000000 | 1.22918186E-06 | 0.00000000       |         |
| 61                  | 11.9999952                   | 14.9999943      | 128.000000 | 1.01725141E-06 | 0.00000000       |         |
| The converged       | solutions is uB,             | uC, p2, b are = | 12.0000048 | 15.0000048     | 128.000000       | 0.      |

So, that is the as far as the first problem is concerned, ok, alright. So, let us see, let us now look at the next problem, alright that is basically the simple porous is done.

(Refer Slide Time: 22:52)



So, what is the second problem? The second problem was the nozzle problem, right. So, in the nozzle problem what we have is basically there is a nozzle that is given and whose continuity and the momentum equations are given. So, the continuity equation is d by dx of rho u A equals 0, and the momentum equation is d by dx of rho u A u equals minus A

dp dx, right. So, essentially that is what is given. And we have discretize this equation and density is given as 1 everywhere A A equals,  $A_B$  equals, 3 and 1, respectively.

(Refer Slide Time: 23:32)

🗎 X 🗄 🛍 🐟 🕫 🕨 🔇 🕽 📲 🖂 🖾 🔍 🖸  $d_{\mathbf{x}}$ f = 1 everywhene; AA = 3; AB = 1;  $P_1 = 28$ ;  $P_3 = 0$ Fluid upstream of point I has negligible momentum. Calculate Un, UB and P2 Initial Guess: Un\*= 5/3; UB\*= 5; B\*= 25.  $Cell - A: \int_{1}^{2} \frac{d}{dx} \left( \frac{PUA}{V} u \right) dx = \int_{1}^{2} - A \frac{dP}{dx} dx$ 

And the pressure boundary condition is given that is 28 and 0, right. And we formulated this and the initial guess is also given, ok.

(Refer Slide Time: 23:38)

| ම⊜ © emacs@kamesh-laptop<br>ile Edit Options Bulfers Tools F90 Help                                                                                                                                                                                                                                                                                                             |       | <i>₩</i> 🎓 🖬 ¥ 🗢 🖪 🖼 🏈 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------|
| 🔋 🚘 🗃 🗶 🏙 Save i 🔥 Undo 🐰 📲 🎁                                                                                                                                                                                                                                                                                                                                                   | ٥     |                        |
| <pre>grogram main<br/>inplicit none<br/>integer :: it, itmax<br/>real :: AA, AB, p1, p3<br/>real :: AA, AB, p1, p3<br/>real :: AA, AB, p2<br/>real :: AA, AB, b<br/>real :: g2prime, uAprime, uBprime<br/>real :: alphaU, alphaP<br/>real :: alphaU, alphaP<br/>real :: tolerance<br/>! given values<br/>! boundary conditions)<br/>p1 = 28.0<br/>p3 = 0.0<br/>! ceometry</pre> |       |                        |
| AA = 3.0<br>AB = 1.0                                                                                                                                                                                                                                                                                                                                                            |       |                        |
| ! initial guess<br>uA = 5.0/3.0<br>uB = 5.0<br>p2 = 25.0                                                                                                                                                                                                                                                                                                                        | Ŕ     |                        |
| : simpleNozzle.f90 Top L1                                                                                                                                                                                                                                                                                                                                                       | (F90) |                        |

So, let us see what is the second problem looks like simple nozzle. So, again we have these are the definitions declaration of the variables that is we have AA, AB, these are the cross sectional areas and then in  $P_1$  and  $P_3$  are the pressures, and then uA,  $u_B$  are the velocities,

right,  $P_2$  is the pressure essentially we have to calculate what are these values, ok. And then FA are the flow rates, FA and FB; dA dB are the coefficients that we get in the prime equations, ok.

Similarly, we have p2prime, uAprime and  $u'_B$  these are the velocity and the pressure corrections and then we have alphaU and alphaP, ok, alright. So, if you see the given boundary conditions are  $P_1$  equals 28,  $P_3$  equals 0, right. These are already given. So,  $P_1$  equals 28,  $P_3$  equals 0 that is already given and the geometry is given as cross sectional areas let us 3 and 1, right. This is 3 and this is 1, A A is 3,  $A_B$  is 1 and the initial guess is given as five-thirds for u A,  $u_B$  equals 5.

(Refer Slide Time: 24:38)

| 😢 🗇 💿 emacs@kamesh-laptop                 | 🥼 🎓 🖬 🗢 📶 🕬 🧳 |
|-------------------------------------------|---------------|
| File Edit Options Buffers Tools F90 Help  |               |
| 📙 🚔 🗟 💥 🕮 Save 🛭 🤸 Undo 🗼 🧤 🎁 🌒           |               |
| ! boundary conditions)                    |               |
| p1 = 28.0                                 |               |
| p3 = 0.0                                  | e             |
| ! geometry                                |               |
| AA = 3.0                                  |               |
| AB = 1.0                                  |               |
| ! initial quess                           |               |
| uA = 5.0/3.0                              |               |
| uB = 5.0                                  |               |
| p2 = 25.0                                 |               |
| tolerance = 1.0e-6                        |               |
| alphaP = 0.8                              |               |
| alphaU = 0.8 !under relaxation parameters | 8             |
| itmax = 100 !maximum no. of iterations    |               |
| do it = 1, itmax                          |               |
| ! calculate momentum coefficients         |               |
| FA = uA*AA                                |               |
| FB = uB*AB                                |               |
| dA = AA/FA                                |               |
| dB = AB/FB                                |               |
| -: simpleNozzle.f90 14% L36 (F90)         |               |

So, we take this as 5, and  $P_2$  is 25, ok. So, this is 25, ok, alright. That is the initial guess for pressure, ok. The tolerance value is 1 E minus 6. Again, I set it to 1 E minus 6 bar equations to kind of converge. Then we have  $\alpha_P$  equals 0.8,  $\alpha_u$  equals 0.8, these are basically your under relaxation parameters, ok.

And then again I said these are the iteration max is maximum number of iterations before which we want to we hope to come out of the loop. So, this is the loop. So, do iteration equals 1 to it max. So, we calculate the momentum coefficients, ok. (Refer Slide Time: 25: 32)

$$F_{2} \neq 0 ; \quad U_{2} = U_{A}$$

$$F_{1} \neq 0 ; \quad U_{1} = U_{upsheam} ; \quad But \quad F_{1} \approx 0 \quad (given)$$

$$F_{1} = U_{upsheam} ; \quad But \quad F_{1} \approx 0 \quad (given)$$

$$F_{1} = U_{upsheam} ; \quad But \quad F_{1} \approx 0 \quad (given)$$

$$F_{2} = U_{A} = A_{A} (P_{1} - P_{2})$$

$$F_{2} = U_{A} = A_{A} (P_{1} - P_{2})$$

$$F_{2} = A_{A} (P_{1} - P_{2})$$

$$F_{3} = U_{3} - F_{2} = A_{B} (P_{2} - P_{3})$$

$$F_{3} = V_{3} - F_{2} = V_{2} = A_{B} (P_{2} - P_{3})$$

So, the momentum coefficients are basically we have if you go back to the problem what are the coefficients for momentum? Basically, your F 2 that is nothing, but your FA, right, so ok. For the cell A we have FA and FB, right.

(Refer Slide Time: 25:36)

$$f(PUA)_{B} - (fUA)_{A} = 0$$

$$(FUA)_{B} - (fUA)_{A} = 0$$

$$(FUA)_{B} - (FUA)_{A} = 0$$

$$F_{B} - F_{A} = 0$$

$$F_{A} = F_{B} = F_{B} = F_{B} = F_{B} = F_{B}$$

$$F_{2} = F_{A} = F_{B} = F_{B} = F_{B} = F_{B} = F_{B}$$

$$Cell: A: F_{A} U_{A} = A_{A} (P_{1} - P_{2})$$

$$Cell: B: F_{B} U_{B} - F_{A} U_{A} = A_{B} (P_{2} - P_{3})$$

$$stavrad - equations F_{A} U_{A}^{*} = A_{A} (P_{1}^{*} - P_{2}^{*})$$

$$F_{B} U_{B}^{*} = F_{A} U_{A}^{*} + A_{B} (P_{2}^{*} - P_{3}^{*})$$

$$F_{B} U_{B}^{*} = F_{A} U_{A}^{*} + A_{B} (P_{2}^{*} - P_{3}^{*})$$

So, we look at what is F A. F A is your is basically  $u_A$  times AA, right velocity times area and then we have rho equals 1 similarly FB is  $u_B$  AB. So, that is the coefficients here. (Refer Slide Time: 25:58)



Then, d A which we get here, this we defined as d A that is AA by FA. So, we calculate we assign d A equals AA by F A and d B equals  $A_B$  by F B, right. So, we have those two values as well.

