Computational Fluid Dynamics Using Finite Volume Method
Prof. Kameswararao Anupindi
Department of Mechanical Engineering
Indian Institute of Technology, Madras

Lecture - 38
Finite Volume Method for Fluid Flow Calculations: SIMPLE algorithm — Part 111

(Refer Slide Time: 00:14)

VEEE S
Bladaot YEEEECE %)
/0 /7TAOme® N OQ -coNRNNEEERE00N s 2

A |

c. D »Hoar fhrou a poroue malia
B clfu+de , ._.ﬁj_.‘__
d(us) _ ”_.'_’l’_,_i_,‘
di i tf& | ®

XZ-I(S XS—X), s 2
Use simpce algdifn aud leulale Py, Us and Uc
Gin: Cg =bo-l§ G =02 A= 5 Ac = 4

H: 200 %: 38
W ¥ '

Hello everyone. Welcome to another lecture as part of our ME6151 Computational Heat
and Fluid Flow course. So, in the last lecture, we looked at 3 problems from Patankar’s
book, right. From chapter 6, we looked at the 6.4, 6.5 and 6.7, these 3 problems we
percolated them, kind of set the simple algorithm loop. So, in today’s lecture we are going
to see the corresponding programs for these problems and kind of run and obtain the

answers, ok.

So, the first problem, we will tackle today is the problem number 6.4 that is the flow

through a porous a 1-dimensional flow through a porous material. Essentially, this is
governed by the equation Clulu +3—z = 0, right. And we were given the pressure points

which are 1, 2, 3 and the velocity points which are B and C, right.

d(uA)
dx

And, the continuity equation was given as = 0, Ax that is x, minus x; or x; minus x,

was given as 2. And we were also given the constants the porosity coefficients, right, Cg,
Cc as 0.25,0.2.

(Refer Slide Time: 01:23)

Xournal

8L r Ydgsewan j
20 /7TADme®u gQp - ooNNNEEEEREO0N i 2 NPTE
4(uA) oo e e |

s 20 : ; 1

dx 1 0 &2 ;¥

S sy et

X-X = Xg—IL = 2
Use SIMPLE o.[a&ifkm aud Caleulals ,‘:,_,Ug and Uc
Giien: (g = 02 Q; 0.2 Ag= 5 Ac=+4

P‘:ZOO /Ps.-: Sg

) * K %
il quess g =Ue=15 P, =120

Dfs—w‘zﬁuw momenlam %ﬂﬁax CI“/“'*%{ =0

Page 1 @ of8 Layer Layer)

And the cross sectional areas Ag, Ac are given as 5 and 4. And the pressure boundary
condition is given at the points 1 and 3 that is 238, right. And we were given an initial
guess that is up = ug equals 15 and P; equals 120, right. And we have to find what is the
converged value for the velocities uz and u., and also the pressure 1, P,, right. That is
what we have to find. So, the corresponding code the program with they have is in

FORTRAN.

(Refer Slide Time: 02:04)

emacs@kamesh-laptop

! uB = 50.0
! uC = 100.0
! p2 = 1000.0

! Glven parameters
cB = 0.25
cC=0.2
AB =50
AC=4.0

p3 = 38.0
deltax = 2.0

! set under-relaxation, tolerance
tolerance = 1.0e-6

alphap = 0.8

alphau = 0.9

imax = 200

b

do 1 =1, imax

! calculate/update momentum coefficients
aB = cB*abs(uB)*deltax
-i--- simplePorous.f90 16% L16 (F90)

(Refer Slide Time: 02:06)

R K

progran main

implicit none

! given values

eal :: AB, AC

real :: ¢B, cC, p1, p2, p3, deltax, tolerance

real :: aB, aC

real :: uB, uC, uBprime, uCprime

real :: p2prime

real :: alphau, alphaP

real :: u_residual, c_residual, b

integer :: 1, imax

! Glven initial guess values
=150

uC = 15.0

p2 = 120.0

! uB = 50.0

! uC = 100.0

! p2 = 1000.0

! Given parameters

B = 0.25

€ =0.2

AB =50

-- simplePorous.f90 Top L14 (F90)

All the programs that | have that | am going to show you today are in FORTRAN. So, | do
not have the C counterparts of these, but if you want you can easily write them by looking
at by looking at the code that this code that I will share with you. So, if you want you can
write a C counterpart of it or you can even run use the FORTRAN programs to kind of
play with them and see how they are written and how whether it will work for different

values or not, and then kind of learn from it, ok.

So, essentially what we are looking at this code for simple porous that is problem 6.4. So,
we have we kind of, so essentially this is the declaration part, so essentially we are
declaring these variables that is the cross sectional areas Az, A and the porosity cB, cC
and the pressures P;, P,, Ps; Ax is basically your x, minus x; and so on and your tolerance
and ag, a. here with little a these kind of correspond to the coefficients, right, in terms of

the aj is the coefficient for the ug, right whenever we write.

And then ug, u. are the velocities at B and C locations. up u; are the corrections for
velocities for ug, u., and P, is the correction for pressure at the location 2. Then, we have

the under relaxation that is «,,, ap the coefficient.

And then we also have something known as residual which is both for u as well as for
continuity, ok, for the u momentum equation and for the continuity equation. And then we

have this b, b corresponds to the b term on your in your continuity equation, right, ok.

And then we have we kind of make use of couple of integers i and imax, ok. So, what is
given to us? The initial guess was given as ug equals 15, u. equals 15 and pressure equals
120, right that is what was given, essentially ug, u. is equal to 15 and pressure equals 120.
So, we initialize to that we have another set here which have we will try later, and anything

in an exclamation series a comment, ok, so you do not have to worry about that.

(Refer Slide Time: 04:04)

emacs@kamesh-laptop
fers Tools F90 Help

uB = 15.0

uC = 15.0

p2 = 120.0

! uB = 50.0

! uC = 100.0

! p2 = 1000.0

! Given parameters
B =0.25

cC =0.2

AB =50
AC=4.0

pl = 200.0

p3 = 38.0

deltax = 2.0

! set under-relaxation, tolerance
tolerance = 1.0e-6
alphaP = 0.8
alphal = 0.9

imax = 200
doi=1, imax

-- simplePorous.f90 15% L23 (F90)

Then, the given parameters are the porosities cB, cC is 0.25 and 0.2, that is basically given
here. And the cross sectional areas are 5 and 4, that is basically Az is 5, A. is 4 and
pressures the Dirichlet boundary condition for pressure that is P; is 200 and P; is 38, ok.
So, that is basically taken here. And the Ax is equal to 2 that is your x, minus x, or x5
minus x, equals 2, ok. So, these are all the data that is already given in the problem. So,

this data is given.

Next, what we do is we kind of set these values the tolerance values, so what is the smallest
value we want to converge this code 2, that is 1 into 10 power minus 6. Then, the under
relaxation values for the pressure we kind of set it as 0.8, for the velocity we set it set it as
0.9, ok.

Then, we would also need to do some iterations. Here | put the iteration limitation as 200,
and hopefully we will kind of break out of the loop before we reach the 200 iterations, ok;
that we need to see. If we do not break out of all these, then we have to increase this number

to something like 500 or 1000, and then run them.

(Refer Slide Time: 05:26)

pl = 200.0
p3 = 38.0
deltax = 2.0

! set under-relaxation, tolerance
tolerance = 1.0e-6

alphaP = 0.8

alphaU = 0.9

imax = 200

doi=1, imax
! calculate/update momentum coefficients
aB = cB*abs(uB)*deltax
aC = cC*abs(uC)*deltax
! calculate residual for the momentum equations
u_residual = abs(uB*aB/alphal - ((p1 - p2) + uB*aB*(1.6 - alphaU)/alphal)) + &
& abs(uC*ac/alphaU - ((p2 - p3) + uC*aC*(1.0 - alphau)/alphau))
! normalization so that a small quantity; to take care of the round off errors
u_residual = u_residual/(abs(uB*aB/alphaU + uC*aC/alphal))
! solve momentun equations under relaxed equations
wB = ((p1 - p2) + uB*aB*(1.0 - alphaU)/alphaU)*alphaU/aB

uC = ((p2 - p3) + uC*aC*(1.0 - alphau)/alphau)*alphau/ac
- simplePorous.f90 21% L38 (F90)

So, here we have a do loop this is basically similar to your for loop in C, ok, in C
programming language or C plus plus, fine. So, this is similar to a for loop. Essentially we
are going from i equals 1 to imax in steps of 1, ok. So, that is what we have. And then, we

need to calculate what is this coefficients for the momentum equations, right.

So, you remember the momentum equation was aB, ug equals something, right, where the
coefficient aB was cB times mod cB times Ax, right. So, if you go down I think when you

discretize the equation.

(Refer Slide Time: 06:14)

i@ L F{)AgEEQn
/0 /7TEADmP N OO coNRNREEEREO0ON s 1

~— Vv v

a cll-¢

ate=(hh) | g |
Shored - monunlivn eualion . agus" = (?/1’ Pj) al
ac uc '—‘(Fz*' P3*) __@
&Glu 0-8 : aB”B’ . (P"_ pz') Priine qus,
PO acul - (p-4)

Rul ‘71‘(/(40 PI=2'00 G\ Fs:.s&/' % P|'=0$1 f’s"O

Page 2 . of8 Layer: Layer!

So, these are the equations we got, right. Essentially, the coefficient here aB is basically

how much was it? aB was Cz mod uz Ax, right. So, that is what we have written here.

(Refer Slide Time: 06:21)

= % - r YdeEEwQD T.’g
/0 /7TAOme#HNGOQ +oNRNRBERRE00N s
Coluig [Ug (-21) + Uz—h) =0
N
0%

Calug|sx Ug + (Pz’Pl) &0

ANV Cedl- B,

Compere Qelle = & Oub Ui * oy(h-e) +h

So, cB mod ug Ax is your coefficient aB. Similarly, aC, cC mod u, times Ax, also these
are the coefficients for the velocities at the staggered locations, for uB and u.. Now, we
will not worry about this at the moment. So, these this is basically the residual I will come
back to this in little while. So, before we do that, so let us not worry about this part here.
So, let us look at the solution of the momentum equation. So, how do we solve for the

momentum equation?

(Refer Slide Time: 06:49)

aB = cB*abs(uB)*deltax
aC = cC*abs(uC)*deltax

! calculate residual for the momentum equations

u_residual = abs(uB*aB/alphal - ((p1 - p2) + uB*aB*(1.0 - alphaU)/alphal)) + &
& abs(uC*aC/alphal - ((p2 - p3) + uC*aC*(1.0 - alphau)/alphav))

! normalization so that a small quantity; to take care of the round off errors

u_residual = u_residual/(abs(uB*aB/alphaU + uC*aC/alphal))

! solve momentum equations under relaxed equations

wB = ((p1 - p2) + uB*aB*(1.0 - alphaU)/alphaU)*alphaU/aB

uC = ((p2 - p3) + uC*aC*(1.0 - alphaU)/alphaU)*alphau/aC

! calculate residual for the continuity equation

! normalization here is to take care of small values

c_residual = abs(A_B*uB - A_C*uC)/(0.5*(abs(A_B*uB)+abs(A_C*uC)))

if ((u_residual + c_residual) < tolerance) then
write(*, *), 'The converged solutions is uB, uC, p2, b are = ', uB, uC, p2, b
exit

end if

! solve pprime equation
p2prime = (A_B*uB - A_C*uC)/(A_B/aB + A_C/aC)

--- simplePorous.f90 30% L57 (F90)

Momentum equation is basically you have aB uz equals P, minus P,. So, you calculate ug
as P; minus P, by ag, right. But of course, this does not look like that because these are
under relaxed equations, ok. So, we have to look for the under relaxed equations that we

have written towards the end of the formulation, so that is basically this one, ok.

