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Hello everyone, welcome to another lecture as part of our ME 6151 Computational Heat 

and Fluid Flow course, ok. So, in the last lecture, we looked at overall simple algorithm 

on a staggered mesh and we also considered the effect of under relaxation for pressure and 

the momentum equations.  

And finally, we looked at the velocity and the pressure boundary conditions when solving 

any problem using simple, right. So, in today’s lecture, we are going to solve essentially 

formulate three problems from Patankar’s book in chapter 6, that is the fluid flow equation. 

So, we look at the each of these problems and formulate them using simple algorithm. So, 

the first problem we will look at is the problem 6.4 that is shown here; basically this is a 1 

dimensional flow through a porous medium and the black circles here indicate essentially 

locations where the pressure is stored and the red arrows here in the x direction denote the 

A, B, C denote the staggered locations of the velocity vectors denoted by A, B, C, alright. 



I have kind of also shown the corresponding control volumes; of course these extends in 

the y direction do not make sense, because this is a 1 D problem, ok. So, essentially the 

area vectors are all 1, ok. But you can see that, there is one control volume; this is basically 

for control volume for B and this a dashed line this will be control volume for C and this 

black one this is slightly taller is basically the one control volume for cell 2, that is the 

primary control volume for the pressure cell, ok. 

So, the governing equations are given as 𝐶|𝑢|𝑢 +
∂𝑃

∂𝑥
= 0 and 

𝑑(𝑢𝐴)

𝑑𝑥
= 0, ok. So, essentially 

this equation is basically your, what equation is this? This is your continuity equation, ok. 

And, what about this guy? This is the momentum or the x momentum equation, ok.  

So, alright; now what about, this is the pressure gradient term, area is the cross sectional 

area that is basically given at what will be the effective area at different location. So, 𝐴𝐵 is 

5 units, 𝐴𝐶  is 4 units and also where C is basically the porosity constant that is basically 

given 𝐶𝐵 equals 0.25, 𝐶𝐶  equals 0.2, 𝑃1 and 𝑃3 are given. 

So, basically these two pressures; that means we are given a pressure boundary condition; 

𝑃1 is 200, 𝑃3 is 38 that is given. And we were also asked to take initial guess as for the 

velocities as 𝑢𝐵 star, 𝑢𝐶  star as 15 and the pressure for the cell 2 as 120, ok.  

So, essentially this is given and then you are asked to calculate use simple algorithm and 

calculate what is the final pressure 𝑃2 and the velocities 𝑢𝐵 and 𝑢𝐶 , ok. The grid values that 

is basically the Δ𝑥  between 2 and 1 is equals 2. And so, Δ𝑥 for 2, 3 cell is also equal 

to 2, ok. So, basically this is a uniform, this is basically uniform mesh, alright. 

So, what about the momentum equation? So, this is the pressure gradient term; what kind 

of a term do you call this guy as 𝐶|𝑢|𝑢? What kind of a term would this be? This would be 

would this be convection would this be a convection term? No, it is not a convection term; 

because if this is a convection term, it is not just that you should have u u, you should also 

have a nabla operator, right. 

You should have some del dot operating on this thing which is not available. So, this is 

not a convection, is this is of course, not a unsteady term. This is also, is this a diffusion 

term? No, this is not a diffusion term; there is no nabla operator here. Then what kind of a 

term this would be? This would be essentially your, the only thing remaining is your source 

term. So, this would be a source term, ok 



And is it linear or non-linear the source term? Source term is non-linear, because you have 

mod u times u. So, this is a non-linear term, ok. So, you will see how to categorize this 

particular thing in the formulation, ok. Then let us gets started. So, if you remember the, 

you remember the simple algorithm; what we do is basically write the momentum 

equations for the velocity control volume. 

So, that means, you have to discretize at the momentum equation that is basically this guy 

at B and at C. Then we essentially write an equation for velocity corrections in terms of 

pressure corrections from these momentum equations for these staggered control volumes 

B and C. Then we write the continuity equation, that is for cell 2; that is for the primary 

cell or for the main cell right, the pressure cell. 

Then using the continuity equation, we substitute for the flow rates from in terms of the 

flow stars and the flow primes. And then we substitute for the flow primes; and the velocity 

primes in terms of the pressure primes right and then there are a pressure correction 

equation.  