(Refer Slide Time: 26:07)

| emacs@kamesh-laptop     File Edit Options Buffers Tools F90 He | lo                                                        | 🖗 🎓 🖬 🛎 🗢 🖬 📟 🎮 3 |
|----------------------------------------------------------------|-----------------------------------------------------------|-------------------|
| 🔒 🔒 🗃 💥 🖾 Save 🔥 Un                                            | io 💥 🌆 💼 🔍                                                |                   |
| alphaP = 0.8                                                   |                                                           |                   |
| alphaU = 0.8                                                   | !under relaxation parameters                              |                   |
| itmax = 100                                                    | !maximum no. of iterations                                |                   |
| do it = 1, itmax                                               |                                                           |                   |
| ! calculate momentu                                            | m coefficients                                            |                   |
| FA = uA*AA                                                     |                                                           |                   |
| FB = uB*AB                                                     |                                                           |                   |
| dA = AA/FA                                                     | 4                                                         |                   |
| dB = AB/FB                                                     | ~                                                         |                   |
| ! calculate residua                                            | l for the momentum equations                              |                   |
| u_residual = abs(FA                                            | *uA/alphaU - AA*(p1 - p2) - FA*uA*(1.0 - alpha            | aU)/alphaU) + &   |
| & abs(FE                                                       | *uB/alphaU - FA*uA - AB*(p2 - p3) - FB*uB*(1.0            | - alphaU)/alphaU) |
| u_residual = u_resi                                            | dual/(abs(FA*uA/alphaU + FB*uB/alphaU))                   |                   |
| ! solve momentum ec                                            | uation                                                    |                   |
| uA = (AA*(p1 - p2))                                            | + FA*uA*(1.0 - alphaU)/alphaU)*alphaU/FA                  |                   |
| uB = (FA*uA + AB*(                                             | <pre>p2 - p3) + FB*uB*(1.0 - alphaU)/alphaU)*alphaU</pre> | /FB               |
| ! calculate residua                                            | l for the continuity                                      |                   |
| <pre>c_residual = abs(uA</pre>                                 | *AA - uB*AB)/(0.5*(abs(uA*AA) + abs(uB*AB)))              |                   |
| if ((u residual + c                                            | residual) < tolerance) then                               |                   |
| -: simpleNozzle.f90                                            | 23% 145 (F90)                                             |                   |
|                                                                | V. C. C.                                                  |                   |

And then we use the this is again the residuals. So, basically taking the entire momentum equation to one side; this is what we have, ok. We will come back to this little later.

(Refer Slide Time: 26:31)

$$\frac{1}{|\mathcal{A}|^{2}} = \frac{1}{|\mathcal{A}|^{2}} = \frac{1}{|\mathcal{A}|$$

So, what is the momentum equation? Momentum equation is we have to look for the under relaxed equation that we have written that is basically this value, right that is your  $u_A^*$  equals AA times  $P_1^*$  minus  $P_2^*$  that is AA times  $P_1^*$  minus  $P_2^*$  plus this is basically your under relaxation component that is 1 minus alpha by alpha times FA  $u_A$ .

And then this entire thing has to be entire equation has to be multiplied with alphaU times F A, multiply with alphaU divided by F A to get what is u A star, ok. So, that is how you get the u A star. And  $u_B^*$  is also similar  $u_B^*$  has basically F A u A that is your F A u A here, right, here. Then the second term is a B times  $P_2$  minus  $P_3$ . So, that is your AB times  $P_2$  minus  $P_3$  plus this thing is again coming from the under relaxation.

And what we have is a multiply this with this entire thing with alphaU by divided by F B to get value of F B star, ok. So, that is  $u_B$  equals FA  $u_A$  plus AB times  $P_2$  minus  $P_3$  plus the under relaxation component and then we have multiplication with alphaU times F B, ok, alright, ok. So, just got it here, ok; so, this is your  $u_B$ , fine.

Then, again the continuity equation. What was the continuity equation? Continuity equation was; continuity equation was F B minus FA, right that means, rho equals 1. So, this is  $u_B A_B$  minus u A A A, right. So, if your continuity residual would be u A A A minus  $u_B A_B$ , again I am dividing with whatever is the continuity value average value such that this becomes kind of normalized, ok.

Similarly, now we can understand how this residual is calculated. This is the absolute value for cell A, ok. So, this is basically the absolute value for cell A, right. So, this is F A u A by alphaU. This is the left hand side equation, left hand side part of the equation and this is the right hand side brought to the left hand side, right.

So, essentially we have this is for cell A and we take the absolute value similarly we take the other value that is for the B cell, we have F B  $u_B$  by alphaU minus FA  $u_A$  all these things basically this is your first cell B, ok.

And again we use, we normalize with the central coefficient that is FA  $u_A$  by alphaU and FB  $u_B$  by alphaU, to basically get to normalize this value, ok. So, that is what we are doing.

(Refer Slide Time: 29:13)



So, that means, basically this is to normalize the residual value, such that it is not going to be very small or very large, ok. So, that is the residual for velocity. So, that means, if we go back to the algorithm we started off with calculating the coefficients, then we computed this all the momentum equations then we have to solve for the pressure correction equation. So,  $P'_2$  is basically coming from our equation.

#### (Refer Slide Time: 29:42)



What was  $P'_2$ ?  $P'_2$  was, this guy, right this is  $P'_2$  equals u star A A minus  $u^*_B A_B$  upon d A A A plus d B  $A_B$ , ok. So, that is what we have in the program. This is  $P'_2$  equals  $u_A$  AA minus  $u_B$  AB divided by dA AA plus dB AB, ok. So, that is what we have. Again, we have only one cell. So, we do not have to solve for a system. We just plug in what is the value of  $u^*_A$  and  $u^*_B$  and calculate what is  $P'_2$ , alright, ok.

Then, once you have the pressure correction value, then you can use pressure correction to correct the velocities, right. So, what is the formula for correcting the velocity corrections? Velocity corrections are basically u A prime equals minus d A  $P'_2$ , so that is uAprime equals minus d A p2prime and  $u'_B$  equals plus d B p2prime, right that is what we have from here,  $u'_B$  equals plus d B p2prime. (Refer Slide Time: 30:23)



So, we correct the velocities, then we can update the velocity  $u_A$  as  $u_A^*$  plus uA prime and  $u_B$  as  $u_B^*$  plus  $u'_B$  and the pressure as  $P_2$  equals  $P_2$  plus  $\alpha_P P'_2$ , ok. Again, we check for convergence. So, this is basically whether continuity is satisfied or not.

So, we look for  $u_A^*$  AA minus  $u_B^*$  AB, this is the value of our continuity equation, right. So, with whatever corrected value, so this should satisfy continuity at each and every iteration, ok. Then, we print out the b value that is the continuity value  $u_A$ , u two let us print out this at the end, ok. So, that means, we print out what is  $u_A$ ,  $u_B$ , and pressure, and b, ok.

(Refer Slide Time: 31:37)



Now, if you want you can also print out what is the c residual, alright. So, the c residual can also be printed, ok. So, that is the overall algorithm, and then we hope to exit this before the iterations finish through this condition, right. So, essentially this is the condition, this is basically tells you that if your residual some of the residuals is less than the tolerance, then we say we have reached the convert solution and the solution is blah blah, that is  $u_A u_B$  and  $P_2$  and then we exit, ok.

So, but we have to make sure that the we do not run out of the iterations as such, ok. Let us also print what is the iteration count here. So, that is i, right, ok. So, we should know that we have not reached more than 100, ok. Let us see if we can run this program. So, this is simple nozzle. So, gfortran is simple nozzle, so problem here has no implicit type, ok. So, this is there is no i here, this is basically iteration, ok, alright, ok.

(Refer Slide Time: 32:32)



Successfully compiled, then let us run it this is dot slash a dot out, ok, very good.