(Refer Slide Time: 07:22)

Xournal

Bia (8 F()ADBEEQD (57)
)0 /TE0mexnaQf - «oNNNNEERREO0N s

tndn-teley momemlam qualiént

Cell B a@“rs*= U’l*— Pﬁ)

) 1) o5

X
o il = (K7)

(gf = (B0) wud

Page 3 . of8 Layer Layert

So, we are talking about ag /oy, uj; equals P; minus P, plus (1 — «y,) /oy, times ag uj. So,
if you want to calculate uj, then you take this entire thing and then multiply that with «,,
by a B, right.

That is going to give you what is uj for a guess value of pressure and velocity, ok. So, that
means, if you look at here, so what we have is uj equals you have P, minus P, same as
what we had here plus we have 1 minus alpha by alpha times aB uj, that is this scan it as

is (1 — ay,)/ay times aguj, ok. So, this is agug.

Now, this entire thing of from here to here, right has to be multiplied with «, /az because
this is coming from the left hand side, right. So, essentially you multiply with «,, /ag on
the right hand side to get uy. That is what we have. Essentially, you multiply with o, /ag,
ok.

Similarly, we write the equation for cell C that is P, minus P; plus (1 — a,)/a, times a,
ug and the entire thing has to be multiplied with «,, and divided by a., ok. So, u. equals
P, minus P; these are the guess values. So, we do not have this star notation here because
we know that eventually the star is basically what we have is there as the current iterate
value and that is what will be used here, ok.

So, we have P, minus P;, and then plus we have u. times aC times u. into 1 minus alpha
by alpha and this entire thing will be now multiplied with alphaU by aC to get what is u,
value, ok. So, this is the solution of a momentum equations, right. So, once we obtain these

thing we got a new values for uj; and ug, ok, alright.

Then, let us calculate what is the value of the continuity equation. So, the continuity
equation is nothing, but Ag, ug minus A¢ uc, ok. So, let us also not worry about this residual
at the moment. And we know that somehow we will kind of exit this loop if the sum of the

residuals is less than the tolerance we have specified, ok.

Then, we say that the solution is converge. Now, we will come back to what is this residual,
why we are using this as a check we will come back to that in little while, ok, ok. Then,
once you have the star values for ug and u., then you essentially go down and solve the
pressure prime equation, right. What was the pressure correction equation? The pressure

correction equation was P; equals up Ag minus u; Ac.

(Refer Slide Time: 10:00)

Xournal
Bia t F()HAEREEQD
)@ /THDme®EX O coNNRNEERREO0N s 2

/’a,'("%c) A (%) = Uehg - et e

Pg;ucz,m g(_ (Hg“%g— M(E*ch/ AECQ'* AB/ae)
Epualinn
Cornct Vduizg aud prsue

r
- b
Qa

Uc = uc'+ ' - Uc—*'f'p_h‘

Page 3 . of8 Layer Layer1

(
U= Us® # U’ =

So, that is P; equals Az uB minus A, u. divided by Az by Ag plus A; by A¢, ok. So, A, B,
C is Ag by Ag plus A; by A.. So, that is what we have. So, we are solving for pressure
correction equation because we have only one cell, we essentially do not have this solve
for a system rather whatever we have would be fine, right. Essentially, whatever essentially
we can just write it as an explicit equation, right. We do not have to solve for a system

here.

(Refer Slide Time: 10:39)

emacs@kamesh-laptop

File Edit Options Buffers Tools F90 Help
RRE o W C
c_residual = abs(A_B*uB - A_C*uC)/(0.5*(abs(A_B*uB)+abs(A_C*uC)))

if (u_residual + c_residual < tolerance) then
write(*, *), 'The converged solutions is uB, uC, p2, b are = ', uB, uC, p2, b
exit

end if

! solve pprime equation
p2prime = (A_B*uB - A_C*uC)/(A_B/aB + A_C/aC)

! correct velocities and correct pressure
uBprime = -p2prime/aB

uCprime = p2prime/aC

uB = uB + uBprime

uC = uC + uCprime

p2 = p2 + alphaP*p2prime

! check whether continuity is Latisfied
b = A_B*uB - A_C*uC

! write(*, *), 'It, corrected uB, uC, p2, u_residual, c_residual are =', i, uB, uC, p2, u_residual, b
if (1 == 1) then
write(*, *), 'It, uB, uC, p2, u_residual, c_residual
end if

-i--- simplePorous.f90 60% L64 (F90)

But once we know the pressure correction, then we can correct the velocities using

whatever we know, right.

(Refer Slide Time: 10:46)

Bia r P()HEEEEQR

/0 /TAOme# N QR +oRRNRBEERE00ON s
—’’_’—————‘—'
* ! =
(NJ-!-H&)AC’ Q'(G “‘HG)AB 0

»¥
I A - UglAg = Ug*hg - Uc' Ao

Ruk b{clz le/ac_i Uglc -Pz'/dg %Uw
l’;(%) -+ P),’ (%) — ME*AB - MC—*A'C

n ok *. 0\ /

So, what is the relation between pressure correction and velocity correction? Once you
know P; your ug would be minus P,/ag that is written here and this is minus P,/ag, that

is up and ug equals P, /ac, right this is basically your P;/a, ok.

Then, ug equals uj plus ug. So, here by the time | come here uj; and ug are the same, right.
So, here what | am using is this is uj;, when you add it to uy the new value you would get
I am still I am again storing it in ug, ok. So, u. gets all written. So, u; plus u; would give
me uc, fine. Then p 2 equals p 2 plus ap times P,, ok. So, this is the pressure correction

equation and these are the velocity corrections and pressure correction, fine; so far so good.

Then, what do we have? Then we have to check, so basically we have done now one
iteration, after one iteration we need to check whether we satisfy continuity or not. What
is the continuity equation that we have? Continuity equation is basically if you go back to
the problem; where is the continuity equation? Continuity equation is this one this is

basically A C u, minus Ag ug, right. That is basically your Ag ug minus A C u.

(Refer Slide Time: 11:59)

Xournal

Bia t k()AL Qd A
PO /7TADme MO -coMNNNEEENEO0ON s 2 it

Cell-2; eack-facei C) mxf-facc.- B

c d ad
fg L) & _ diiwsls conbiil

Uehc - Ughe =0.| 4u -2
(uc*-*Mc') Ac - @‘%** Ug')Ag =0

W he - Uslhg = Ugthg - Ut e

&

Page 3 :of8 Layer Layert

So, if this b satisfied by the new velocity is that is uz and u, that we just calculated here
then that means, we got a continuity satisfying flow field, ok. So, that is the idea, ok.

(Refer Slide Time: 12:25)

emacs@kamesh-laptop
File Edit Options Buffers Tools F90 Help
. |] €\ Undo W
uBprime = -p2prime/aB
uCprime = p2prime/aC
uB = uB + uBprime
uC = uC + uCprime
p2 = p2 + alphaP*p2prime

! check whether continuity is satisfied
b = A_B*uB - A_C*uC

! write(*, *), 'It, corrected uB, uC, p2, u_residual, c_residual are =', i, uB, uC, p2, u_residual, b
if (1 == 1) then
write(*, *), 'It, uB, uC, p2, u_residual, c_residual’
end if

write(*, *), 1, uB, uC, p2, u_residual, b

I end do

end program main [N

-i--- simplePorous.f90 Bot L82 (F90)

Then, we kind of print off the values after every iteration. So, i is our iteration count and
ug and u, are the velocities, p2 is the pressure. So, essentially the program the problem
asked us to calculate all these 3 values. Then, we print something known as the u residual

that is basically the residual coming from the momentum equation and b is nothing but is

the amount by which the flow field satisfies the continuity equation or not, ok. So, that is

what we are printing after every iteration.

Now, let us get back to the u residual and c residual, ok. So, this is nothing but the u
residual is nothing but, if we define something as residual if you have an equation let us
say ax equal to B then the amount by which ax is not equal to B is known as residual. So,
if you take all the terms to one side that means, the residual for ax equal to B would be B
minus ax. So, B minus ax if it is not equal to O that means, the x that you got is not

satisfying the solution.

So, that means, we have to still improve the x such that B minus ax equal to is equal to 0,
ok. So, that is what is residual which should be used to see whether the system is satisfying
the solution is satisfying the system or not, ok. So, that means, u residual is nothing, but
the entire equation that you have taken to one particular site so that means, we have aB u;,
aB ujp by alphaU. This is basically your left hand side.

So, we are taking everything in to the left hand side. So, we have on the right hand side
essentially P, minus P, plus this is all the under relaxation part. So, this entire thing, right,
from here to here is the entire momentum equation which is basically taken to the left hand
side. And similarly, we have we are looking at momentum what is the; what is the residual

for the other cell. So, this is the residual for cell B and this is the residual for cell C, ok.

So, we are taking an absolute value of these residuals because we do not want the residual
of this to be subtracted by this one, ok. So, we want to see how much is the amount by
which this is not satisfied and how much is the amount by which the C cell, values are not

satisfied then we calculate these two, ok.

That is the sum. So, u residual gives you the residual for cells B and C. Then, we are also
updating u residual by it is absolute value of the central coefficient, that meansap, up, a

p, right, that is ugz a B by alphaU. So, we are kind of normalizing this.

This is only kind of a normalization, so that like a small quantity that is coming up from
these terms would not be over seen, ok. So, as a result, we are just taking the first two
terms, essentially the left hand side values and we are trying to normalize whatever u

residual we have computed here such that even if this comes out to be small it is with

respect to what is computed here and we would know that the value that you got here is
not really small compared to this, ok. Such that we still have to kind of converge.

This is basically to take care of this is to take care of the numerical errors or the round off
errors, right. So, we do not want very small values to be seen as, this is 0 or something,
ok. So, this is basically. But by the time u residual goes to let us say less than the tolerance
that means, we are satisfying the momentum equation, that means, the calculated u; and
uc now satisfy the momentum equations to the up to the tolerance, ok. That is what it tells

us, right.

So, that means, if we if u residual comes out to be O or the tolerance value that means, the
ug uc that we have calculated now satisfy the momentum equation, right. That is what it
is, ok, ok, alright, ok. And you also realize that before when I do this thing | have already
used the aB as the updated values, ok. So, you may have a question here in terms of well

we talked about the discrete momentum equation and the momentum equation.

So, we are talking about the discrete momentum equation in this context, but I have just
updated the aB values here, ok. That means, what | use here in this equation is the latest
value. So, this is the non-linear value whatever we have, right. The non-linear value would
be computed here because this is the same u that is used to check for this, ok. So, that
means, it will satisfy the same non-linear equation as such, ok. So, we have just plugged

in these values, alright.

Now, let us also look at the continuity residual. So, we want to see whether the continuity
value that is Ag ug minus A C u, whether this is 0 or not, ok. Again, we are kind of taking
a average of Ag ug and A C u, and multiplying with half essentially this is to take care of

the relative value of Az ug minus A C u, right.

This is basically the normalization here is to take care of a small values that may come
which may really look small, but they are actually not small in comparison to what is the

each of the flow rates, ok.