Then we solve for the pressure correction equation and eventually correct the velocities 

and pressures and kind of keep iterating until the obtained value satisfy both the continuity 

and the momentum equations, alright. 

Then let us gets started with discretizing the momentum equation on the cells B and C, ok. 

And thereafter we will look at discretizing the continuity equation on cell 2, fine. So, the 

momentum equation is basically 𝐶|𝑢|𝑢 +
∂𝑃

∂𝑥
= 0. 
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So, if we discretize on cell B, cell B has faces as cell B has faces 1 and 2 ok; that means 

the integration has to go from 1 to 2. We have 𝐶|𝑢|𝑢 plus integral 1 to 2 
∂𝑃

∂𝑥
 equal 0; 

∂𝑃

∂𝑥
 

equal 0, this is basically integration on the finite volume. So, we know that this is a pressure 

gradient term and we just categorize this as a, this as a source term, right. And we know 

that we can write the source as 𝑆𝐶 + 𝑆𝑃ϕ𝑃.  

So, if you consider u as u p means u 2; then this is basically comes as your 𝑆𝑃 right, 

basically 𝑆𝐶  equal 0 and 𝑆𝑃 equal 𝐶|𝑢|, right. And 𝑆𝑃 of course, also needs to be evaluated 

at the cell centroid. So, the cell centroid for this particular 1 to 2 is basically 2 is basically 

B right; essentially everything has to be evaluated B and 𝑢𝑃  would be equal to 𝑢𝐵 right, 

and 𝑆𝐶  equal to 0, alright.  

So, we know that this is basically a source term. Then if you write this in terms of the 𝑆𝑃ϕ𝑃 

and then 𝑆𝑃ϕ𝑃, ϕ𝑃 would be evaluate the cell centroid and that would be a constant. So, 

constant times integral dx would give you x and you have x 2 minus x 1.  

So, that means, essentially what you have is 𝐶𝐵 mod u B u B times 𝑥2 minus 𝑥1 right that 

is what we have; that is basically integration of this particular first term. And the second 

term would be dP dx, dx integration would be dP right, integration of dP would be P, that 

would be minus 𝑃2minus 𝑃1 is what you get here, ok. 
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So, for cell B, now we pretty much have the discrete momentum equation; that means 𝐶𝐵 

mod 𝑢𝐵 𝑢𝐵 times 𝑥2 − 𝑥1. So, if I write whatever is being multiplied with 𝑢𝐵, that is 𝐶𝐵 

mod 𝑢𝐵Δ𝑥 as a coefficient 𝑎𝐵; then the equation we have is 𝑎𝐵 times 𝑢𝐵 plus 𝑃2 − 𝑃 equal 

0, right. That means, this is the; this is the discrete momentum equation for cell B right; 

𝑎𝐵𝑢𝐵 = 𝑃1 − 𝑃2.  

Now, 𝑎𝐵 here is the coefficient it is more like your, 𝑎𝑃 term, right. So, if you compare with 

your original equation; if you remember we wrote 𝑎𝑒𝑢𝑒 = ∑ anbu𝑛𝑏 + Δ𝑦(𝑃𝑃 − 𝑃𝐸) + 𝑏𝑒, 

right. So, in this particular case if you compare, you do not have 𝑏𝑒; you do not have 

contribution coming from ∑ anb here, because otherwise you should have got a term which 

is like 𝑢𝐶  times something that is not there. So, only the central coefficient that is 𝑎𝑒𝑢𝑒 is 

basically 𝑎𝐵𝑢𝐵.  

Now, 𝑎𝐵 is basically the coefficient for 𝑢𝐵, alright. So, that is the discrete equation for cell 

B. Now, if you move on we will do a similar thing; integration of the momentum equation 

for cell C, that is basically for this cell centroid. So, the limits of integration would be for 

faces that is 2 to 3.  
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And then integrate in a similar way and uptime essentially for cell 3 we have west face is 

2, east face is 3. So, we have to go from 2 to 3 C mod u u d x plus integral 2 to 3 
∂𝑃

∂𝑥
. Then 

again this is basically your 𝑆𝐶 + 𝑆𝑃ϕ𝑃. So, this would come out to be 𝐶𝐶  mod 𝑢𝐶Δ𝑥 times 

𝑢𝐶  plus 
∂𝑃

∂𝑥
 integration would be pressure; that means we will apply the limits we have 𝑃3 

minus 𝑃2 and equal 0, ok.  