(Refer Slide Time: 32:38)

| write(*      | , *), i, uA, uB, | , p2, c_residual,  | Ь                  |                  | NP              |
|--------------|------------------|--------------------|--------------------|------------------|-----------------|
| ror: Sumbol  | 'i' at (1) has   | no IMPLICIT tupe   |                    |                  |                 |
| nupind@kame  | sh-laptop:~/Desk | top/SIMPLE PATANA  | AR EX\$ gfortran s | simpleNozzle.f90 |                 |
| anupind@kame | sh-laptop:~/Desk | top/SIMPLE PATANN  | AR EX\$ ./a.out    |                  |                 |
| 1            | 2.10293341       | 6.30880022         | 24.5605335         | 0.187187731      | 0.0000000       |
| 2            | 1.90073323       | 5.70219946         | 24.2716732         | 0.104569696      | 4.76837158E-07  |
| 3            | 2.02648616       | 6.07945871         | 24.1543999         | 4.30138409E-02   | -4.76837158E-07 |
| 4            | 1.97228265       | 1 5.91684818       | 24.0752048         | 2.78266612E-02   | 0.00000000      |
| 5            | 2.00694132       | 6.02082396         | 24.0428524         | 1.14036240E-02   | 0.00000000      |
| 6            | 1.99242008       | 5.97726059         | 24.0209408         | 7.63395382E-03   | -4.76837158E-07 |
| 7            | 2.00182390       | 6.00547218         | 24.0119171         | 3.14622698E-03   | -4.76837158E-07 |
| 8            | 1.99793875       | 5.99381638         | 24.0058403         | 2.11181585E-03   | 0.00000000      |
| 9            | 2.00047898       | 6.00143719         | 24.0033169         | 8.77398648E-04   | 0.00000000      |
| 10           | 1.99944031       | 5.99832058         | 24.0016308         | 5.85857197E-04   | 4.76837158E-07  |
| 11           | 2.00012565       | 6.00037718         | 24.0009232         | 2.45659321E-04   | -4.76837158E-07 |
| 12           | 1.99984801       | 5.99954414         | 24.0004559         | 1.62544908E-04   | 0.00000000      |
| 13           | 2.00003290       | 6.00009823         | 24.0002575         | 6.88242653E-05   | 4.76837158E-07  |
| 14           | 1.99995887       | 5.99987650         | 24.0001278         | 4.53012835E-05   | 0.00000000      |
| 15           | 2.00000858       | 6.00002575         | 24.0000725         | 1.93914457E-05   | 0.0000000       |
| 16           | 1.99998868       | 5.99996614         | 24.0000362         | 1.27157937E-05   | 0.0000000       |
| 17           | 2.00000238       | 6.00000715         | 24.0000191         | 5.64257925E-06   | 0.00000000      |
| 18           | 1.99999690       | 5.99999094         | 24.0000095         | 3.33786966E-06   | -4.76837158E-07 |
| 19           | 2.00000072       | 6.00000191         | 24.0000057         | 1.43051182E-06   | 0.0000000       |
| 20           | 1.99999893       | 5.99999714         | 24.0000038         | 9.53675112E-07   | -4.76837158E-07 |
| 21           | 2.00000024       | 6.00000048         | 24.0000019         | 6.35782953E-07   | 4.76837158E-07  |
| The co       | nverged solutoin | n is uA, uB, p2 ar | e = 2.000          | 6.00000          | 24.00000        |

So, our program converged in 21 iterations and you can see this is the value of the velocity and at u A and this is the value of the velocity at  $u_B$ . So, we converged it to 2 and 6, and this is the value of pressure, this is 24 is the value of the pressure. And again, you can see that the continuity residuals are always 0 or somewhere small value, whereas, the momentum residuals, right; that is u; oh this should be u residual, ok. I will go to it again, ok.

(Refer Slide Time: 33:04)



So, whereas, you can see that the u residuals are always coming down, right. Momentum is always coming down whereas, the continuity b equation is always equal to 0, ok, fine.

(Refer Slide Time: 33:15)

| 🙆 🗇 💿 kanupind@ka | mesh-laptop: ~/Desktop/S | IMPLE_PATANKAR_EX   |                    |                  | 🏼 🖗 🛊 🛤 🛊 👳 🖬 । | • 🍙   |
|-------------------|--------------------------|---------------------|--------------------|------------------|-----------------|-------|
| 19                | 2.00000072               | 6.00000191          | 24.0000057         | 1.43051182E-06   | 0.00000000      | *     |
| 20                | 1.99999893               | 5.99999714          | 24.0000038         | 9.53675112E-07   | -4.76837158E-07 | NPTEL |
| 21                | 2.00000024               | 6.00000048          | 24.0000019         | 6.35782953E-07   | 4.76837158E-07  |       |
| The con           | nverged solutor          | in is uA, uB, p2 ar | e = 2.00           | 6.00000          | 24.00000        |       |
| kanupind@kame     | sh-laptop:~/Des          | sktop/SIMPLE_PATANK | AR_EX\$ gfortran : | simpleNozzle.f90 |                 |       |
| kanupind@kame     | sh-laptop:~/Des          | sktop/SIMPLE_PATANR | AR_EX\$ ./a.out    |                  |                 |       |
| 1                 | 2.10293341               | 6.30880022          | 24.5605335         | 0.215999991      | 0.0000000       |       |
| 2                 | 1.90073323               | 5.70219946          | 24.2716732         | 7.41996467E-02   | 4.76837158E-07  |       |
| 3                 | 2.02648616               | 6.07945871          | 24.1543999         | 5.42807803E-02   | -4.76837158E-07 |       |
| 4                 | 1.97228265               | 5.91684818          | 24.0752048         | 2.05945969E-02   | 0.0000000       |       |
| 5                 | 2.00694132               | 6.02082396          | 24.0428524         | 1.44047616E-02   | 0.00000000      |       |
| 6                 | 1.99242008               | 5.97726059          | 24.0209408         | 5.56179136E-03   | -4.76837158E-07 |       |
| 7                 | 2.00182390               | 6.00547218          | 24.0119171         | 3.87048326E-03   | -4.76837158E-07 |       |
| 8                 | 1.99793875               | 5.99381638          | 24.0058403         | 1.48945255E-03   | 0.0000000       |       |
| 9                 | 2.00047898               | 6.00143719          | 24.0033169         | 1.04356627E-03   | 0.0000000       |       |
| 10                | 1.99944031               | 5.99832058          | 24.0016308         | 3.97861120E-04   | 4.76837158E-07  |       |
| 11                | 2.00012565               | 6.00037718          | 24.0009232         | 2.81642540E-04   | -4.76837158E-07 |       |
| 12                | 1.99984801               | 5.99954414          | 24.0004559         | 1.06273641E-04   | 0.0000000       |       |
| 13                | 2.00003290               | 6.00009823          | 24.0002575         | 7.59995237E-05   | 4.76837158E-07  |       |
| 14                | 1.99995887               | 5.99987650          | 24.0001278         | 2.81920748E-05   | 0.00000000      |       |
| 15                | 2.00000858               | 6.00002575          | 24.0000725         | 2.04333119E-05   | 0.0000000       |       |
| 16                | 1.99998868               | 5.99996614          | 24.0000362         | 7.56972486E-06   | 0.0000000       |       |
| 17                | 2.00000238               | 6.00000715          | 24.0000191         | 5.58303145E-06   | 0.00000000      |       |
| 18                | 1.99999690               | 5.99999094          | 24.0000095         | 2.15768296E-06   | -4.76837158E-07 |       |
| 19                | 2.00000072               | 6.00000191          | 24.0000057         | 1.43051579E-06   | 0.00000000      |       |
| 20                | 1.99999893               | 5.99999714          | 24.0000038         | 5.72204215E-07   | -4.76837158E-07 |       |
| 21                | 2.00000024               | 6.00000048          | 24.0000019         | 4.49022110E-07   | 4.76837158E-07  |       |
| The co            | nverged soluto           | in is uA, uB, p2 ar | e = 2.00           | 6.00000          | 24.00000        |       |
| kanupind@kame     | sh-laptop:~/Des          | ktop/SIMPLE PATANK  | AR EXS             |                  |                 |       |
|                   |                          |                     |                    |                  |                 |       |

So, we can of course, again play with these values the initial guess values and see whether the program runs or not, ok. I leave that for you to do, ok. So, that is about the second problem that is in flow through a nozzle, ok, alright. Now, let us look at the third problem that we formulated in the last class that is basically now in these both problems we have non-linearity, right.

In the first problem, in the porosity case we have nonlinearity in the source term. In the second case, we have non-linearity through the convection term, right. So, that is why we had to do so many iterations like some 20 iterations or so, fine.

(Refer Slide Time: 34:16)



Now, let us move on to the third problem. Third problem was a flow through a residential pipe network, right. So, essentially we have Q is given as C times delta p, where C is the hydraulic conductance, delta p is the pressure drop over the length of the pipe. And what we were given is we were given this pipe network with the flow rates and the pressure stored at the 1, 2, 3, 4, all the way to 7 and the velocity stored at  $A_B$  all the way to F, right.