Further, we are doing this thing. Otherwise you can even check with Ag ug minus A C u,
ok, fine; essentially, these two the continuity residual and the momentum residual. This is
basically what tells us that if these two together are less than the tolerance that we have

specified which was some 1 E minus 6 or something, right which was a 1 E minus 6 here.

So, that means, if that is if both of them are less than the tolerance then the then that means,
we have kind of converged to a particular solution, ok.

And then we are going to print what is the value of uz u. and pressure at the cell and we
also going to print the b, b is nothing but the value of the continuity equation, ok. So, that
is what we are going to do, alright. So, that is as far as the program is concerned.

(Refer Slide Time: 18:48)

kanupind@kamesh-laptop: -/Desktop/SIMPLE_PATANKAR_EX

kanupindekamesh-laptop: ~/Desktop/SIMPLE PATANKAR EX$ ls

simpleNozzle.f90~ simplepipeNetwork.f90~ simplePorous.f90~
simpleNozzle.f90 simplePipeNetwork.f90 simplePorous.f90
kanupindekamesh-laptop: ~/Desktop/SIMPLE_PATANKAR EX$ gfortran simplePorous.f90
kanupindekamesh-laptop: ~/Desktop/SIMPLE PATANKAR EX$./a.ou l:l

Now, let us look at running this program. This is simple for us. So, | have these programs

here. So, | use gfortran, gfortran simple porous dot f90 and then I would run it, ok.

(Refer Slide Time: 18:56)

kanupind@kamesh-laptop: ~/Desktop/SIMPLE_PATANKAR_EX

=

31 11.9987926 14.9984903 128.000000 2.26324148E-04 3.81469727E-06 3]
32 12.0009661 15.0012064 128.000000 1.81107418E-04 3.81469727E-06 -
33 11.9992275 14.9990349 128.000000 1.44850404E-04 0.00000000
34 12.0006170 15.0007715 128.000000 1.15812159E-04 0.00000000
35 11.9995060 14.9993830 128.000000 9.25604618E-05 -3.81469727E-06
36 12.0003939 15.0004930 128.000000 7.40112155E-05 -3.81469727E-06
37 11.9996853 14.9996061 128.000000 5.91663011E-05 3.81469727E-06
38 12.0002508 15.0003147 128.000000 4.72199499E-05 -3.81469727E-06
39 11.9997988 14.9997473 128.000000 3.77215365E-05 3.81469727E-06
40 12.0001612 15.0002012 127.999992 3.02218941E-05 0.00000000
41 11.9998713 14.9998398 128.000000 2.42014830E-05 -3.81469727E-06
42 12.0001020 15.0001278 128.000000 1.92434400E-05 0.00000000
43 11.9999180 14.9998980 128.000000 1.53432975E-05 -3.81469727E-06
44 12.0000648 15.0000811 128.000000 1.22071970E-05 0.00000000
45 11.9999485 14.9999361 128.000000 9.74856539E-06 -3.81469727E-06
46 12.0000410 15.0000505 128.000000 7.67184520E-06 3.81469727E-06
47 11.9999676 14.9999590 128.000000 6.14585906E-06 3.81469727E-06
48 12.0000257 15.0000315 128.000000 4.87436182E-06 3.81469727E-06
49 11.9999790 14.9999743 128.000000 3.85706608E-06 -3.81469727E-06
50 12.0000172 15.0000200 128.000000 3.09415373E-06 3.81469727E-06
51 11.9999866 14.9999828 127.999992 2.50073890E-06 0.00000000
52 12.0000105 15.0000134 128.000000 2.03450963E-06 0.00000000
53 11.9999924 14.9999895 128.000000 1.61064690E-06 3.81469727E-06
54 12.0000067 15.0000086 128.000000 1.22918186E-06 0.00000000
55 11.9999952 14.9999943 128.000000 1.01725141E-06 0.00000000
The converged solutions is uB, uC, p2, b are = 12.0000048 15.0000048 128.000000 0.

00000000
kanupindekamesh-laptop: ~/Desktop/SIMPLE PATANKAR EX$ gfortran simplePorous.f90
kanupinde@kamesh-laptop: ~/Desktop/SIMPLE_PATANKAR EX$./a.out

(Refer Slide Time: 19:01)

kanupind@kamesh-laptop: ~/Desktop/SIMPLE_PATANKAR_EX

simpleNozzle.f90 simplePipeNetwork.f90 simplePorous.f90
kanupindekamesh-laptop: ~/Desktop/SIMPLE_PATANKAR_EX$ gfortran simplePorous.f90
kanupind@kamesh-laptop: ~/Desktop/SIMPLE PATANKAR EX$./a.out
It, uB, uC, p2, u residual, ¢ residual
1 11.0699997 13.8374996 120.180000 0.180000007 0.00000000

2 12.8143177 16.0178967 125.810402 0.157571599 0.00000000

3 11.3951187 14.2438974 127.386909 0.110751033 3.814697278-06
4 12.5128031 15.6410036 127.828331 9.80845839E-02 0.00000000

5 11.6086712 14.5108395 127.951935 7.22564757E-02 0.00000000

6 12.3249350 15.4061689 127.986549 6.17007315E-02 0.00000000

7 11.7477627 14.6847029 127.996231 4.68297191E-02 3.81469727E-06
8 12.2066631 15.2583294 127.998947 3.90628725E-02 0.00000000

9 11.8378181 14.7972727 127.999710 3.02166604E-02 0.00000000
10 12.1317444 15.1646814 127.999916 2.48294994E-02 -3.81469727E-06
11 11.8958921 14.8698654 127.999977 1.94409862E-02 0.00000000
12 12.0841055 15,1051321 127.999992 1,58217456E-02 0.00000000
13 11.9332428 14.9165535 128.000000 1.248443228-02 0.00000000
14 12.0537415 15.0671778 128.000000 1.00977691E-02 -3.81469727E-06
15 11.9572220 14.9465275 128.000000 8.007433278-03 0.00000000
16 12.0343599 15.0429506 128.000000 6.45117043E-03 -3.81469727E-06
17 11.9726000 14.9657488 128.000000 5.132023258-03 3.81469727E-06
18 12.0219765 15.0274715 128.000000 4.12418973E-03 -3.81469727E-06
19 11.9824543 14.9780684 128.000000 3.28757521E-03 -3.81469727E-06
20 12.0140591 15.0175734 128.000000 2.63760192E-03 3.81469727E-06
11 11.9887667 14.9859591 128.000000 2.10514292E-03 -3.81469727E-06
2 12.0089960 15.0112448 128.000000 1.68730377E-03 0.00000000
23 11.9928083 14.9910107 128.000000 1.347872438-03 0.00000000
24 12.0057573 15.0071974 128.000000 1.079708578-03 -3.81469727E-06
25 11.9953966 14.9942446 128.000000 8.63115594E-04 3.81469727E-06

It kind of took 55 iterations. So, the columns here are the first column is iteration the
second one is up this is u velocity, u. is the third column, then pressure is the 4th column,

then we have the u residual and c residual, ¢ residual is O.

So, one thing you note is that for every iteration you see that the ¢ residual that is the
continuity equation that is the b term is always 0 or less than the tolerance, right; 00 1 E
minus 6 O that means, we are or simple algorithm is running driving these ug, u. fields

through continuity satisfying field.

So, at every location that is 0, right, it is always 0. And finally, the solution is converged
to ug of 12. So, velocity is at B cell is 12 and velocity at a C cell is 15 and the pressure is
128, ok, alright. So, that is what we have. And what about the; what about the momentum
equation? So, the if you look at the momentum residual initially this is somewhat large
value that is the large in the sense this is 0.18 and you can see that it continuously

decreases.

So, as it converges down as the u and B where p get ugz and u. and p get updated it kind
of starts decreasing and the momentum residual comes down to 1 E minus 6, ok. So, but
the momentum equation eventually satisfies at this condition, but you can see that the

continuity equation is always satisfied by the velocity fields that we got; ok.

And you can also see that the initial guess that we have given is kind of comes down from
15 and 12 or something and then it kind of comes down to these values, right. So, what

was the initial guess again? Initial guess given was 15, 15 and 120.

(Refer Slide Time: 20:55)

kanupind@kamesh-laptop: ~/Desktop/SIMPLE_PATANKAR EX

50 12.0000172 15.0000200 128.000000 3.094153738-06 3.814697278-06 1 F §
51 11.9999866 14.9999828 127.999992 2.50073890E-06 0.00000000 s
52 12.0000105 15.0000134 128.000000 2.03450963E-06 0.00000000
53 11.9999924 14.9999895 128.000000 1.61064690E-06 3.81469727E-06
54 12.0000067 15.0000086 128.000000 1.22918186E-06 0.00000000
55 11.9999952 14.9999943 128.000000 1.01725141E-06 0.00000000
The converged solutions is uB, uC, p2, b are = 12.0000048 15.0000048 128.000000 0.
00000000 I

kanupindekamesh-laptop: ~/Desktop/SIMPLE_PATANKAR_EX$ ¢

kanupinde@kamesh-laptop: ~/Desktop/SIMPLE PATANKAR EX$ ls
simpleNozzle.f90~ simplePipeNetwork.f90~ simplePorous.f90~
simpleNozzle.f90 simplePipeNetwork.f90 simplePorous.f90
kanupindekamesh-laptop: ~/Desktop/SIMPLE PATANKAR_EX$ gfortran simplePorous.f90
kanupind®kamesh-laptop:~/Desktop/SIMPLE PATANKAR EX$./a.out
It, uB, uC, p2, u_residual, c_residual

1 11.0699997 13.8374996 120.180000 0.180000007 0.00000000

2 12.8143177 16.0178967 125.810402 0.157571599 0.00000000

3 11.3951187 14.2438974 127.386909 0.110751033 3.81469727E-06
4 12.5128031 15.6410036 127.828331 9.808458398-02 0.00000000

5 11.6086712 14.5108395 127.951935 7.22564757E-02 0.00000000

6 12.3249350 15.4061689 127.986549 6.17007315E-02 0.00000000

7 11.7477627 14.6847029 127.996231 4.68297191E-02 3.81469727E-06
8 12.2066631 15.2583294 127.998947 3.90628725E-02 0.00000000

9 11.8378181 14.7972727 127.999710 3.02166604-02 0.00000000
10 12.1317444 15.1646814 127.999916 2.48294994E-02 -3.81469727E-06
11 11.8958921 14.8698654 127.999977 1.94409862E-02 0.00000000
12 12.0841055 15.1051321 127.999992 1.58217456E-02 0.00000000
13 11.9332428 14.9165535 128.000000 1.24844322E-02 0.00000000

So, initially it kind of little bit oscillates here between 11 12 and then it kind of eventually
reaches a value of 12, and u. was given a value of 15 that starts off with from 15 it comes
down to 14, 13.8, then 16 and then it kind of oscillates and the pressure was given as 120,
so it starts with 120 and eventually it reaches a value of 128, ok. So, these are the final

values for ug, u- and the pressure, ok.

Now, let us see, let us not use what is given by the problem that is in the book that is
basically 15, 15 120. Let us use these new values that is basically ug is 50, u. is 100,
pressure is 1000, ok. So, remember that we have converged in 55 iterations. So, we are
going to rerun this problem. So, this is gfortran simplePorous and then run it, ok, boom.
So, it kind of converts this in just 61 iterations and it converts the same values that is a 12,

15 and 128. Did it start with what we have given?