And this coefficient whatever is multiplying 𝑢𝐶 , if we take it as a constant; that is the 

basically the coefficient, because we have to linearize the system right, this is what is the 

linearized source term. And 𝑆𝑃 is known while we are doing the inner calculations, right. 

So, that is why 𝐶𝐶  mod 𝑢𝐶  Δ𝑥 would be the constant if we call it as 𝑎𝐶. What we have is 

basically 𝑎𝐶𝑢𝐶  equals 𝑃3 minus 𝑃3. So, this is the discrete momentum equation for cell C, 

ok. So, we have the both the momentum equations. 
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So, if you were to write in terms of the star quantity. So, essentially we just have to apply 

for a given pressure guess and a velocity guess; what would be your velocities that you 

converge to? So, in this particular case, we do not have a system to solve; because what 

we have is 𝑢𝐵
∗  expressed as pressure star. So, the moment you have a guess value for 

pressure, you can calculate what is the value for converged value for 𝑢𝐵
∗ , alright. 

So, that means, your start momentum equations are 𝑎𝐵𝑢𝐵
∗ = 𝑃1

∗ − 𝑃2
∗; that is basically let us 

call it as equation 3. Then 𝑎𝐶𝑢𝐶
∗ = 𝑃2

∗ − 𝑃3
∗, ok. So, this is basically the star momentum 

equation for the cell C, ok. Now, what do we have to do?  

We have to subtract the star momentum equations from the original equation right; that 

means we take equation 1 and subtract equation 3, similarly we take equation 2 and 

subtract equation 4. That means, what we get is, we get 𝑎𝐵𝑢𝐵 minus 𝑎𝐵𝑢𝐵
∗  which will 

basically give you 𝑎𝐵 times 𝑢𝐵 minus 𝑢𝐵
∗  that is basically your 𝑢𝐵

′ . 

So, equation we get is 𝑎𝐵𝑢𝐵
′  equals; similarly on the right hand side the non star values and 

the star values subtract of leading to the prime values that will be 𝑃1
′ − 𝑃2

′. And similarly 

we have another equation that is 𝑎𝐶𝑢𝐶
′  equals 𝑃2

′ − 𝑃3
′, ok. So, these are the, these are the 

velocity corrections expressed in terms of pressure corrections.  

Now, what you see here is that, this is we do not have to apply the simple approximation 

here right, which was neglecting the contribution of anbu𝑛𝑏
′  primes and u𝑛𝑏

′  here; anbu𝑛𝑏
′ , 



because those are already 0 here. So, as a result, the simple algorithm need not be, the 

simple algorithm approximation need not be directly applied here; because the equations 

that we obtained already satisfy this condition that, the neighboring contribution is already 

0 to the velocity corrections, alright. 

But we were given what is the pressure at the locations 1 and 3. So, 𝑃1 equals 200 and 𝑃3 

equals 38 this is what is already given; that means because the pressure is given, what will 

be the pressure corrections at these locations? They should be 0 that is why; that means 𝑃1
′ 

equal 0 and 𝑃1
′ equals 0, alright.  

So, those are 0, that means if you substitute here; 𝑃1
′ is 0 and 𝑃1

′ is 0. So, the equation we 

get is 𝑎𝐵𝑢𝐵
′  equals −𝑃2

′ ; then we can write 𝑢𝐵
′  as −𝑃2

′ /𝑎𝐵. Similarly, 𝑎𝐶𝑢𝐶
′  equals 𝑃2

′ right; 

because −𝑃3
′  is 0, then 𝑢𝐶

′  equals 𝑃2
′/𝑎𝐶, ok. 
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So, these are basically your velocity corrections in terms of pressure corrections, right. 

Essentially we just have only three cells, two velocity cells B and C and one pressure cell 

that is 𝑃2. We just have to calculate what is the converged values for 𝑢𝐵, 𝑢𝐶  and 𝑃2, alright. 

Now, we are done with essentially discretizing the momentum equations. So, we will go 

and look at discretizing the continuity equation on the primary cell, on the cell for pressure 

that is basically cell 2, ok. 