(Refer Slide Time: 34:46)

And we were also given some of these pressures that is  $P_1$  is given as 275,  $P_2$  is given as 70,  $P_4$  as 0,  $P_5$  as 40 and so on and  $Q_F$  as 40, ok, alright. So, and also the of course, the

values of all the hydraulic conductance are given  $C_A$  to  $C_F$ , and we were ask to calculate what is the pressure at this  $P_3$  and  $P_6$ ; and what is the flow rate through  $Q_A$ ,  $Q_B$  all the way to  $Q_E$ , ok. So, we have to calculate what are all the flow rates.

| 🙆 🖨 💿 Xournal                  |                                                                          | h 🖗 🎓 🖬 🗱 🖘 🖬 💷 🔊                                                          |
|--------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------|
| 8 B B X 5 6 4 / F ( )          | • 🐗 🗉 🖻 🖉 🔍 🛅                                                            | (*)                                                                        |
| / 0 / T 🗈 🔁 🚥 🕫 🖩 🕱 🤆          |                                                                          | Sans 12 NPTEL                                                              |
| 4A                             | LUE - There a                                                            |                                                                            |
|                                | ` `                                                                      |                                                                            |
|                                | $Q_A = C_A \left( P_1 - P_3 \right)$                                     | $Q_A' = C_A(p_1' - p_3')$                                                  |
| Similarly                      | $Q_{B} = C_{B}(k_{3} - k_{2})$                                           | $Q_{R}^{\dagger} = C_{R}(p_{1}^{\dagger} - p_{1})$                         |
| 5                              | -10                                                                      | ··· s (13 F2)                                                              |
|                                | $Q_{\rm C} = C_{\rm C} \left( \frac{p_4}{p_4} - \frac{p_3}{p_3} \right)$ | $Q_{e}^{\dagger} = C_{e} \left( P_{e}^{\dagger} - P_{e}^{\dagger} \right)$ |
|                                | QD = CD (Ag-P6)                                                          |                                                                            |
|                                |                                                                          | $Y_0 = C_0 (P_3 - P_2)$                                                    |
|                                | $Q_E = Ce(P_S - P_G)$                                                    | $Q_{c}(z) \in (D_{c}^{1}, b_{c})$                                          |
|                                | Des Crc ( D. D. )                                                        | 4E - 4E (A - M)                                                            |
|                                | $q_{F} = OF(R-R_{F})$                                                    | QF - CF (P6'- B1)                                                          |
|                                | ctana l'aquatione                                                        |                                                                            |
|                                | sioned equation                                                          | Prime equations.                                                           |
| Page 7 1 of 8 Layer: Layer 1 1 |                                                                          |                                                                            |

(Refer Slide Time: 35:15)

We have formulated the problem using finite volume method, and we said these are the momentum equations; these are the corrections, pressure corrections in terms of the flow corrections.

(Refer Slide Time: 35:24)

$$\frac{(2 + 2)}{(2 + 1)^{2}} = \frac{(2 + 2)^{2}}{(2 + 1)^{2}} = \frac{(2 + 2$$

(Refer Slide Time: 35:31)

$$\frac{\partial \varphi}{\partial \varphi} = \frac{\partial \varphi}{\partial \varphi} =$$

Then, we wrote the continuity equation or the mass conservation equation, and we said that the continuity equation will give you one equation in terms of  $P'_3$  and  $P'_6$  and another equation at junction 6 as another equation in terms of  $P'_3$  and  $P'_6$ , with the right hand side as known values, ok. Now, we have two equations and two unknowns, right  $P'_3$  and  $P'_6$ , alright.

(Refer Slide Time: 35:52)



Let us look at the corresponding code. So, the corresponding code is a simple pipe network, ok.

#### (Refer Slide Time: 35:58)

| Image: Solution and Solutio | 🧤 🎓 🖬 🛎 🗢 🖪 💌 📶 🕸 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 🗜 🚔 🗃 🗶 🔤save 🔸 Undo 🐰 🏢 🎁 🍳                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |
| program main<br>implicit none<br>integer :: it<br>real :: p1, p2, p3, p4, p5, p6<br>real :: (A, (B, (C, (D, (E, (F)<br>real :: CA, (CB, (CC, (CD, (CE, (CF)<br>real :: a1, b1, d1, a2, b2, d2 !to solve the pressure-correction equation<br>real :: a3ptime _norime                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |
| ! Given values<br>p1 = 275.0<br>p2 = 276.0<br>p4 = 0.0<br>p5 = 40.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |
| QF = 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |
| CA = 0.4<br>CB = 0.2<br>CC = 0.1<br>CD = 0.2<br>CE = 0.1<br>CF = 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |
| -:**- simplePipeNetwork.f90 Top L12 (F90)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |

So, page up, ok. So, again this is the main program. So, these are all the variables that we define,  $P_1$  to  $P_6$  the pressures,  $Q_A$  to  $Q_F$  the flow rates,  $C_A$  to  $C_F$  the hydraulic conductance values, right. And then a 1, b 1, d 1, a 2, b 2, d 2 are basically the coefficients that are written.

These are basically these are to solve the we had two equations and two unknowns, right, so to solve the pressure correction, ok, pressure correction equation, right. So, these are the coefficients we will see them later. And then of course, these are the  $P'_3$  and  $P'_6$  are the pressure, correction values at 3 and 6 locations, ok, fine.

Then, what was the initial; what was the given values? Given values for  $P_1 P_2$  are given as 275 and 270. So, if you look at the values  $P_1$  is 275,  $P_2$  is 270,  $P_4$  is 0, all right,  $P_4$  is 0,  $P_5$  is 40, and then  $Q_F$  is 20, right,  $Q_F$  is 20. Then,  $C_A$  to  $C_A$  to  $C_F$  all these values I have written out here,  $C_A$ ,  $C_B$ , all the way to  $C_F$ ,  $C_F$  is 0.2, ok. So, these are the hydraulic conductance values.

(Refer Slide Time: 37:28)

| Ø⊜© emacs@kamesh-laptop<br>Ela Edit Cobios: Bulfer: Took EDi Halo | <i>₩</i> 🎓 🗗 ¥ 🗢 🖪 💌 🖉 🕸                 |
|-------------------------------------------------------------------|------------------------------------------|
|                                                                   | S S S S S S S S S S S S S S S S S S S    |
| 🛃 🧰 🛪 🎬save 🔍 Undo 🔏 📲 📲 🔍                                        | NPTEL                                    |
| p5 = 40.0                                                         |                                          |
|                                                                   |                                          |
| QF = 20.0                                                         |                                          |
| CA = 0.4                                                          |                                          |
| CB = 0.2                                                          |                                          |
| C = 0.1                                                           |                                          |
| CD = 0.2                                                          |                                          |
| CF = 0.1                                                          |                                          |
| CF = 0.2                                                          |                                          |
|                                                                   | li l |
| ! guess p3 and p6                                                 |                                          |
| p3 = 100                                                          |                                          |
| p6 = 100 ▷                                                        |                                          |
| do it = 1, 2                                                      |                                          |
| ! calculate flow rates with the                                   |                                          |
| ! quessed pressures p3, p6 and                                    |                                          |
| ! given pressures                                                 |                                          |
| OA = CA*(D1 - D3)                                                 |                                          |
| OB = CB*(p3 - p2)                                                 |                                          |
| $OC = CC^{*}(p4 - p3)$                                            |                                          |
| $OD = CD^*(p3 - p6)$                                              |                                          |
| OE = CE*(p5 - p6)                                                 |                                          |
| -: simplePipeNetwork.f90 17% L28 (F90)                            |                                          |

Now, initial guess for  $P_3$  and  $P_6$  probably may not be given in the problem, so I have taken it as 100 and 100, ok, of course, you can now see if you want to have a different value as the initial guess, ok. Now, ok, here I have only I will let me put I will then put like two iterations, ok, but you can put more iterations, but they are not required. We will see why we do not need so many iterations in this particular problem, ok.

(Refer Slide Time: 37:52)

| © ⊜ emacs@kamesh-laptop<br>File Edit Options Buffers Tools F90 Help | h 🎓 🖬 🗰 🔊 🖬 🧰 |
|---------------------------------------------------------------------|---------------|
| 🖹 🔚 🗃 🗶 🖾save 🔸Undo 🐰 📲 🎁 🔍                                         |               |
| p6 = 100                                                            |               |
| do it = 1, 2                                                        |               |
| ! calculate flow rates with the                                     |               |
| ! guessed pressures p3, p6 and                                      |               |
| ! given pressures                                                   |               |
| QA = CA*(p1 - p3)                                                   |               |
| QB = CB*(p3 - p2)                                                   |               |
| $QC = CC^*(p4 - p3)$                                                |               |
| $QD = CD^*(p3 - p6)$                                                |               |
| QE = CE*(ps - pb)                                                   |               |
| ! solve pressure correction equation                                |               |
| ! to obtain p3prime and p6prime                                     |               |
| a1 = -(CA + CC + CB + CD)                                           |               |
| b1 = CD                                                             |               |
| d1 = QB + QD - QA - QC                                              |               |
| a2 = CD                                                             |               |
| b2 = - CD - CE                                                      |               |
| d2 = QF - QD - QE                                                   |               |
| p3prime = (d1*b2 - d2*b1)/(a1*b2 - a2*b1)                           |               |
| -: simplePipeNetwork.f90 23% L37 (F90)                              |               |

So, if we look at the equations what we had was, ok; so, the first step is write the solve the momentum equation. Momentum equations are  $Q_A$  equals  $C_A$  times  $P_1$  minus  $P_3$ . So, that

is what we have. This is  $Q_A$  equals  $C_A$  times  $P_1$  minus  $P_3$ . And similarly,  $Q_B$  equals  $C_B$  times  $P_3$  minus  $P_2$  that is the other equation. Similarly,  $Q_C$  equals  $C_C$  times  $P_4$  minus  $P_3$  that is what we have here;  $Q_C$  is  $C_C$  times  $P_4$  minus  $P_3$  and  $Q_D$  and  $Q_E$ , ok.