(Refer Slide Time: 21:58)

0p/SIMPLE_PATANKAR_EX

It, uB, ucC, p2, u_residual, c_residual

1 8.94399834 11.1800022 345.120056 0.872228622 -1.52587891E-05 .77,
2 15.3845577 19.2306976 188.793625 4.42267513 0.00000000
3 9.96248722 12.4531078 145.022217 0.371808380 3.81469727E-06
4 14.0050488 17.5063114 132.766220 0.405778408 0.00000000
5 10.6543102 13.3178883 129.334534 0.239252210 0.00000000
6 13,2295208 16.5368996 128.373672 0.241705969 7.62939453E-06
7 11.1192265 13.8990326 128.104630 0.159514040 0.00000000
8 12.7674093 15.9592628 128.029297 0.148228243 -3.81469727E-06
9 11.4275856 14.2844820 128.008209 0.104940914 0.00000000
10 12.4837360 15.6046705 128.002304 9.24212411E-02 -3.81469727E-06
11 11.6298809 14.5373507 128.000641 6.83973953E-02 3.81469727E-06
12 12.3066969 15.3833714 128.000183 5.81962951E-02 0.00000000
13 11.7615213 14.7019024 128.000046 4.429904008-02 -3.814697278-06
14 12.1951351 15.2439184 128.000015 3.68670560E-02 3.81469727E-06
15 11.8467026 14.8083773 128.000000 2.85714399E-02 3.81469727E-06
16 12.1244240 15.1555300 128.000000 2.344296508-02 0.00000000
17 11.9016104 14.8770123 128.000000 1.837731158-02 3.81469727E-06
18 12.0794439 15.0993042 128.000000 1.49419606E-02 3.81469727E-06
19 11.9369144 14.9211435 128.000000 1.179931878-02 -3.81469727E-06
20 12.0507679 15.0634604 128.000000 9.537962278-03 -3.814697278-06
21 11.9595776 14.9494715 128.000000 7.56717985E-03 3.81469727E-06
22 12.0324612 15.0405760 128.000000 6.09414931E-03 3.81469727E-06
23 11.9741106 14.9676380 128.000000 4.84946184E-03 0.00000000
24 12.0207624 15.0259533 128.000000 3.89604340E-03 0.00000000
25 11.9834232 14.9792786 128.000000 3.10631539-03 0.00000000
26 12,0132818 15.0166025 128.000000 2.49168812E-03 0.00000000
27 11.9893875 14.9867353 128.000000 1.98894367E-03 -3.81469727E-06
28 12.0084972 15.0106220 128.000000 1.59392809E-03 0.00000000

Yes, it does it kind of starts, but then you can see that very immediately it kind of comes
down to the velocities come down to 8, 9 and 11 or something, right.

(Refer Slide Time: 22:16)

fp

kanuplnd@kamesh-laptop: -/Desktop/SIMPLE_PATANKAR_EX

00000000

12 12.3066969 15.3833714 128.000183 5.81962951E-02 0.

13 11.7615213 14.7019024 128.000046 4.42990400E-02 -3.81469727E-06
14 12.1951351 15.2439184 128.000015 3.68670560E-02 3.81469727E-06
15 11.8467026 14.8083773 128.000000 2.85714399E-02 3.81469727E-06
16 12.1244240 15.1555300 128.000000 2.34429650E-02 0.00000000

17 11.9016104 14.8770123 128.000000 1.83773115E-02 3.81469727E-06
18 12.0794439 15.0993042 128.000000 1.49419606E-02 3.81469727E-06
19 11.9369144 14.9211435 128.000000 1.17993187E-02 -3.81469727E-06
20 12.0507679 15.0634604 128.000000 9.537962278-03 -3.81469727E-06
21 11.9595776 14.9494715 128.000000 7.56717985E-03 3.81469727E-06
22 12.0324612 15.0405760 128.000000 6.09414931E-03 3.81469727E-06
23 11.9741106 14.9676380 128.000000 4.84946184E-03 0.00000000

24 12.0207624 15.0259533 128.000000 3.89604340E-03 0.00000000

25 11.9834232 14.9792786 128.000000 3.106315398-03 0.00000000

26 12.0132818 15.0166025 128.000000 2.491688128-03 0.00000000

27 11.9893875 14.9867353 128.000000 1.98894367E-03 -3.814697278-06
28 12.0084972 15.0106220 128.000000 1.593928098-03 0.00000000

29 11.9932070 14.9915094 128.000000 1.27327978E-03 -3.81469727E-06
30 12.0054379 15.0067968 128.000000 1.01976295E-03 3.81469727E-06
31 11.9956522 14.9945641 128.000000 8.150976508-04 3.81469727E-06
32 12.0034809 15.0043516 128.000000 6.52574061E-04 -3.81469727E-06
33 11.9972172 14.9965200 128.000000 5.219714958-04 3.81469727E-06
34 12.0022268 15.0027838 128.000000 4.17648786E-04 0.00000000

35 11.9982195 14.9977741 128.000000 3,33958713E-04 0.00000000

36 12.0014248 15.0017805 128.000000 2.671504635-04 3.81469727E-06
37 11.9988604 14.9985752 128.000000 2.13657069€-04 0.00000000

38 12,0009117 15.0011396 128.000000 1.70973290E-04 0.00000000

39 11.9992714 14.9990892 128.000000 1.36757299E-04 0.00000000 ‘
40 12.0005827 15.0007286 128.000000 1.09283152E-04 0.00000000

And the pressure is very high, this is basically the pressure correction has come down from
1000 to 345 in like one step, right. And then you can again see that the momentum residual

comes down and the continuity is always satisfied and so on, ok.

(Refer Slide Time: 22:18)

kanupind@kamesh-laptop: -/Desktop/SIMPLE_PATANKAR_EX

36 12.0014248 15.0017805 128.000000 2.67150463E-04 3.814697278-06 < * H
37 11.9988604 14.9985752 128.000000 2.13657069E-04 0.00000000 W‘fy
38 12.0009117 15.0011396 128.000000 1.70973290E-04 0.00000000
39 11.9992714 14.9990892 128.000000 1.36757299E-04 0.00000000
40 12.0005827 15.0007286 128.000000 1.09283152E-04 0.00000000
41 11.9995346 14.9994183 128.000000 8.74328471E-05 0.00000000
42 12.0003729 15.0004663 128.000000 6.98143704E-05 0.00000000
43 11.9997025 14.9996271 128.000000 5.59454129E-05 1 3.81469727E-06
44 12.0002384 15.0002975 127.999992 4.47189523E-05 0.00000000
45 11.9998093 14.9997616 128.000000 3.57295794E-05 0.00000000
46 12.0001526 15.0001917 128.000000 2.86111372E-05 -3.81469727E-06
47 11.9998779 14.9998465 128.000000 2.29723664E-05 3.81469727E-06
48 12.0000982 15.0001230 128.000000 1.84380806E-05 0.00000000
49 11.9999218 14.9999018 128.000000 1.47499204E-05 3.81469727E-06
50 12.0000629 15.0000772 128.000000 1.17409436E-05 3.81469727E-06
51 11.9999495 14.9999380 128.000000 9.36710330E-06 -3.81469727E-06
52 12.0000410 15.0000515 128.000000 7.50230038E-06 0.00000000
53 11.9999676 14.9999590 128.000000 6.18824379E-06 3.81469727E-06
54 12.0000257 15.0000315 128.000000 4.87436182E-06 3.81469727E-06
55 11.9999790 14.9999743 128.000000 3.85706608E-06 -3.81469727E-06
56 12.0000172 15.0000200 128.000000 3.09415373E-06 3.81469727E-06
57 11.9999866 14.9999828 127.999992 2.50073890E-06 0.00000000
58 12.0000105 15.0000134 128.000000 2.03450963E-06 0.00000000
59 11.9999924 14.9999895 128.000000 1.61064690E-06 3.81469727E-06
60 12.0000067 15.0000086 128.000000 1.22918186E-06 0.00000000
61 11.9999952 14.9999943 128.000000 1.01725141E-06 0.00000000
The converged solutions is uB, uC, p2, b are = 12.0000048 15.0000048 128.000000 0.

00000000
kanupindekamesh-laptop:~/Desktop/SIMPLE PATANKAR EX$ |

So, that is the as far as the first problem is concerned, ok, alright. So, let us see, let us now
look at the next problem, alright that is basically the simple porous is done.

(Refer Slide Time: 22:52)

Xournal
™ 8 F()HEEQn
20 /7Ti0me#NgOp +oNNNRBEENNEO0N s 2

65) J
= a—x(fUA) <0

.—l lu “ Y LR

f:’ HM:’W‘ML//
Ax=3; Ag=1 b= 2¢; Paco

Fluid upsham of ot | has noslegiblo momeula
Calealals Un, U aud P,

=1 r .. ¥ cl n® -~

Page 4 . of8 Layer Layeri

So, what is the second problem? The second problem was the nozzle problem, right. So,
in the nozzle problem what we have is basically there is a nozzle that is given and whose
continuity and the momentum equations are given. So, the continuity equation is d by dx

of rho u A equals 0, and the momentum equation is d by dx of rho u A u equals minus A

dp dx, right. So, essentially that is what is given. And we have discretize this equation and

density is given as 1 everywhere A A equals, Az equals, 3 and 1, respectively.

(Refer Slide Time: 23:32)

Xournal
™ t F()HEEpEQn
70 /7TAOmeH K gOQ +oARRRBEERE00N s
i i 8

«tt s

|

el owywha)
Ax=3; Ag=1; h=26; py=0

Fluid upshream of foist | has neylgasle momelin
Calewlale Un, Un and PZ

lm'{&i/ Quess : U,{r: 5/3 J “E:t: Ly

pXx 28
e 2 . df
Cell- A (L d—‘i(f“'* e L & 3 O

Page 4 . of8 Layer Layeri

And the pressure boundary condition is given that is 28 and 0, right. And we formulated

this and the initial guess is also given, ok.

(Refer Slide Time: 23:38)

implicit none

integer :: it, itmax
real :: AA, AB, p1, p3
real :: UA, uB, p2

real :: FA, FB

real :: dA, d8, b

real :: p2prime, uAprime, uBprime
real :: alphaU, alphaP

real :: u_residual, c_residual
real :: tolerance

! given values
! boundary conditions)
pl = 28.0
p3=0.0

! geometry

A = 3.0

AB = 1.0

! initial guess
UA = 5.0/3.0
uB = 5.0

p2 = 25.0

-- simpleNozzle.f90 Top L1 (F90)
Mark set

So, let us see what is the second problem looks like simple nozzle. So, again we have these
are the definitions declaration of the variables that is we have AA, AB, these are the cross

sectional areas and then in P; and P; are the pressures, and then uA, ug are the velocities,

right, P, is the pressure essentially we have to calculate what are these values, ok. And
then FA are the flow rates, FA and FB; dA dB are the coefficients that we get in the prime

equations, ok.

Similarly, we have p2prime, uAprime and uj these are the velocity and the pressure
corrections and then we have alphaU and alphaP, ok, alright. So, if you see the given
boundary conditions are P; equals 28, P; equals O, right. These are already given. So, P;
equals 28, P; equals O that is already given and the geometry is given as cross sectional
areas let us 3 and 1, right. This is 3 and thisis 1, A A is 3, A is 1 and the initial guess is
given as five-thirds for u A, up equals 5.