So, if you look at cell 2, the faces that we have are B is there on the left hand side and C 

is there on the right hand side; so that means if we go back. So, we have for pressure cell 

2, that is this black cell we have the faces are B to C, ok. So, essentially we will integrate 

the continuity equation for B to C and the continuity equation is given as 
𝑑(𝑢𝐴)

𝑑𝑥
= 0.  

So, that is what is given, that means if you integrate this you are going to get u A and if 

you substitute the face values what we get is, 𝑢𝐶𝐴𝐶 minus 𝑢𝐵𝐴𝐵 equal 0. So, this is your 

discrete continuity equation for pressure cell 2, alright. Now, we know that of course, 

because these are the corrected values as such 𝑢𝐵 and 𝑢𝐵 that if we represent them, then 

these are equal to 0; but if these were starred values 𝑢𝐶
∗  and 𝑢𝐵

∗ , they would not satisfy the 

continuity equation, right.  

As a result we can of course, now decompose this 𝑢𝐶  into star and prime, similarly 𝑢𝐵 into 

star and prime; then what you get is 𝑢𝐶
∗  plus 𝑢𝐶

′  times 𝐴𝐶  minus 𝑢𝐶
∗  plus 𝑢𝐵

′  times 𝐴𝐵 equal 

0, right. So, that means, we have decomposed this into star and prime values; then we can 

send the star values to the right hand side, because those are known at this particular time, 

right. 

Essentially we can send 𝑢𝐵
∗  and 𝑢𝐶

∗  times 𝐴𝐶  and 𝑢𝐵
∗  times 𝐴𝐵 to the right hand side. So, 

what you get is, you get minus 𝑢𝐵
∗ 𝐴𝐵 going to the right hand side makes it 𝑢𝐵

∗ 𝐴𝐵 and you 

have plus 𝑢𝐶
∗ 𝐴𝐶 become minus 𝑢𝐶

∗ 𝐴𝐶 on the right hand side. 
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So, this is basically what is already known after the momentum equations are converged, 

right alright. That means, what we have left with this, you have you are left with 𝑢𝐶
′ 𝐴𝐶 

minus 𝑢𝐵
′ 𝐴𝐵 equals such and such on the right hand side. Now, why do we do essentially?  

We substitute for the velocity corrections right; we substitute for the velocity corrections 

in terms of pressure corrections right from the equations we have derived. So, that means, 

substitute for 𝑢𝐶
′  in terms of pressure correction that is basically 𝑢𝐶

′  equals 𝑃2
′𝐴𝐶; similarly 

𝑢𝐵
′  equals −𝑃2

′ 𝐴𝐵. 

So, substitute for these two; that means plug in these two into this equation. So, what we 

get is 𝑃2
′ times 𝐴𝐶/𝑎𝐶. So, capital 𝐴𝐶  is the cross sectional area that is given, little 𝑎𝐶 is the 

coefficient of 𝑢𝐶  right in the momentum equation. Similarly, you get a 𝑢𝐵
′  has got a minus, 

𝑢𝐵
′  has got a −𝑃2

′ /𝐴𝐵, as a result this becomes plus. 

So, what you get is 𝑃2
′ times 𝐴𝐵/𝑎𝐵 equals, on the right hand side as usual we have 𝑢𝐵

∗ 𝐴𝐵 

minus 𝑢𝐶
∗ 𝐴𝐶. So, essentially we got an equation here; this is basically 𝑃2

′ times 𝐴𝐶/𝑎𝐶 plus 

𝐴𝐵/𝑎𝐵 equals 𝑢𝐵
∗ 𝐴𝐵 minus 𝑢𝐶

∗ 𝐴𝐶, ok.  
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So, we can rewrite this, basically this is now your pressure correction equation in terms of 

the right hand side B right the star values and the coefficients, ok. So, this is your pressure 

correction equation. Now, in this particular case, because we have only one cell; we do not 



have to solve a Gauss Seidel, right. But in general, this would be similar to 𝑎𝑃𝑃𝑃
′  equals 

∑ anbP𝑛𝑏
′ + 𝑏, ok.  

So, you should be able to make these comparisons at any stage. But once we calculate 

what is the right hand side value here; we can calculate what is 𝑃2
′, that means we will 

know what is the pressure correction. So, once you know the pressure correction, you can 

substitute into the velocity corrections, calculate the velocity corrections; then pressure 

and velocity can be corrected and the algorithm is complete.  