So, with the initial guess values for pressure or the using the given values for pressure we calculate what is the flow rates, ok. Then, what we do is basically we got these flow rates, then we have to solve the pressure correction equation, ok. In order to do the pressure correction equation, we realize that we had two equations set two unknowns, ok. So, what we do is we basically write out the coefficients. So, I am writing these coefficients as basically a1, b1 and d1 and sum a2 a2, b2 and d2, right.

So, that I can solve two equations and two unknowns; so, a1 is basically you are  $C_A$ ,  $C_A$  plus  $C_B$  plus  $C_C$  plus  $C_D$  with all minus. So, that is what I have here, right. a1 is minus of a  $C_A$  plus  $C_C$  plus  $C_B$  plus  $C_D$ . Similarly, b1 is your  $C_D$ , ok. And d1 is your right hand side that is  $Q_B^* Q_D^*$  minus  $Q_A^*$  minus  $Q_C^*$ , ok. So, these values are given. These are now taken from here.

Then, for the second equation we have this coefficient we are writing it as a2. So, a2 is  $C_D$ , b2 is minus  $C_D$  minus  $C_A$ , and d2 is  $Q_F$  minus  $Q_D^*$  minus  $Q_E^*$ , ok. So, that is the value.

(Refer Slide Time: 39:49)



Then, of course, I can basically I have two equations two unknowns I can write what is  $P'_3$  in terms of these coefficients. So, I would just eliminate the variables and calculate this as

d1 b 2 minus basically a proper proportion of these d 1 b 2 minus d 2 b 1 by a 1 b 2 minus a 2 b 1 that gives me what is  $P'_3$ . Similarly, I can write down what is  $P'_6$  as a 2 d 1 minus a 1 d 2 upon a 2 b 1 minus a 1 b 2, ok.

So, basically we are just solving, instead of using Gauss-Seidel we are just directly solving the two equations here, ok, alright. So, that is what we do. Then, once you obtain what is  $P'_3$  and  $P'_6$  we can just correct them, right. So, basically correct  $P_3$  equals  $P_3 P_3^*$  plus  $P'_3$ , similarly  $P_6$  equals  $P_6^*$  plus  $P'_6$ , ok. So, we have done that.

(Refer Slide Time: 40:52)

| ● ● ● emacs@kamesh-laptop<br>File Edit Options Buffers Tools F90 Help                                                                                                                                                                                                                                                                                  | 🌘 🎓 🗰 🗢 🖗 🖗 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 🖹 🚔 🗃 🗙 🕮 Save i 🐟 Undo 🕌 🧤 🎼 🍳                                                                                                                                                                                                                                                                                                                        |             |
| p3prime = (d1*b2 - d2*b1)/(a1*b2 - a2*b1)<br>p6prime = (a2*d1 - a1*d2)/(a2*b1 - a1*b2)                                                                                                                                                                                                                                                                 |             |
| ! correct pressure<br>p3 = p3 + p3prime<br>p6 = p6 + p6prime                                                                                                                                                                                                                                                                                           |             |
| I correct flow rates<br>QA = QA - CA*p3prime<br>QB = QB + CB*p3prime<br>QC = QC - CC*p3prime<br>QD = QD + CD*(p3prime - p6prime)<br>QE = QE - CE*p6prime                                                                                                                                                                                               |             |
| ! print continuity<br>write(*, *), ' QA+QC-QB-QD = ', QA + QC - QB - QD<br>write(*, *), ' QD+QE-QF = ', QD + QE - QF                                                                                                                                                                                                                                   |             |
| <pre>! print governing equation residuals<br/>write(*, *), 'QA - CA*(p1 - p3) = ', QA - CA*(p1 - p3)<br/>write(*, *), 'Q8 - CB*(p3 - p2) = ', QB - CB*(p3 - p2)<br/>write(*, *), 'QC - CC*(p4 - p3) = ', QC - CC*(p4 - p3)<br/>write(*, *), 'QD - CD*(p3 - p6) = ', QD - CD*(p3 - p6)<br/>write(*, *), 'QE - CD*(p5 - p6) = ', QE - CE*(p5 - p6)</pre> |             |
| -: simplePipeNetwork.f90 50% L66 (F90)                                                                                                                                                                                                                                                                                                                 |             |

Then, what do we do? Then we correct the flow rates that is  $Q_A$  equals  $Q_A^*$  plus  $Q'_A$ , but we know that what is  $Q'_A$ .  $Q'_A$  is nothing but,  $Q'_A$  is nothing, but  $C_A$  times this is 0 minus  $P'_3$ . So, this is minus  $C_A$  times  $P'_3$ .

Similarly, we know we can correct what is  $Q_B$ ;  $Q_C$  that is  $Q_C$  minus  $C_C$  times  $P'_3$  because  $P'_4$ is 0, because  $P_4$  is given as a pressure boundary condition and  $Q_D$  equals  $Q_D^*$  plus  $Q'_D$  that is  $C_D$  times  $P'_3$  minus  $P'_6$  that is this value. Then,  $Q_E$  equals  $Q_E$  plus  $Q'_E$  plus  $Q'_E$   $Q'_E$  is  $C_A$ times  $P'_5$  is 0.

So, this is minus  $C_A P'_6$ , ok. So, this is minus  $C_A P'_6$ , fine. Then, we print the continuity equation. Continuity equation is two equations, one for each cell junctions 3 and 6. So, this is  $Q_A$  plus  $Q_C$  minus  $Q_B$  minus  $Q_D$  and the second junction at 6 is  $Q_D$  plus  $Q_E$  minus  $Q_F$ ,

ok. Then, we print the residuals for the momentum equations, right. These are the residuals for the momentum equation.

(Refer Slide Time: 42:02)

| Image: Second | - 10 € 5 5 10 € 10 € 10 10 10 10 10 10 10 10 10 10 10 10 10 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| <pre>! print continuity write(*, *), ' QA+QC-QB-QD = ', QA + QC - QB - QD write(*, *), ' Q0+QE-QF = ', QD + QE - QF</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                             |
| <pre>! print governing equation residuals<br/>write(*, *), 'QA - CA*(p1 - p3) = ', QA - CA*(p1 - p3)<br/>write(*, *), 'QB - CB*(p3 - p2) = ', QB - CB*(p3 - p2)<br/>write(*, *), 'QC - CC*(p4 - p3) = ', QC - CC*(p4 - p3)<br/>write(*, *), 'QD - CD*(p3 - p6) = ', QD - CD*(p3 - p6)<br/>write(*, *), 'QE - CD*(p5 - p6) = ', QE - CE*(p5 - p6)</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                             |
| ! print the flow rates and pressures<br>write(*, '(a15, 2(f15.5))'), 'p3, p6 = ', p3, p6<br>write(*, '(a25, 5(f15.5))'), 'QA, QB, QC, QD, QE =', QA, QB, QC, QD, QE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                             |
| end do                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                             |
| end program main                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4                                                           |
| -: sinplePipeNetwork.f90 Bot L79 (F90)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _                                                           |

Now, if these one also satisfied together with the continuity equations that means, if you satisfy all of these, that means we have converged our solution, ok. If that is the case we print what is the pressures  $P_3$  and  $P_6$  and the flow rates these are basically what is asked in the problem to calculate, right.

Remember, if you go back to the problem we were asked to calculate all these pressures and the flow rate. So, that is these  $P_3$ ,  $P_6$ ,  $Q_A$ ,  $Q_B$ ,  $Q_C$ ,  $Q_D$ , and  $Q_E$ , ok. So, that is the program.