(Refer Slide Time: 24:38)

emacs@kamesh-laptop

File Edit Options Buffers Tools F30 Help

RR &
! boundary conditions)
pl = 28.0
p3 =0.0
! geometry

! initial guess
UA = 5.0/3.0
uB = 5.0
p2 = 25.0
tolerance = 1.0e-6
alphaP = 0.8
alphal = 6.8 lunder relaxation parameters b
itmax = 100 !maximum no. of iterations
do it = 1, itmax
! calculate momentum coefficients
FA = UA*AA
FB = uB*AB
dA = AAJFA
B = AB/FB

:--- simpleNozzle.f90 14% L36 (F90)

So, we take this as 5, and P, is 25, ok. So, this is 25, ok, alright. That is the initial guess
for pressure, ok. The tolerance value is 1 E minus 6. Again, | set it to 1 E minus 6 bar
equations to kind of converge. Then we have a, equals 0.8, a, equals 0.8, these are

basically your under relaxation parameters, ok.

And then again | said these are the iteration max is maximum number of iterations before
which we want to we hope to come out of the loop. So, this is the loop. So, do iteration

equals 1 to it max. So, we calculate the momentum coefficients, ok.

(Refer Slide Time: 25: 32)

BLa 3 F¢YdeBoEQl)
20 /7TRiO=mP®N gOQ «oRRNRENERE0OON s 2 RN
raug = 1|v no
Foyo 5 p=U
. ; fA0 6'”‘”)
F,>/0)‘ u[— uu'o;h;m) Bt (
D,

F lUs = Aﬁr P:"’L)

= 3
d
Cell =83 ; J d((’uﬁ”) J,_ —Aﬂ—ifda

fly ~l = A (P)

So, the momentum coefficients are basically we have if you go back to the problem what
are the coefficients for momentum? Basically, your F 2 that is nothing, but your FA, right,
so ok. For the cell A we have FA and FB, right.

(Refer Slide Time: 25:36)

BLb 8 C()deoaEaEQa
/O /TEDmemMIOR 'lIIlIIIJIIEIDIS 1

(Pus), - (ﬂm),,r =0

[Rfo]s Frefs

b= fa=F3 =h=h
Cp_u,ﬂ FA{'{A = Aﬁ(P{'f?a)
GQllig: Fellg ~Fals = AB(P&"S)

shond- eguakin £y U= A (- 0F)

*
Falia = F,«y(/(,r* + AB(FJ— —~)

Page 5 . of8 Layer Layeri

So, we look at what is F A. F A is your is basically u, times AA, right velocity times area

and then we have rho equals 1 similarly FB is ugz AB. So, that is the coefficients here.

(Refer Slide Time: 25:58)

Xournal

BLia 8 F(Y)HeoE09QD
00 /7T 0me# N 0OQ o MANRBEENEO0N s

MIMC-W&M F/r uﬂ' = Ah (_f” fz')
Fallg < Falls' + AB(P;,!’ }’3')

\A)Vo &

(Seee)

U’ = (%) C;Pz') G :(‘AF_:)

e (82) (b)) = dah o= e)

Page s & ofB Layer Layer)

Then, d A which we get here, this we defined as d A that is AA by FA. So, we calculate
we assign d A equals AA by F A and d B equals A by F B, right. So, we have those two

values as well.

(Refer Slide Time: 26:07)

emacs@kamesh-laptop

File Edit Options Buffers Tools F90 Hel

RRE

alphaP = 0.8
alphal = 0.8 lunder relaxation parameters
itmax = 100 !maximum no. of iterations

do it = 1, itmax

! calculate momentum coefficients

FA = UA*AA

FB = uB*AB

dh = AAJFA N
d8 = AB/FB

! calculate residual for the momentum equations
u_residual = abs(FA*uA/alphal - AA*(p1 - p2) - FA*uA*(1.0 - alphau)/alphal) + &

& abs(FB*uB/alphaU - FA*uA - AB*(p2 - p3) - FB*uB*(1.0 - alphaU)/alphal)
u_residual = u_residual/(abs(FA*uA/alphaU + FB*uB/alphaul))

! solve momentun equation
UA = (AA*(p1 - p2) + FA*uA*(1.6 - alphaU)/alphau)*alphal/FA
UB = (FA*uA + AB*(p2 - p3) + FB*uB*(1.6 - alphaU)/alphau)*alphaU/F8

! calculate residual for the continuity
c_residual = abs(uA*AA - uB*AB)/(0.5*(abs(uA*AA) + abs(uB*AB)))

if ((u_residual + c_residual) < tolerance) then
- simpleNozzle.f90 23% L45 (F90)

And then we use the this is again the residuals. So, basically taking the entire momentum

equation to one side; this is what we have, ok. We will come back to this little later.

(Refer Slide Time: 26:31)

Sk I C()dgaEEqQD

20 /7TiDme%n QO -coNRNNEEEREO0N s 2

o %
el A gyt = Ay (0 1Y)

b(%) ke Ar(0- P;") " [%u Bl ;H‘

Gl &: Fallg® = £yup® + As (- Ps*)

¥ L,
()t = 6 (187) \/7«{) folg”™

P

|

So, what is the momentum equation? Momentum equation is we have to look for the under
relaxed equation that we have written that is basically this value, right that is your w; equals
AA times P; minus P; that is AA times P; minus P; plus this is basically your under

relaxation component that is 1 minus alpha by alpha times FA wuy,.

And then this entire thing has to be entire equation has to be multiplied with alphaU times
F A, multiply with alphaU divided by F A to get what is u A star, ok. So, that is how you
get the u A star. And wj, is also similar uj; has basically F A u A that is your F A u A here,
right, here. Then the second term is a B times P, minus P;. So, that is your AB times P,

minus P; plus this thing is again coming from the under relaxation.

And what we have is a multiply this with this entire thing with alphaU by divided by F B
to get value of F B star, ok. So, that is uz equals FA u, plus AB times P, minus P; plus the
under relaxation component and then we have multiplication with alphaU times F B, ok,

alright, ok. So, just got it here, 0k; so, this is your ug, fine.

Then, again the continuity equation. What was the continuity equation? Continuity
equation was; continuity equation was F B minus FA, right that means, rho equals 1. So,
thisis ug Az minus u A A A, right. So, if your continuity residual would be u A A A minus
ug Ag, again | am dividing with whatever is the continuity value average value such that

this becomes kind of normalized, ok.

Similarly, now we can understand how this residual is calculated. This is the absolute value
for cell A, ok. So, this is basically the absolute value for cell A, right. So, thisisF Au A
by alphaU. This is the left hand side equation, left hand side part of the equation and this
is the right hand side brought to the left hand side, right.

So, essentially we have this is for cell A and we take the absolute value similarly we take
the other value that is for the B cell, we have F B uz by alphaU minus FA w, all these
things basically this is your first cell B, ok.

And again we use, we normalize with the central coefficient that is FA u, by alphaU and
FB ug by alphaU, to basically get to normalize this value, ok. So, that is what we are doing.

(Refer Slide Time: 29:13)

Foxe =A™ &

alphal = 0.8 lunder relaxation parameters
itmax = 100 !maximum no. of iterations

do it = 1, itmax

! calculate momentun coefficients

FA = uA*an]

FB = uB*AB

dA = AAJFA

dB = AB/FB

! calculate residual for the momentum equations

u_residual = abs(FA*uA/alphalU - AA*(p1 - p2) - FA*uA*(1.0 - alphal)/alphau) + &
& abs(FB*uB/alphaU - FA*uA - AB*(p2 - p3) - FB*uB*(1.0 - alphaU)/alphau)

! normalize the residual value

u_residual = u_residual/(abs(FA*uA/alphaU + FB*uB/alphau))

! solve momentum equation

UA = (AA*(p1 - p2) + FA*uA*(1.0 - alphaU)/alphaU)*alphau/FA

uB = (FA*uA + AB*(p2 - p3) + FB*uB*(1.0 - alphau)/alphau)*alphau/F8

! calculate residual for the continuity
c_residual = abs(uA*AA - uB*AB)/(0.5*(abs(uA*AA) + abs(uB*AB)))

if ((u_residual + c_residual) < tolerance) then
-i--- simpleNozzle.f90 24% L34 (F90)

So, that means, basically this is to normalize the residual value, such that it is not going to
be very small or very large, ok. So, that is the residual for velocity. So, that means, if we
go back to the algorithm we started off with calculating the coefficients, then we computed
this all the momentum equations then we have to solve for the pressure correction equation.

So, P; is basically coming from our equation.

(Refer Slide Time: 29:42)

Sum I C()HAgEEEqQR
/0 /7THOme®NGOQ «oNRNRENERE00N s 2

(debaratr)R < (Wyhs - us'ts)

e (-t n)

&

@A Ay + dg /‘B)}

Up = sty = Uy~ dp !

X
Up = Us +Ug = Us" +da '
What was P,? P; was, this guy, right this is P; equals u star A A minus up Az upond A A
A plus d B Ag, ok. So, that is what we have in the program. This is P, equals u, AA minus
ug AB divided by dA AA plus dB AB, ok. So, that is what we have. Again, we have only
one cell. So, we do not have to solve for a system. We just plug in what is the value of u}

and uj and calculate what is P;, alright, ok.

Then, once you have the pressure correction value, then you can use pressure correction
to correct the velocities, right. So, what is the formula for correcting the velocity
corrections? Velocity corrections are basically u A prime equals minus d A P,, so that is
uAprime equals minus d A p2prime and ug equals plus d B p2prime, right that is what we

have from here, uy equals plus d B p2prime.

(Refer Slide Time: 30:23)

Xournal R K
E3]

BLia L8 F()doEouQd 3

NPTEL

PO /7TADmeHN QOQ - ~oNRRNEEERE00N 55 2

= (B2) (p!) = 4R 431(%)

UAI= "d’A P;,
UB': -fd7!3 P&’

From te Cm\ﬁl’rw«g mﬁm Fg -F4 =0

FB”FA/ = ,C'&"F_ FBX

b

f=1

I
Ug Ag - MA’AA = F¥- FR*

Page s & ofB Layer Layer)

So, we correct the velocities, then we can update the velocity u, as w; plus uA prime and

ug as up plus uy and the pressure as P, equals P, plus apP;, ok. Again, we check for

convergence. So, this is basically whether continuity is satisfied or not.

So, we look for u; AA minus uj; AB, this is the value of our continuity equation, right. So,

with whatever corrected value, so this should satisfy continuity at each and every iteration,

ok. Then, we print out the b value that is the continuity value u,, u two let us print out this

at the end, ok. So, that means, we print out what is u,, ug, and pressure, and b, ok.

(Refer Slide Time: 31:37)

emacs@kamesh-laptop

fle Edit Options Buffers Tools F90 Help
RPRF & Undo
exit
end if

! solve pprime equation

p2prine = (UA*AA - UB*AB)/(dA*AA + dB*AB)
! correct velocities and pressure
uAprime = -dA*p2prime

uBprime = +dB*p2prine

UA = UA + uAprime

uB = uB + uBprime

p2 = p2 + alphaP*p2prime

! check whether continuity is satisfied
b = UA*AA - uB*AB

Iwrite(*, *), 'It, uA, uB, p2, u_residual, c_residual are =', it, uA, uB, p2, u_residual, c_residual
write(*, *), uA, uB, p2, c_residual, b
end do

end program main

:--- simpleNozzle.f90 Bot L77 (F90)

Now, if you want you can also print out what is the c residual, alright. So, the c residual
can also be printed, ok. So, that is the overall algorithm, and then we hope to exit this
before the iterations finish through this condition, right. So, essentially this is the
condition, this is basically tells you that if your residual some of the residuals is less than
the tolerance, then we say we have reached the convert solution and the solution is blah
blah blah, that is u, ug and P, and then we exit, ok.