You can go back and to the step, you know the previous step where we have guess the 

velocity and pressure and then flow down from there again, right ok. That means, once 

you know the pressure correction and velocity correction; you can correct the pressure that 

is 𝑃2 equals 𝑃2
∗ plus 𝑃2

′.  

Similarly, velocities are 𝑢𝐵 = 𝑢𝐵
∗ + 𝑢𝐵

′ , where 𝑢𝐵
∗  is the converged value from the 

momentum equation and 𝑢𝐵
′  equals in terms of pressure corrections that is −𝑃2

′ /𝐴𝐵 and 

𝑢𝐶 = 𝑢𝐶
∗ + 𝑢𝐶

′  that is 𝑢𝐶
∗  plus 𝑢𝐶

′  equals 𝑃2
′/𝐴𝐶, ok. 

So, we have we now got 𝑢𝐵, 𝑢𝐶  and 𝑃2 these 𝑢𝐵 and 𝑢𝐶  of course, now satisfy continuity 

equation; but they do not satisfy the original momentum equation, because the momentum 

equation itself is non-linear, right. We have C mod u u, where C mod u itself we was taken 

as u 𝐴𝐵, 𝐴𝐵 contains 𝑢𝐵
∗  values right, which are now got updated. So, they do not satisfy 

the momentum equations, the velocity. 
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So, because of the non-linearity of course, they do not satisfy. And we also have to under 

relax the equations, because of the nonlinearity in the source term, ok. So, let us under 

relax the pressure; that means whatever is the 𝑃2
′, you got you only obtain multiply that 

with some alpha p and add it to the star value to obtain the original value.  

So, 𝑃2 = 𝑃2
∗ + α𝑃𝑃2

′. And of course, we know that we will not. So, basically do not under 

relax velocity in this way right; because if you do it this way, because then it will not 

satisfy the continuity equation. So, we go back and use the, in the context of momentum 

equations itself whenever we are trying to solve it; we have to under relax and use the 

under relaxed equations.  

That means, our original equation for cell B is 𝑎𝐵𝑢𝐵
∗ = 𝑃1

∗ − 𝑃2
∗. So, if you under relax this 

equation, basically this is your 𝑎𝑃, 𝑎𝑃 value right; this is like 𝑎𝐵ϕ𝑃 right.  

That means, you get 𝑎𝐵/α𝑢 times 𝑢𝐵
∗  equals 𝑃1

∗ − 𝑃2
∗ plus; for this contribution you would 

have (1 − α𝑢)/α𝑢 times 𝑎𝐵𝑢𝐵
∗ . I have 𝑢∗ star here, basically to indicate that this is the 

previous iteration value or the latest value that we have, that is that we can use here.  

And essentially to make sure that this is different from what we have here, ok. So, you 

would use this momentum equation when you solve for the cell B ok; because this is the 

under relaxed equation and you can take some value for α𝑢 as 0.8 or something.  



And this under relaxation is necessary, because of the non-linearity in the source term, ok. 

That means you will use this equation instead of the equation we have written here in and 

you try to solve. So, when you try to solve the star momentum equations instead of 3 and 

4, you would use the under relaxed equation.  

Now, that means, if you look at cell C; what we have is 𝑎𝐶𝑢𝐶
∗  equals 𝑃2

∗ − 𝑃3
∗. If you also 

under relax this equation with the same factor α𝑢, what you get is 𝑎𝐶/α𝑢 times 𝑢𝐶
∗  right 

equals 𝑃2
∗ − 𝑃3

∗ plus on the right hand side you have to add this extra term that is 

(1 − α𝑢)/α𝑢 times 𝑎𝐶𝑢𝐶
∗  star, this also has to be essentially star, right.  

Basically I forget to write it here, this is also star star; indicating that this is the current 

iteration value that is available right, that is available, excuse me, right ok. So, essentially 

you would use these two equations in the solution of the star momentum equations. So, 

when you after you have guess the pressure and we guess the velocities, you would use 

this equation to solve for convergence of these values to solve using the Gauss Seidel or 

something.  

In this particular case you do not have to; because you know all these things on the right 

hand side, so it can be computed, ok. Of course, now because we have modified the this 

above equation to use under relaxation; we not only need pressure guess, but we also need 

the velocity guess in order to calculate the velocity values, alright. 