(Refer Slide Time: 42:41)

| 🧕 🗇 kanupind@kamesh-laptop: -/Desktop/SIMPLE_PATANKAR_EX 👘 🎓 🖬 🗱                     | 🤝 🗈 💌 🎊 🎝 |
|--------------------------------------------------------------------------------------|-----------|
| kanupind@kamesh-laptop:~/Desktop/SIMPLE_PATANKAR_EX\$ gfortran simplePipeNetwork.f90 | (*)       |
| kanupind@kamesh-laptop:~/Desktop/SIMPLE_PATANKAR_EX\$ ./a.out                        | NPTEL     |
| QA+QC-QB-QD = 1.90734863E-06                                                         |           |
| QD+QE-QF = -3.81469727E-06                                                           |           |
| QA - CA*(p1 - p3) = 0.0000000                                                        |           |
| QB - CB*(p3 - p2) = 0.00000000                                                       |           |
| $QC - CC^*(p4 - p3) = 0.00000000$                                                    |           |
| QD - CD*(p3 - p6) = 0.00000000                                                       |           |
| QE - CD*(p5 - p6) = 0.00000000                                                       |           |
| p3, p6 = 200.00000 80.00001                                                          |           |
| QA, QB, QC, QD, QE = 30.00000 -14.00000 -20.00000 24.00000                           | -4.00000  |
| QA+QC-QB-QD = 0.00000000                                                             |           |
| QD + QE - QF = 0.00000000                                                            |           |
| QA - CA*(p1 - p3) = 0.00000000                                                       |           |
| $QB - CB \star (p3 - p2) = 0.00000000$                                               |           |
| $QC - CC^*(p4 - p3) = 0.00000000$                                                    |           |
| $QD - CD \star (p3 - p6) = 0.00000000$                                               |           |
| $QE - CD \star (p5 - p6) = 0.0000000$                                                |           |
| p3, p6 = 200.00000 80.00000                                                          |           |
| QA, QB, QC, QD, QE = 30.00000 -14.00000 -20.00000 24.00000                           | -4.00000  |
| kanupind@kamesh-laptop:~/Desktop/SIMPLE_PATANKAR_EX\$                                |           |
|                                                                                      |           |
|                                                                                      |           |

So, let us try to run this. This is simple pipe network. So, gfortran simplePipeNetwork, dot slash a dot, ok. So, what do we see here? We see that in just one iteration the everything got converged, right because it satisfies continuity after the corrections, this is basically the continuity values. Both are of the order of 1 minus 6 and the momentum residuals are also satisfied.

So, that means, everything is satisfied after one iteration, right. And the pressure came out as 280, and the flow rates as 30 minus 14 minus 20, 24 minus 4, right. And although we have done another iteration this is not required because the values actually do not change, right. These values are the same as these values where we get here. This is because only one correction is required because the problem is linear, right. There is no non-linearity.

As a result, the velocity corrections and pressure corrections that we have satisfy both the continuity and momentum equations exactly after just one iteration, ok. So, that is why without any problems without any having more iterations we were able to converge these in just one iteration, ok.

# (Refer Slide Time: 43:56)

| S ⊖ ⊙ emecs@kamesh-laptop<br>Ella Edit Optione Bulfore Tools 500 Halo     | <i>№</i> 🁌 🛤 ¥ 🗢 🖬 🖦 📶 🕸 |
|---------------------------------------------------------------------------|--------------------------|
| 🖹 🚂 🗃 💥 📓save 🖕 Undo 🐰 📲 🎁 🔍                                              |                          |
| program main                                                              |                          |
| implicit none                                                             |                          |
| integer :: it 🗣                                                           |                          |
| real :: p1, p2, p3, p4, p5, p6                                            |                          |
| real :: OA, OB, OC, OD, OE, OF                                            |                          |
| real :: CA, CB, CC, CD, CE, CF                                            |                          |
| real :: a1, b1, d1, a2, b2, d2 !to solve the pressure-correction equation |                          |
| real :: p3prime, p6prime                                                  |                          |
|                                                                           |                          |
| ! Given values                                                            |                          |
| p1 = 275.0                                                                |                          |
| $p_2 = 270.0$                                                             |                          |
| $p_4 = 0.0$                                                               |                          |
| $p_{5} = 40.0$                                                            |                          |
|                                                                           |                          |
| 0F = 20.0                                                                 |                          |
| •                                                                         |                          |
| CA = 0.4                                                                  |                          |
| CB = 0.2                                                                  |                          |
| CC = 0.1                                                                  |                          |
| CD = 0.2                                                                  |                          |
| CE = 0.1                                                                  |                          |
| CF = 0.2                                                                  |                          |
|                                                                           |                          |
| ! guess p3 and p6                                                         |                          |
| -: simplePipeNetwork.f90 Top L24 (F90)                                    |                          |
| Beginning of buffer                                                       |                          |

(Refer Slide Time: 43:57)

| P5 = 40.0       P       P       P       P         QF = 20.0       P       P       P       P       P         CA = 0.4       CB = 0.2       CC = 0.1       CD = 0.2       CD = 0.2       CE = 0.1       CD = 0.2       CD = 0.2       CE = 0.1       CD = 0.2       CD = 0.2       CE = 0.1       CD = 0.2       CD = 0.2       CE = 0.1       CE = 0.1 <t< th=""><th>❷⊜⊙ emacs@kamesh-laptop<br/>File Edit Ootions Buffers Tools F90 Help</th><th>hi 🛊 🕫 🖬 📼 🦚</th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ❷⊜⊙ emacs@kamesh-laptop<br>File Edit Ootions Buffers Tools F90 Help | hi 🛊 🕫 🖬 📼 🦚 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--------------|
| p5 = 40.0<br>QF = 20.0 ↓<br>CA = 0.4<br>CB = 0.2<br>CC = 0.1<br>CD = 0.2<br>CE = 0.1<br>CF = 0.2<br>! guess p3 and p6<br>p3 = 100<br>do it = 1, 2<br>! calculate flow rates with the<br>! guessed pressures p3, p6 and<br>! given pressures<br>QA = CA*(p1 - p3)<br>QB = CA*(p1 - p3)<br>QB = CA*(p3 - p2)<br>QC = CC*(p4 - p3)<br>QD = CD*(p3 - p6)<br>QE = CE*(p5 - p6)<br>QE = CE*(p5 - p6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 📴 🗃 🗶 🕮 Save i 🔦 Undo 🐰 🏪 🏦 🍳                                       |              |
| QF = 20.0<br>CA = 0.4<br>CB = 0.2<br>CC = 0.1<br>CD = 0.2<br>CE = 0.1<br>CF = 0.2<br>! guess p3 and p6<br>p3 = 100<br>do it = 1, 2<br>! calculate flow rates with the<br>! guessed pressures p3, p6 and<br>! guessed | p5 = 40.0                                                           |              |
| CA = 0.4<br>CB = 0.2<br>CC = 0.1<br>CD = 0.2<br>CE = 0.1<br>CF = 0.2<br>! guess p3 and p6<br>p3 = 100<br>p6 = 100<br>do it = 1, 2<br>! calculate flow rates with the<br>! guessed pressures p3, p6 and<br>! given pressures<br>QA = CA*(p1 - p3)<br>QB = CA*(p1 - p3)<br>QB = CA*(p3 - p2)<br>QC = CC*(p3 - p6)<br>QE = CC*(p5 - p6)<br>QE = CC*(p5 - p6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | QF = 20.0                                                           |              |
| CB = 0.2<br>CC = 0.1<br>CD = 0.2<br>CE = 0.1<br>CF = 0.2<br>I guess p3 and p6<br>p3 = 100<br>p6 = 100<br>do it = 1, 2<br>I calculate flow rates with the<br>I guessed pressures p3, p6 and<br>I given pressures<br>QA = CA*(p1 - p3)<br>QB = CA*(p1 - p3)<br>QB = CA*(p1 - p3)<br>QC = CC*(p4 - p3)<br>QC = CC*(p5 - p6)<br>QE = CE*(p5 - p6)<br>QE = CE*(p5 - p6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CA = 0.4                                                            |              |
| CD = 0.2<br>CE = 0.1<br>CF = 0.2<br>I guess p3 and p6<br>p3 = 100<br>do it = 1, 2<br>I calculate flow rates with the<br>I guessed pressures p3, p6 and<br>I given pressures<br>QA = CA*(p1 - p3)<br>QB = CA*(p1 - p3)<br>QB = CA*(p1 - p3)<br>QC = CC*(p4 - p3)<br>QC = CC*(p4 - p3)<br>QC = CC*(p5 - p6)<br>QE = CE*(p5 - p6)<br>QE = CE*(p5 - p6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CB = 0.2<br>CC = 0.1                                                |              |
| CE = 0.1<br>CF = 0.2<br>! guess p3 and p6<br>p3 = 100<br>p6 = 100<br>do it = 1, 2<br>! calculate flow rates with the<br>! guessed pressures p3, p6 and<br>! given pressures<br>QA = CA*(p1 - p3)<br>QB = CA*(p1 - p3)<br>QB = CA*(p1 - p3)<br>QC = CC*(p4 - p3)<br>QC = CC*(p5 - p6)<br>QE = CC*(p5 - p6)<br>QE = CC*(p5 - p6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CD = 0.2                                                            |              |
| <pre>CF = 0.2 ! guess p3 and p6 p3 = 100 p6 = 100 do it = 1, 2 ! calculate flow rates with the ! guessed pressures p3, p6 and ! given pressures QA = CA*(p1 - p3) QB = CB*(p3 - p2) QC = CC*(p4 - p3) QD = CD*(p3 - p6) QE = CE*(p5 - p6)</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CE = 0.1                                                            |              |
| <pre>! guess p3 and p6<br/>p3 = 100<br/>p6 = 100<br/>do it = 1, 2<br/>! calculate flow rates with the<br/>! guessed pressures p3, p6 and<br/>! given pressures<br/>QA = CA*(p1 - p3)<br/>QB = CB*(p3 - p2)<br/>QC = CC*(p4 - p3)<br/>QD = CD*(p3 - p6)<br/>QE = CE*(p5 - p6)<br/>QE = CE*(p5 - p6)</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CF = 0.2                                                            |              |
| <pre>p3 = 100<br/>p6 = 100<br/>do it = 1, 2<br/>! calculate flow rates with the<br/>! guessed pressures p3, p6 and<br/>! given pressures<br/>QA = CA*(p1 - p3)<br/>QB = CB*(p3 - p2)<br/>QC = CC*(p4 - p3)<br/>QD = CD*(p3 - p6)<br/>QE = CE*(p5 - p6)</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ! guess p3 and p6                                                   |              |
| <pre>p6 = 100 do it = 1, 2     ! calculate flow rates with the     ! guessed pressures p3, p6 and     ! given pressures     QA = CA*(p1 - p3)     QB = CB*(p3 - p2)     QC = CC*(p4 - p3)     QD = CD*(p3 - p6)     QE = CE*(p5 - p6)     QE = CE*(p5 - p6) </pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | p3 = 100                                                            |              |
| <pre>do it = 1, 2     ! calculate flow rates with the     ! guessed pressures p3, p6 and     ! given pressures     QA = CA*(p1 - p3)     QB = CB*(p3 - p2)     QC = CC*(p4 - p3)     QD = CD*(p3 - p6)     QE = CE*(p5 - p6)     QE = CE*(p5 - p6)</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | p6 = 100                                                            |              |
| <pre>! calculate flow rates with the<br/>! guessed pressures p3, p6 and<br/>! given pressures<br/>QA = CA*(p1 - p3)<br/>QB = CB*(p3 - p2)<br/>QC = CC*(p4 - p3)<br/>QD = CD*(p3 - p6)<br/>QE = CE*(p5 - p6)</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | do it = 1, 2                                                        |              |
| ! guessed pressures p3, p6 and<br>! given pressures<br>QA = CA*(p1 - p3)<br>QB = CB*(p3 - p2)<br>QC = CC*(p4 - p3)<br>QD = CD*(p3 - p6)<br>QE = CE*(p5 - p6)<br>QE = CE*(p5 - p6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ! calculate flow rates with the                                     |              |
| ! given pressures<br>QA = CA*(p1 - p3)<br>QB = CB*(p3 - p2)<br>QC = CC*(p4 - p3)<br>QD = CD*(p3 - p6)<br>QE = CE*(p5 - p6)<br>QE = CE*(p5 - p6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ! guessed pressures p3, p6 and                                      |              |
| $QA = CA^{*}(p1 - p3)$ $QB = CB^{*}(p3 - p2)$ $QC = CC^{*}(p4 - p3)$ $QD = CD^{*}(p3 - p6)$ $QE = CE^{*}(p5 - p6)$ $QE = CE^{*}(p5 - p6)$ $(Example and Example for a 16% + 26 (100))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ! given pressures                                                   |              |
| $QB = CB^{*}(p3 - p2)$ $QC = CC^{*}(p4 - p3)$ $QD = CD^{*}(p3 - p6)$ $QE = CE^{*}(p5 - p6)$ (Eq. (500)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | QA = CA*(p1 - p3)                                                   |              |
| $QC = CC^{*}(p4 - p3)$ $QD = CD^{*}(p3 - p6)$ $QE = CE^{*}(p5 - p6)$ $dE = CE^{*}(p5 - p6)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | QB = CB*(p3 - p2)                                                   |              |
| $qu = (u^{*}(p_{3} - p_{0}))$<br>$QE = (E^{*}(p_{3} - p_{0}))$<br>$e^{-1}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}^{*}(p_{1}$                                                                                                                                       | $QC = CC^{*}(p4 - p3)$                                              |              |
| $(c = (c - (p - p \sigma))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $QU = CU^{*}(p_{3} - p_{6})$                                        |              |
| -: SUNDLEPLDENELWOIK, 190 108 L20 (190)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -: simplePipeNetwork.f90 16% 126 (F90)                              |              |