So, but we have to make sure that the we do not run out of the iterations as such, ok. Let
us also print what is the iteration count here. So, that is i, right, ok. So, we should know
that we have not reached more than 100, ok. Let us see if we can run this program. So, this
is simple nozzle. So, gfortran is simple nozzle, so problem here has no implicit type, ok.
So, this is there is no i here, this is basically iteration, ok, alright, ok.

(Refer Slide Time: 32:32)

kanupind@kamesh-laptop: ~/Desktop/SIMPLE_PATANKAR EX

kanupind@kamesh-laptop:~/Desktop/SIMPLE PATANKAR EX$ gfortran simpleNozzle.f90 & /)
simpleNozzle.f90:72.20: Mo

write(*, *), i, uA, uB, p2, c_residual, b
1
Error: Symbol 'i' at (1) has no IMPLICIT type
kanupindekamesh-laptop: ~/Desktop/SIMPLE PATANKAR EX$ gfortran simpleNozzle.f90
kanupinde@kamesh-laptop: ~/Desktop/SIMPLE PATANKAR EX§ ./a. outl

Successfully compiled, then let us run it this is dot slash a dot out, ok, very good.

(Refer Slide Time: 32:38)

kanupind@kamesh-laptop: -/Desktop/SIMPLE_PATANKAR_EX

write(*, *), i, uA, uB, p2, c_residual, b
1
Error: Symbol 'i' at (1) has no IMPLICIT type
kanupindekamesh-laptop: ~/Desktop/SIMPLE PATANKAR EX$ gfortran simpleNozzle.f90
kanupindekamesh-laptop: ~/Desktop/SIMPLE PATANKAR EX$./a.out

1 2.10293341 6.30880022 24.5605335 0.187187731 0.00000000
2 1.90073323 5.70219946 24.2716732 0.104569696 4.76837158E-07
3 2.02648616 6.07945871 24.1543999 4.30138409E-02 -4.76837158E-07
4 1.97228265 I 5.91684818 24.0752048 2.78266612E-02 0.00000000
5 2.00694132 6.02082396 24.0428524 1.14036240E-02 0.00000000
6 1.99242008 5.97726059 24.0209408 7.63395382E-03 -4.76837158E-07
7 2.00182390 6.00547218 24.0119171 3.14622698E-03 -4.76837158E-07
8 1.99793875 5.99381638 24.0058403 2.11181585g-03 0.00000000
9 2.00047898 6.00143719 24.0033169 8.77398648E-04 0.00000000
10 1.99944031 5.99832058 24.0016308 5.85857197E-04 4.76837158E-07
11 2.00012565 6.00037718 24.0009232 2.45659321E-04 -4.76837158E-07
12 1.99984801 5.99954414 24.0004559 1.62544908E-04 0.00000000
13 2.00003290 6.00009823 24.0002575 6.88242653E-05 4.76837158E-07
14 1.99995887 5.99987650 24.0001278 4.53012835E-05 0.00000000
15 2.00000858 6.00002575 24.0000725 1.93914457E-05 0.00000000
16 1.99998868 5.99996614 24.0000362 1.27157937E-05 0.00000000
17 2.00000238 6.00000715 24.0000191 5.64257925E-06 0.00000000
18 1.99999690 5.99999094 24.0000095 3.33786966E-06 -4.76837158E-07
19 2.00000072 6.00000191 24.0000057 1.43051182E-06 0.00000000
20 1.99999893 5.99999714 24.0000038 9.53675112E-07 -4.76837158E-07
21 2.00000024 6.00000048 24.0000019 6.35782953E-07 4.76837158E-07
The converged solutoin is uA, uB, p2 are = 2.00000 6.00000 24.00000

kanupindekamesh-laptop: ~/Desktop/SIMPLE_PATANKAR EX$ |

So, our program converged in 21 iterations and you can see this is the value of the velocity
and at u A and this is the value of the velocity at uz. So, we converged it to 2 and 6, and
this is the value of pressure, this is 24 is the value of the pressure. And again, you can see
that the continuity residuals are always O or somewhere small value, whereas, the
momentum residuals, right; that is u; oh this should be u residual, ok. I will go to it again,
ok.

(Refer Slide Time: 33:04)

emacs@kamesh-laptop

File Edit Options Buffers

exit
end if
! solve pprime equation
p2prine = (UA*AA - UB¥AB)/(GA*AA + dB#AB) B

! correct velocities and pressure
uAprime = -dA*p2prime
uBprime = +dB*p2prime
UA = UA + uAprime
uB = uB + uBprime
p2 = p2 + alphaP*p2prime

! check whether continuity is satisfied
b = UA*AA - uB*AB

write(*, *), 'It, uA, uB, p2, u_residual, c_residual are =', it, uA, uB, p2, u_residual, c_residual
write(*, *), it, vA, uB, p2, c_residual, b
end do

end program main

_-i--- simpleNozzle.f90 Bot L72 (F0)
Wrote /home/kanupind/Desktop/SIMPLE_PATANKAR_EX/simpleNozzle.f90

So, whereas, you can see that the u residuals are always coming down, right. Momentum

is always coming down whereas, the continuity b equation is always equal to 0, ok, fine.

(Refer Slide Time: 33:15)

kanupind@kamesh-laptop: ~/Desktop/SIMPLE_PATANKAR_EX

19
20
21

The converged solutoin is uA, uB, p2 are =

2.00000072
1.99999893
2.00000024

6.00000191
5.99999714
6.00000048

24.0000057
24.0000038
24.0000019

2.00000

1.43051182E-06
9.536751128-07
6.35782953E-07

6.00000

kanupindekamesh-laptop: ~/Desktop/SIMPLE PATANKAR EX$ gfortran simpleNozzle.f90

kanupindekamesh-laptop: ~/Desktop/SIMPLE PATANKAR EX$./a.out

21

The converged solutoin is uA, uB, p2 are =

2.10293341
1.90073323
2.02648616
1.97228265
2.00694132
1.99242008
2.00182390
1.99793875
2.00047898
1.99944031
2.00012565
1.99984801
2.00003290
1.99995887
2.00000858
1.99998868
2.00000238
1.99999690
2.00000072
1.99999893
2.00000024

6.30880022
5.70219946
6.07945871
5.91684818
6.02082396
5.97726059
6.00547218
5.99381638
6.00143719
5.99832058
6.00037718
5.99954414
6.00009823
5.99987650
6.00002575
5.99996614
6.00000715
5.99999094
6.00000191
5.99999714
6.00000048

24.5605335
24.2716732
24.1543999
24.0752048
24.0428524
24.0209408
24.0119171
24.0058403
24.0033169
24.0016308
24.0009232
24.0004559
24.0002575
24.0001278
24.0000725
24.0000362
24.0000191
24.0000095
24.0000057
24.0000038
24.0000019

2.00000

kanupindekamesh-laptop:~/Desktop/SIMPLE PATANKAR EX$ I

0.215999991
7.41996467E-02
5.42807803E-02
2.05945969E-02
1.44047616E-02
5.56179136E-03
3.87048326E-03
1,48945255E-03
1.04356627E-03
3.97861120E-04
2.81642540E-04
1.06273641E-04
7.59995237E-05
2.81920748E-05
2.04333119€-05
7.56972486E-06
5.58303145E-06
2.15768296E-06
1.43051579E-06
5.72204215E-07
4.490221108-07

6.00000

0.00000000 7]

-4.768371588-07 .7

4.76837158E-07
24.00000

0.00000000
4.76837158E-07
-4.76837158E-07
0.00000000
0.00000000
-4.76837158E-07
-4.76837158E-07
0.00000000
0.00000000
4.76837158E-07
-4.76837158E-07
0.00000000
4.7683{158E-07
0.00000000
0.00000000
0.00000000
0.00000000
-4.76837158E-07
0.00000000
-4.76837158E-07
4.76837158E-07
24.00000

So, we can of course, again play with these values the initial guess values and see whether

the program runs or not, ok. I leave that for you to do, ok. So, that is about the second

problem that is in flow through a nozzle, ok, alright. Now, let us look at the third problem

that we formulated in the last class that is basically now in these both problems we have

non-linearity, right.

In the first problem, in the porosity case we have nonlinearity in the source term. In the

second case, we have non-linearity through the convection term, right. So, that is why we

had to do so many iterations like some 20 iterations or so, fine.

(Refer Slide Time: 34:16)

Qe 8 Pl)YHAEuEEQO)
20 /7TiDme® N aOR coMNNNEEERECOCON s ?

6.2) 9- ¢ AP
12.
Op= pasvne &M-oo over 18
tdughofbepo A | 0, B
C . ol lndachis TSC TGE ’
f’,:z%ﬁ /)zz 220 L+
S

P4=0) P§=4‘0) QP"‘f'O
Ch= 0.4 C,s-,cosﬁpso.z_

Now, let us move on to the third problem. Third problem was a flow through a residential
pipe network, right. So, essentially we have Q is given as C times delta p, where C is the
hydraulic conductance, delta p is the pressure drop over the length of the pipe. And what
we were given is we were given this pipe network with the flow rates and the pressure

stored at the 1, 2, 3, 4, all the way to 7 and the velocity stored at Az all the way to F, right.

(Refer Slide Time: 34:46)

BLa I F()dBEEQD
)0 /7Ti0me# i O oolNABEEENE0OC0N 55 2

Ch= 04 CB”CD:CF:O“’—
CC=CE =0
lesls Py, Pc) @n,Qe,b@c,Qo/@i 7

Cell -4 J3 Q dv = Ls(c,/.\k)dae

B (%) = G o) %)
wealit) | 6-ali)

[P LA

And we were also given some of these pressures that is P, is given as 275, P, is given as

70, P, as 0, Ps as 40 and so on and Qy as 40, ok, alright. So, and also the of course, the

values of all the hydraulic conductance are given C, to Cr, and we were ask to calculate
what is the pressure at this P; and Pg; and what is the flow rate through Q,, Q5 all the way

to Qg, ok. So, we have to calculate what are all the flow rates.

(Refer Slide Time: 35:15)

B 8 F()AdgEEEQD
/0 /7TADme®N OQ coNNERNREEREO0N 50 2
LR T _
(T CA(PG&) Qﬂl‘Cﬁ(Pll’ PSI)
Sibly gos calbB) | ey p)
®c = Cc(:"(’f;)) ch‘—cc(hl”d’g,')
= C - | &
%) D(g~ [6 QD’ CD(Psl’Pz')
- e (hohe) 0 - e (-p)
Q= Ce(B-pr) -

O ce(y- f;‘) |

‘C!@WJ W Phime (’,?ua/mm .

Page 7 :of8 Layer Layer1 &

We have formulated the problem using finite volume method, and we said these are the

momentum equations; these are the corrections, pressure corrections in terms of the flow

corrections.

(Refer Slide Time: 35:24)

Buia 5 L O 4 EEepEqQa »‘-.)5
00 /TiD=pe N O - coNNNEBEEREO0N s

de;mué; etm.z:am: Coll- 3 Qh‘“?c’@g’% _

Q/(+ 8¢ - Qe' ’Qo(= Q&*+QD*-QA‘:‘ ‘?f

Q(__p‘(_ Pz') + Cc(Pdf"Ps')—CB(PS(' le) -G (h- Pl') =

Vo \V, o
4 *
Qﬁ*‘f QD-*— QA - Qc

B (G- G + B'(@) = g4t -gt-0f

£
Page 8 . of8 Layer Lajeri :

(Refer Slide Time: 35:31)

Xournal

)
Bia t F()HEBREQR 1%
/O /THOme N OQ -»oRRRNEEERE00N s 2

Coll-61
= QD+ @E" QF—;O

¥
Qe -q' = QF—*'Q:-QE

CD(?;"PJ)'I"CE(L(;’ P{') -0 = QF—Q:-QE*
by (CD) + Pe’(“Gp-Ce) = @F'QD*' gk, —-®

»
Sobe 0 p; aud P/
* | - p* Pl
b h*al O=Q 0 = O —Cabs
Then, we wrote the continuity equation or the mass conservation equation, and we said
that the continuity equation will give you one equation in terms of P; and P, and another
equation at junction 6 as another equation in terms of P; and P¢, with the right hand side

as known values, ok. Now, we have two equations and two unknowns, right P; and P,
alright.

(Refer Slide Time: 35:52)

twrite(*, *), 'It, uA, uB, p2, u_residual, c_residual are =', it, uA, uB, p2, u_residual, c_residual
write(*, *), it, vA, uB, p2, u_residual, b
end do

end program main

:--- simpleNozzle.f90 Bot L76 (F90)
Find file: ~/Desktop/SInPLE_PATANKAR_EX/simplePipeNetwork.f90|

Let us look at the corresponding code. So, the corresponding code is a simple pipe network,
ok.

(Refer Slide Time: 35:58)

emacs@kamesh-laptop

progran main
implicit none
integer :: it
eal :: p1, p2, p3, p4, p5, p6
real :: QA, QB, QC, QD, QE, QF
real :: CA, (B, CC, CD, CE, CF
real :: a1, b1, d1, a2, b2, d2 !to solve the pressure-correction equation
real :: p3prime, péprime

! Given values
p1 = 275.0

p2 = 270.0

p4 = 0.0

ps = 40.0

QF = 20.0

(A=
(B =
=
o=
CE =

0.
0.
0.
0.
0.
CF=0.

N Ne s

! guess p3 and pé
-i**. simplePipeNetwork.f90 Top L12 (F98)

So, page up, ok. So, again this is the main program. So, these are all the variables that we
define, P, to P, the pressures, Q4 to Qr the flow rates, C, to Cr the hydraulic conductance
values, right. Andthena 1, b1,d 1, a2, b2, d2 are basically the coefficients that are

written.

These are basically these are to solve the we had two equations and two unknowns, right,
so to solve the pressure correction, ok, pressure correction equation, right. So, these are
the coefficients we will see them later. And then of course, these are the P; and P{ are the

pressure, correction values at 3 and 6 locations, ok, fine.

Then, what was the initial; what was the given values? Given values for P, P, are given as
275 and 270. So, if you look at the values P; is 275, P, is 270, P, is 0, all right, P, is O, Pg
is 40, and then Q is 20, right, Qx is 20. Then, C, to C4 to Cr all these values | have written
out here, Cy4, Cg, all the way to Cr, Cr is 0.2, ok. So, these are the hydraulic conductance

values.

(Refer Slide Time: 37:28)

QF = 26.9

(A=0.4
(B =0.2
C=0.1
M =0.2
CE=0.1
CF =0.2

! guess p3 and p6
p3 = 160
p6 = 100 N
dg’it:=1,2
! calculate flow rates with the
! guessed pressures p3, p6 and
! given pressures
QA = CA*(p1 - p3)
QB = CB*(p3 - p2)
QC = CC*(p4 - p3)
QD = CD*(p3 - p6)
QE = CE*(pS - p6)
- simplePipeNetwork.f90 17% L28 (F90)

Now, initial guess for P; and P, probably may not be given in the problem, so | have taken
it as 100 and 100, ok, of course, you can now see if you want to have a different value as
the initial guess, ok. Now, ok, here I have only I will let me put I will then put like two
iterations, ok, but you can put more iterations, but they are not required. We will see why

we do not need so many iterations in this particular problem, ok.

(Refer Slide Time: 37:52)

! calculate flow rates with the
! guessed pressures p3, p6 and
! given pressures
QA = CA*(p1 - p3)
QB = (B*(p3 - p2)
QC = CC*(p4 - p3)
I = cox(p3 - po)
QE = CE*(pS - p6)

! solve pressure correction equation R
! to obtain p3prime and péprime

al = -(CA + CC + CB + CD)
b1 = CD
d1=08+QD- QA - QC
a2 =

b2 =- D - CE

d2 = QF - QD - QE

p3prime = (d1*b2 - d2*b1)/(a1*b2 - a2*b1)
i--- simpleipeNetwork.f90 23% 137 (F90)

So, if we look at the equations what we had was, ok; so, the first step is write the solve the

momentum equation. Momentum equations are Q4 equals C, times P; minus P;. So, that

is what we have. This is Q4 equals C, times P; minus P;. And similarly, Qz equals Cg times
P; minus P, that is the other equation. Similarly, Q. equals C. times P, minus P; that is
what we have here; Q. is C. times P, minus P; and Q, and Qg, ok.

So, with the initial guess values for pressure or the using the given values for pressure we
calculate what is the flow rates, ok. Then, what we do is basically we got these flow rates,
then we have to solve the pressure correction equation, ok. In order to do the pressure
correction equation, we realize that we had two equations set two unknowns, ok. So, what
we do is we basically write out the coefficients. So, 1 am writing these coefficients as
basically al, bl and d1 and sum a2 a2, b2 and d2, right.

So, that I can solve two equations and two unknowns; so, al is basically you are C,, C4
plus Cg plus C. plus €, with all minus. So, that is what | have here, right. al is minus of a
C4 plus C. plus Cg plus Cp. Similarly, bl is your ¢, ok. And d1 is your right hand side that
IS Q5 Q) minus Q; minus Q¢, ok. So, these values are given. These are now taken from

here.

Then, for the second equation we have this coefficient we are writing it as a2. So, a2 is Cp,

b2 is minus C, minus C,, and d2 is Q minus Q3 minus Qj, ok. So, that is the value.

(Refer Slide Time: 39:49)

emacs@kamesh-laptop

File Edit Options Buffers Tools F90 Help

RERE J 6o YV gl °
! solve pressure correction equation
! to obtain p3prime and péprime

al = -(CA + CC + CB + CD)
b1 = (D
d1=0QB+QD- QA - QC

a2 =@
b2=- D - CE
d2 = QF - QD - QE

! instead of using GS; we are just directly solving
! the two equations here

p3prime = (d1*b2 - d2*b1)/(a1*b2 - a2*b1)
péprime = (a2*d1 - a1*d2)/(a2*b1 - a1*b2)

! correct pressure
p3 = p3 + p3prime

! correct flow rates

QA = QA - CA*p3prime

B = QB + CB*p3prine

QC = QC - CC*p3prime
:--- simplePipeNetwork.f90 34% LS9 (F90)
Mark set

Then, of course, | can basically | have two equations two unknowns | can write what is P;

in terms of these coefficients. So, | would just eliminate the variables and calculate this as

d1 b 2 minus basically a proper proportion of thesed 1 b2 minusd 2 b 1 by a 1 b 2 minus
a 2 b 1 that gives me what is P;. Similarly, | can write down what is P; asa 2 d 1 minus a
1d2upona2blminusalb 2 ok

So, basically we are just solving, instead of using Gauss-Seidel we are just directly solving
the two equations here, ok, alright. So, that is what we do. Then, once you obtain what is
P; and P, we can just correct them, right. So, basically correct P; equals P; P; plus P,

similarly P, equals P¢ plus P¢, ok. So, we have done that.

(Refer Slide Time: 40:52)

emacs@kamesh-laptop

File Edit Options Buffers Tools F90 Help

RRE

p3prime = (d1*b2 - d2*b1)/(a1*b2 - a2*b1)
péprime = (a2*d1 - a1*d2)/(a2*b1 - a1*b2)

! correct pressure

p3 = p3 + p3prime

p6 = p6 + péprime

! correct flow rates

QA = QA - CA*p3prime

QB = QB + CB*p3prime

QC = QC - CC*p3prime

QD = QD + CD*(p3prime - p6prime)

QE = QE - CE*péprilme

! print continuity

write(*, *), ' QA+QC-QB-QD = ', QA + QC - QB - QD

write(*, *), ' QD+QE-QF = ', QD + QE - QF

! print governing equation residuals

write(*, *), 'QA - CA*(p1 - p3) = ', QA - CA*(p1 - p3)

write(*, *), '0B - CB*(p3 - p2) = ', QB - CB*(p3 - p2)

write(*, *), 'QC - CC*(p4 - p3) = ', QC - CC*(p4 - p3)

write(*, *), 'QD - CD*(p3 - p6) = ', QD - CD*(p3 - p6)

write(*, *), 'QE - CD*(pS - p6) = ', QE - CE*(p5 - p6)
-- simplePipeNetwork.f90 50% L66 (F90)

Then, what do we do? Then we correct the flow rates that is Q4 equals @} plus @}, but we
know that what is Q). @}, is nothing but, @/, is nothing, but C, times this is 0 minus P;. So,

this is minus C, times P;.

Similarly, we know we can correct what is Qg; Q. that is Q. minus C, times P; because P,
is 0, because P, is given as a pressure boundary condition and Q, equals Q;, plus Qp, that
is Cp times P minus P¢ that is this value. Then, Qg equals Qg plus Q; plus Q; Qf is C,

times P¢ is 0.

So, this is minus C, P{, ok. So, this is minus C, P;, fine. Then, we print the continuity
equation. Continuity equation is two equations, one for each cell junctions 3 and 6. So,

this is Q4 plus Q. minus Qg minus @, and the second junction at 6 is Qp, plus Qz minus Q,

ok. Then, we print the residuals for the momentum equations, right. These are the residuals

for the momentum equation.

(Refer Slide Time: 42:02)

R K

QE = QE - CE*pbprime

! print continuity
write(*, *), ' QA+QC-QB-QD = ', QA + QC - QB - QD
write(*, *), ' QD+QE-QF = ', QD + QE - QF

! print governing equation residuals

write(*, *), '0A - CA*(p1 - p3) = ', QA - CA*(p1 - p3)

write(*, *), '0B - CB*(p3 - p2) = ', QB - CB*(p3 - p2)

write(*, *), 'QC - CC*(p4 - p3) = ', QC - CC*(p4 - p3)

write(*, *), 'QD - CD*(p3 - p6) = ', QD - CD*(p3 - pé6)
), 'QE - CD(p5 - p6) = ', QE - CE*(pS - p6)

write(*,

| print the flow rates and pressures]]
write(*, '(a1s, 2(f15.5))'), 'p3, p6 = ', p3, p6
write(*, '(a2s, 5(f15.5))'), 'QA, (8, QC, QD, QE =', A, Q8, QC, QD, QE

end do

end program main

- simplePipeNetwork.f90 Bot L79 (F90)

Now, if these one also satisfied together with the continuity equations that means, if you
satisfy all of these, that means we have converged our solution, ok. If that is the case we
print what is the pressures P; and P, and the flow rates these are basically what is asked in

the problem to calculate, right.

Remember, if you go back to the problem we were asked to calculate all these pressures

and the flow rate. So, that is these P, Py, Q4, Qg, Q¢, @p, and Qg, ok. So, that is the program.