So, you can have like 5 iterations, but it does not make sense because it will just converge to the same value, right. This so does not make sense.

(Refer Slide Time: 44:04)

| 🖲 🗇 🛛 kanupind@kamesh-laptop: ~/Desktop/SIMPLE_PATANKAR_EX |           |           | lip 🎓 🗉  | H ¥ 🤿 🖪 🖼 🎒 🕸 |
|------------------------------------------------------------|-----------|-----------|----------|---------------|
| QA, QB, QC, QD, QE = 30.00000                              | -14.00000 | -20.00000 | 24.00000 | -4.00000      |
| QA+QC-QB-QD = 0.00000000                                   |           |           |          | NPTEL         |
| QD+QE-QF = 0.00000000                                      |           |           |          |               |
| QA - CA*(p1 - p3) = 0.00000000                             |           |           |          |               |
| QB - CB * (p3 - p2) = 0.00000000                           |           |           |          |               |
| $QC - CC^*(p4 - p3) = 0.00000000$                          |           |           |          |               |
| $QD - CD \star (p3 - p6) = 0.00000000$                     |           |           |          |               |
| QE - CD * (p5 - p6) = 0.00000000                           |           |           |          |               |
| p3, p6 = 200.00000 80.0000                                 | 0         |           |          |               |
| QA, QB, QC, QD, QE = 30.00000                              | -14.00000 | -20.00000 | 24.00000 | -4.00000      |
| QA+QC-QB-QD = 0.00000000                                   |           |           |          |               |
| QD + QE - QF = 0.00000000                                  |           |           |          |               |
| QA - CA*(p1 - p3) = 0.00000000                             |           |           |          |               |
| QB - CB*(p3 - p2) = 0.00000000                             |           |           |          |               |
| QC - CC*(p4 - p3) = 0.00000000                             |           |           |          |               |
| QD - CD*(p3 - p6) = 0.00000000                             |           |           |          |               |
| QE - CD*(p5 - p6) = 0.00000000                             |           |           |          |               |
| p3, p6 = 200.00000 80.0000                                 | 0         |           |          |               |
| QA, QB, QC, QD, QE = 30.00000                              | -14.00000 | -20.00000 | 24.00000 | -4.00000      |
| QA+QC-QB-QD = 0.00000000                                   |           |           |          |               |
| QD + QE - QF = 0.00000000                                  |           |           |          |               |
| QA - CA*(p1 - p3) = 0.00000000                             |           |           |          |               |
| QB - CB*(p3 - p2) = 0.00000000                             |           |           |          |               |
| $QC - CC^*(p4 - p3) = 0.00000000$                          |           |           |          |               |
| $QD - CD \star (p3 - p6) = 0.00000000$                     |           |           |          |               |
| QE - CD * (p5 - p6) = 0.00000000                           |           |           |          |               |
| p3, p6 = 200.00000 80.0000                                 | 0         |           |          |               |
| QA, QB, QC, QD, QE = 30.00000                              | -14.00000 | -20.00000 | 24.00000 | -4.00000      |
| anupind@kamesh-laptop:~/Desktop/SIMPLE_PATA                | NKAR_EX\$ |           |          |               |

Of course, you can have a different value for these. So, you can have pressure as 200. Let us see if it converges or not.