(Refer Slide Time: 42:41)

kanupindg@kamesh-laptop: ~/Desktop/SIMPLE_PATANKAR EX
kanupind®@kamesh-laptop: ~/Desktop/SIMPLE PATANKAR EX$ gfortran simplePipeNetwork.f90 L H
kanupindekamesh-laptop: ~/Desktop/SIMPLE PATANKAR_EX$./a.out i
QA+QC-QB-QD = 1.90734863E-06
QD+QE-QF = -3.81469727E-06
QA - CA*(pl - p3) = 0.80000000
QB - CB*(p3 - p2) = 0.00000000
QCc - cc*(pd - p3) = 0.00000000
QD - CD*(p3 - p6) = 0.00000000
QE - CD*(p5 - p6) = 0.00000000
p3, p6 = 200.00000 80.00001
QA, QB, QC, QD, QE = 30.00000 -14.00000 -20.00000 24.00000 -4.00000
QA+QC-QB-QD = 0.00000000
QD+QE-QF = 0.00000000
QA - CA*(pl - p3) = 0.00000000
QB - CB*(p3 - p2) = 0.00000000
Qc - cc*(pd - p3) = 0.00000000
QD - CD*(p3 - p6) = 0.00000000
QE - CD*(p5 - p6) = 0.00000000
p3, pb = 200.00000 80.00000
QA, QB, QC, QD, QE = 30.00000 -14.00000 -20.00000 24.00000 -4.00000
kanupindekamesh-laptop:~/Desktop/SIMPLE PATANKAR EX$ I

So, let us try to run this. This is simple pipe network. So, gfortran simplePipeNetwork, dot
slash a dot, ok. So, what do we see here? We see that in just one iteration the everything
got converged, right because it satisfies continuity after the corrections, this is basically
the continuity values. Both are of the order of 1 minus 6 and the momentum residuals are

also satisfied.

So, that means, everything is satisfied after one iteration, right. And the pressure came out
as 280, and the flow rates as 30 minus 14 minus 20, 24 minus 4, right. And although we
have done another iteration this is not required because the values actually do not change,
right. These values are the same as these values where we get here. This is because only

one correction is required because the problem is linear, right. There is no non-linearity.

As a result, the velocity corrections and pressure corrections that we have satisfy both the
continuity and momentum equations exactly after just one iteration, ok. So, that is why
without any problems without any having more iterations we were able to converge these

in just one iteration, ok.

(Refer Slide Time: 43:56)

emacs@kamesh-laptop

program main
implicit none
integer :: it R
real :: p1, p2, p3, p4, p5, pé
real :: QA, QB, QC, QD, QE, QF
real :: CA, (B, CC, D, CE, CF
real :: a1, b1, d1, a2, b2, d2 !to solve the pressure-correction equation
real :: p3prime, péprime

! Given values
pl = 275.0

p2 = 270.0

p4 = 0.0

p5 = 40.0

QF = 20.8

SmEARAGE
T TR T (]
coocooo
NRNRo R

Nnoonooo

! quess p3 and p6
-i--- simplePipeNetwork.f90 Top L24 (F90)
Beginning of buffer

(Refer Slide Time: 43:57)

(A=0.4

(B =0.2

C=0.1

M =0.2

CE=0.1

CF = 0.2

! guess p3 and p6
I p3 =100

p6 = 100

doit=1; 2

! calculate flow rates with the
! guessed pressures p3, p6 and
! glven pressures
QA = CA*(p1 - p3)
QB = CB*(p3 - p2)
QC = CC*(p4 - p3)
QD = CD*(p3 - p6)
QE = CE*(pS - pb)
-i--- simplePipeNetwork.f90 16% L26 (F90)

So, you can have like 5 iterations, but it does not make sense because it will just converge

to the same value, right. This so does not make sense.

(Refer Slide Time: 44:04)

amesh-laptop: ~/Desktop/SIMPLE_PATANKAR_EX

A, 0B, QC, QD, QE = 30.00000 -14.00000 -20.00000 24.00000 -4.00006 % §
QA+QC-QB-QD = 0.00000000 a
QD+QE-QF = 0.00000000
QA - ca*(pl - p3) = 0.00000000
QB - CB#(p3 - p2) = 0.00000000
Qc - cc*(pd - p3) = 0.00000000
QD - cD*(p3 - p6) = 0.00000000
QE - CD*(p5 - p6) = 0.00000000

p3, p6 = 200.00000 80.00000

QA, 0B, QC, QD, QE = 30.00000 -14.00000 -20.00000 24.00000 -4.00000
QA+QC-QB-QD = 0.00000000
QD+QE-QF = 0.00000000
QA - CA*(pl - p3) = 0.00000000
QB - CB*(p3 - p2) = 0.00000000
Qc - cc*(pd - p3) = 0.00000000
QD - CD*(p3 - p6) = 0.00000000
QE - CD*(p5 - p6) = 0.00000000

p3, p6 = 200.00000 80.00000

QA, OB, QC, QD, QE = 30.00000 -14.00000 -20.00000 24.00000 -4.00000
QA+QC-QB-QD = 0.00000000
QD+QE-QF = 0.00000000

QA - CA*(pl - p3) = 0.00000000
QB - CB*(p3 - p2) = 0.00000000
Qc - cc*(pd - p3) = 0.00000000
QD - CD*(p3 - p6) = 0.00000000
QE - CD*(p5 - p§) = 0.00000000
p3, p6 = 200.00000 80.00000
0A, 0B, QC, QD, QE = 30.00000 -14.00000 -20.00000 24.00000 -4.00000

kanupindekamesh-laptop: ~/Desktop/SIMPLE_PATANKAR EX$ l |

Of course, you can have a different value for these. So, you can have pressure as 200. Let
us see if it converges or not.

(Refer Slide Time: 44:10)

emacs@kamesh-laptop

cnonoaoo
Sm8RGE
Wonowowomow
cooco oo
NRNRo e

! guess p3 and p6
p3 = 206
p6 = 100

doit=1,2

! calculate flow rates with the
! guessed pressures p3, pé and
! given pressures
QA = CA*(p1 - p3)
Q8 = CB*(p3 - p2)
QC = CC*(p4 - p3)
QD = CD*(p3 - p6)
QE = CE*(pS - p6)
-i--- simplePipeNetwork.f9e 16% L26 (F98)

“Wrote [home /kanupind/Desktop/SIMPLE_PATANKAR_EX/simplePipeNetwork.f90

(Refer Slide Time: 44:13)

kanupind@kamesh-laptop: -/Desktop/SIMPLE_PATANKAR_EX

QD+QE-QF = 0.00000000 3
QA - CA*(pl - p3) = 0.00000000 s
QB - CB*(p3 - p2) = 0.00000000
QC - cc*(p4 - p3) = 0.00000000
QD - cD*(p3 - p6) = 0.00000000
QF - CD*(p5 - p6) = 0.00000000

p3, pb = 200.00000 80.00000

A, QB, QC, QD, QE = 30.00000 -14.00000 -20.00000 24.00000 -4.00000

kanupindekamesh-laptop: ~/Desktop/SIMPLE PATANKAR EX$ gfortran simplePipeNetwork.f90
kanupindekamesh-laptop: ~/Desktop/SIMPLE_PATANKAR EX$./a.out

QA+QC-QB-QD = 0.00000000

QD+QE-QF = 0.00000000

QA - CA*(pl - p3) = 0.00000000
QB - CB*(p3 - p2) = 0.00000000
Qc - cc*(pd - p3) = 0.00000000
QD - CD*(p3 - p6) = 0.00000000
QE - CD*(p5 - p6) = 0.00000000
p3, p6 = 20000000 80.00000
QA, QB, QC, QD, QE = 30.00000 -14.00000 -20.00000 24.00000 -4.00000
QA+QC-QB-QD = 0.00000000
QD+QE-QF = 0.00000000
QA - ca*(pl - p3) = 0.00000000
QB - CB*(p3 - p2) = 0.00000000
Qc - cc*(pd - p3) = 0.00000000
QD - CD*(p3 - p6) = 0.00000000
QE - CD*(p5 - p6) = 0.00000000
p3, p6 = 20000000 80.00000
QA, 0B, QC, QD, QF = 30.00000 -14.00000 -20.00000 24.00000 -4.00000

kanupindekamesh-laptop: ~/Desktop/SIMPLE_PATANKAR EX$ I |

Yes, it converges to the same value 280, ok. But then 200 is a poor guess because the exact
value is 200, so let us say 500, ok.

(Refer Slide Time: 44:22)

emacs@kamesh-laptop

File Edit Options Buffers Tools F90 Help

RRF - B

o
=

o
cooo e

4
2
.1
2
1
2

noon
TmoAa®

! guess p3 and p6
p3 = 500
p6 = 300]

doit=1,2

! calculate flow rates with the
! guessed pressures p3, p6 and
! glven pressures
QA = CA*(p1 - p3)
Q8 = (B*(p3 - p2)
QC = CC*(p4 - p3)
QD = CD*(p3 - p6)
QE = CE*(p5 - pb)
-i#+- simplePipeNetwork.f90 16% L27 (F90)

“Wrote /home/kanupind/Desktop/SINPLE_PATANKAR_EX/simplePipeNetwork.f9@

And then say this as 300, and see if it works. Yes, it works. So, it should work because

there is nothing wrong, ok, alright. So, that means, this is done, ok.

(Refer Slide Time: 44:28)

kanupind@kamesh-laptop: -/Desktop/SIMPLE_PATANKAR_EX

QD+QE-QF = 0.00000000 k)
QA - CA*(pl - p3) = 0.00000000 s
QB - CB*(p3 - p2) = 0.00000000
Qc - cc*(p4 - p3) = 0.00000000
QD - CD*(p3 - p6) = 0.00000000
QE - CD*(p5 - p6) = 0.00000000

p3, p = 200.00000 80.00000

A, 0B, QC, QD, QE = 30.00000 -14.00000 -20.00000 24.00000 -4.00000

kanupindekamesh-laptop: ~/Desktop/SIMPLE PATANKAR EX$ gfortran simplePipeNetwork.f90
kanupindekamesh-laptop: ~/Desktop/SIMPLE_PATANKAR_EX$./a.out
QA+QC-QB-QD = 3.81469727E-06
QD+QE-QF = -5,72204590E-06
QA - CA*(pl - p3) 0.00000000
QB - CB*(p3 - p2) 0.00000000
QCc - cc*(pd - p3) 0.00000000
QD - CD*(p3 - p6) -1.90734863E-06
QE - CD*(p5 - p6) -4.76837158E-07
p3, p6 = 200.00000 80.00002
QA, QB, QC, QD, QE = 30.00000 -14.00000 -20.00000 24.00000 -4.00000
QA+QC-QB-QD = 0.00000000
QD+QE-QF = 0.00000000
QA - CA*(pl - p3) = 0.00000000
QB - CB*(p3 - p2) 0.00000000
Qc - cc*(pd - p3) 0.00000000
QD - CD*(p3 - p6) 1.90734863E-06
QE - CD*(p5 - p6) 4.76837158E-07
p3, p6 = 200.00000 80.00001
QA, 0B, QC, QD, QE = 30.00000 -14.00000 -20.00000 24.00000 -4.00000
kanupinde@kamesh-laptop: ~/Desktop/SIMPLE PATANKAR EX$ I |

So, what I do is, what I will do is I will share these programs with you on Moodle. So, you
can download them, and then run them, kind of learn from them, and then they probably
will be useful later on with an assignment or something like that, ok, alright.

Then, I will stop here. I will talk to you in the next lecture. If you have any questions send

them through email to me, ok, alright.

Thank you.