(Refer Slide Time: 44:10)

| © © emacs@kamesh-laptop<br>ïle Edit Options Buffers Tools F90 Help | h 🖗 🗣 🖛 🖬 🖼 🚳 |
|--------------------------------------------------------------------|---------------|
| 🔋 🚘 🗃 🗶 🔤save i ha Undo 🔮 🖷 🎬 🔍                                    |               |
| p5 = 40.0                                                          |               |
| QF = 20.0                                                          |               |
| CA = 0.4                                                           |               |
| CB = 0.2                                                           |               |
| CC = 0.1                                                           |               |
| CD = 0.2                                                           |               |
| CE = 0.1                                                           |               |
| CF = 0.2                                                           |               |
| ! quess p3 and p6                                                  |               |
| p3 = 200                                                           |               |
| p6 = 100                                                           |               |
| do it = 1, 2                                                       |               |
| ! calculate flow rates with the                                    |               |
| ! guessed pressures p3, p6 and                                     |               |
| ! given pressures                                                  |               |
| QA = CA*(p1 - p3)                                                  |               |
| QB = CB*(p3 - p2)                                                  |               |
| QC = CC*(p4 - p3)                                                  |               |
| QD = CD*(p3 - p6)                                                  |               |
| QE = CE*(p5 - p6)                                                  |               |
| : simplePipeNetwork.f90 16% L26 (F90)                              |               |

(Refer Slide Time: 44:13)

| S = anupind@kamesh-laptop: ~/Desktop/SIMPLE_PATANKAR_EX                            | 🏼 🥼 🎓 🖬 ¥ 🖘 🖬 🔊 🗳 |
|------------------------------------------------------------------------------------|-------------------|
| QD+QE-QF = 0.00000000                                                              | (米)               |
| QA - CA*(p1 - p3) = 0.00000000                                                     | NPTEL             |
| $QB - CB \star (p3 - p2) = 0.00000000$                                             |                   |
| $QC - CC^*(p4 - p3) = 0.00000000$                                                  |                   |
| QD - CD*(p3 - p6) = 0.00000000                                                     |                   |
| QE - CD * (p5 - p6) = 0.00000000                                                   |                   |
| p3, p6 = 200.00000 80.00000                                                        |                   |
| QA, QB, QC, QD, QE = 30.00000 -14.00000 -20.00000 24.0                             | -4.00000          |
| kanupind@kamesh-laptop:~/Desktop/SIMPLE_PATANKAR_EX\$ gfortran simplePipeNetwork.f | 90                |
| kanupind@kamesh-laptop:~/Desktop/SIMPLE_PATANKAR_EX\$ ./a.out                      |                   |
| QA+QC-QB-QD = 0.00000000                                                           |                   |
| QD+QE-QF = 0.00000000                                                              |                   |
| $QA - CA \star (p1 - p3) = 0.00000000$                                             |                   |
| $QB - CB \star (p3 - p2) = 0.00000000$                                             |                   |
| $QC - CC^*(p4 - p3) = 0.00000000$                                                  |                   |
| $QD - CD \star (p3 - p6) = 0.00000000$                                             |                   |
| QE - CD * (p5 - p6) = 0.00000000                                                   |                   |
| p3, p6 = 200.00000 80.00000                                                        |                   |
| QA, QB, QC, QD, QE = 30.00000 -14.00000 -20.00000 24.0                             | -4.00000          |
| QA+QC-QB-QD = 0.00000000                                                           |                   |
| QD+QE-QF = 0.00000000                                                              |                   |
| QA - CA*(p1 - p3) = 0.00000000                                                     |                   |
| $QB - CB \star (p3 - p2) = 0.00000000$                                             |                   |
| $QC - CC^*(p4 - p3) = 0.00000000$                                                  |                   |
| $QD - CD \star (p3 - p6) = 0.00000000$                                             |                   |
| QE - CD * (p5 - p6) = 0.00000000                                                   |                   |
| p3, p6 = 200.00000 80.00000                                                        |                   |
| QA, QB, QC, QD, QE = 30.00000 -14.00000 -20.00000 24.0                             | -4.00000          |
| kanupind@kamesh·laptop:~/Desktop/SIMPLE_PATANKAR_EX\$                              |                   |

Yes, it converges to the same value 280, ok. But then 200 is a poor guess because the exact value is 200, so let us say 500, ok.

(Refer Slide Time: 44:22)

| See Contract@kamesh-laptop                                            | 🥼 🎓 🖬 🗢 📶 🍄 |
|-----------------------------------------------------------------------|-------------|
| rile Edit Options Burlets (dois 190 help                              |             |
| 🔒 🚞 🕅 💥 🖄Save i halundo 🕌 🧤 🎼                                         | NPTEL       |
| p5 = 40.0                                                             |             |
| QF = 20.0                                                             |             |
| CA = 0.4                                                              |             |
| CB = 0.2                                                              |             |
| CC = 0.1                                                              |             |
| CD = 0.2                                                              |             |
| CE = 0.1                                                              |             |
| CF = 0.2                                                              |             |
| ! guess p3 and p6                                                     |             |
| p3 = 500                                                              |             |
| p6 = 300                                                              |             |
| do it = 1, 2                                                          |             |
| ! calculate flow rates with the                                       |             |
| ! guessed pressures p3, p6 and                                        |             |
| ! given pressures                                                     |             |
| QA = CA*(p1 - p3)                                                     |             |
| QB = CB*(p3 - p2)                                                     |             |
| QC = CC*(p4 - p3)                                                     |             |
| QD = CD*(p3 - p6)                                                     |             |
| QE = CE*(p5 - p6)                                                     |             |
| -:**- simplePipeNetwork.f90 16% L27 (F90)                             |             |
| Wrote /home/kanupind/Desktop/SIMPLE_PATANKAR_EX/simplePipeNetwork.f90 |             |

And then say this as 300, and see if it works. Yes, it works. So, it should work because there is nothing wrong, ok, alright. So, that means, this is done, ok.

(Refer Slide Time: 44:28)

| ) 🗇 💿 kanupind@k | amesh-lapi | top: ~/ | Desktop/SIMPLE | PATANKAR_EX   |                 |                  | lip 🍖 🗉    | H 🗱 🗢 🖬 🖼 🍂 |
|------------------|------------|---------|----------------|---------------|-----------------|------------------|------------|-------------|
| QD+QE-QF =       | 0.1        | 0000    | 00000          |               |                 |                  |            | (*)         |
| QA - CA*(p1      | - p3)      | =       | 0.00000        | 000           |                 |                  |            | NPTEL       |
| QB - CB*(p3      | - p2)      | =       | 0.00000        | 000           |                 |                  |            |             |
| QC - CC*(p4      | - p3)      | =       | 0.00000        | 000           |                 |                  |            |             |
| QD - CD*(p3      | - p6)      | =       | 0.00000        | 000           |                 |                  |            |             |
| QE - CD*(p5      | - p6)      | =       | 0.00000        | 000           |                 |                  |            |             |
| p3, p6           | =          | 2       | 00.00000       | 80.0000       | 0               |                  |            |             |
| QA, QB,          | QC, QI     | D, Q    | E =            | 30.00000      | -14.00000       | -20.00000        | 24.00000   | -4.00000    |
| anupind@kame     | sh-lap     | ptop    | :~/Deskto      | P/SIMPLE_PATA | NKAR_EX\$ gfort | ran simplePipeNe | etwork.f90 |             |
| anupind@kame     | sh-lap     | ptop    | :~/Deskto      | P/SIMPLE_PATA | NKAR_EX\$ ./a.o | ut               |            |             |
| QA+QC-QB-QL      | ) =        | 3.8     | 1469727E-      | 06            |                 |                  |            |             |
| QD+QE-QF =       | -5.        | 7220    | 4590E-06       |               |                 |                  |            |             |
| A - CA*(p1       | - p3)      | =       | 0.00000        | 000           |                 |                  |            |             |
| 2B - CB*(p3      | - p2)      | =       | 0.00000        | 000           |                 |                  |            |             |
| 2C - CC* (p4     | - p3)      | =       | 0.00000        | 000           |                 |                  |            |             |
| QD - CD*(p3      | - p6)      | =       | -1.90734       | 863E-06       |                 |                  |            |             |
| 2E - CD*(p5      | - p6)      | =       | -4.76837       | 158E-07       |                 |                  |            |             |
| p3, p6           | =          | 2       | 200.00000      | 80.0000       | 2               |                  |            |             |
| QA, QB,          | QC, QI     | D, Q    | )E =           | 30.00000      | -14.00000       | -20.00000        | 24.00000   | -4.00000    |
| QA+QC-QB-QL      | ) =        | 0.0     | 0000000        |               |                 |                  |            |             |
| QD+QE-QF =       | 0.1        | 0000    | 00000          |               |                 |                  |            |             |
| A - CA*(p1       | - p3)      | =       | 0.00000        | 000           |                 |                  |            |             |
| 2B - CB*(p3      | · p2)      | =       | 0.00000        | 000           |                 |                  |            |             |
| 2C - CC* (p4     | - p3)      | =       | 0.00000        | 000           |                 |                  |            |             |
| QD - CD*(p3      | - p6)      | =       | 1.90734        | 863E-06       |                 |                  |            |             |
| QE - CD*(p5      | - p6)      | =       | 4.76837        | 158E-07       |                 |                  |            |             |
| p3, p6           | =          | 2       | 200.00000      | 80.0000       | 1               |                  |            |             |
| QA, QB,          | QC, QI     | D, Q    | E =            | 30.00000      | -14.00000       | -20.00000        | 24.00000   | -4.00000    |
| anupind@kame     | sh-la      | ntor    | /Deskto        | STMPLE DATA   | WAD FVE         |                  |            |             |

So, what I do is, what I will do is I will share these programs with you on Moodle. So, you can download them, and then run them, kind of learn from them, and then they probably will be useful later on with an assignment or something like that, ok, alright.

Then, I will stop here. I will talk to you in the next lecture. If you have any questions send them through email to me, ok, alright.

Thank you.