So, now the algorithm is actually complete; we have to of course write a code for this and 

run it, so that we would obtain the values for 𝑢𝐵, 𝑢𝐶  and 𝑃2, ok. So, that we will do it in 

the next class; but for today we will do the remaining two problems as well and formulate 

them as such.  

Now, one question you may have is ok, what about. So, instead of using this equation, now 

what we are saying is that we will use this equation with under relaxation. But do not we 

have to go back and re do everything; because if we have change the momentum equation, 

do not I have to go back and do the these correction equations again.  

You are right for example, now that. So, instead of 3 and 4 we are going to use the 

corresponding under relaxed equations; then do not I have to redo all these calculations of 

𝑢𝐵
′  and use the correct equations, is not it the under relaxed equations or not? So, that is 

the question.  



The question is, why am I doing 3 4? Why are we obtaining these from this equation and 

then we are saying ok, we cannot solve this equation; we want to do under relaxation and 

change these equations to something else right, which are the corresponding under relaxed 

equations. 

Now, the idea is, even if you use the under relaxed equations here; in the simple 

approximation you will have those terms also will be neglected, just like the ∑ anbu𝑛𝑏
′ , the 

contribution coming from this ∑ anb, ∑ aBu𝐵
′  also will be neglected, ok. So, essentially you 

will, they will not be considered; that is simple approximation, excuse me.  

So, as a result it does not matter whether you had use the under relaxed equation for 

deriving the velocity correction pressure correction equation or the regular equation, fine. 

So, that finishes the setting up of the first problem that is the problem 6.4. 
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Let us move on to the second problem that is 6.5 from the, from chapter 6 of Patankar’s 

book, ok. So, what this is basically, this is a again a this is a flow through a converging 

nozzle, ok. And the flow is going in the positive x direction. So, it is going from essentially 

left to right. So, there is a converging nozzle and then again the values 1, 2, 3 here locations 

denote the places where the pressure is stored and A and B denote the locations where the 

velocities are stored, alright. 



Then two equations are given, the first one is 
𝑑(ρ𝑢𝐴)

𝑑𝑥
= 0. What is this equation? This is 

basically your continuity equation, right. And, what about this guy? This is 
𝑑(ρuA 𝑢)

𝑑𝑥
=

−𝐴
𝑑𝑃

𝑑𝑥
. what is this equation? This is your x momentum equation. Now, what about the 

terms here? Of course, this is the pressure gradient. And what is this term? This is now; 

this is now the convection term right; basically ρuA 𝑢 this is basically the convection term, 

ok. 

So, we have and we do not have any source term. So, source term is 0. Also the effective 

areas at these locations are given at A and B, ok. And the density can be taken to be 1 

everywhere that is what is given; then because this is a nozzle, so beyond 1 the area kind 

of grows very large, as a result the velocity is quite small here, ok. And the area is very 

large and the velocity is very small ahead of upstream of 1, ok. 

So, the effective areas are given, area cross sectional area at A is 3, cross sectional area at 

B is 1 and the pressures are given. Again this is similar to the previous problem, with all 

the boundary conditions given are the pressure 𝑃1 is 28 and 𝑃3 is 0 that is what is given.  

And it is also given that fluid upstream of 0.1, basically here has negligible momentum, 

right. That means upstream of 1 has negligible momentum; that means the flow rate 

upstream of this can be taken to be 0, because if we denote flow rate as ρ𝑢𝐴, the momentum 

is mass times velocity. 

So, mass is your ρ𝐴 times 𝑢 , right. So, upstream of 1 here velocity is so small and the 

cross sectional area is so large and essentially the momentum can be taken to be very small, 

alright. That is this is an approximation that is given, ok. So, this is an approximation that 

is asked to be made while solving problem, fine.  

Then what else essentially you are asked to calculate what is the velocities at a locations 

A and B, that is the A and B is the velocity control volumes and at the pressure control 

volume that is 𝑃2. So, you have to calculate what is 𝑢𝐴, 𝑢𝐵 and 𝑃2 and it is basically given 

that u is initial guess five thirds for 𝑢𝐴, 5 for 𝑢𝐵 and 25 for pressure ok.  

That is basically when you write the code, you can use this as the initial guess and solve 

the equations. As of now we will try to set up the complete algorithm using simple, ok. 

So, again what is the first step? First step is to write the momentum equations for the 



velocity control volume that is for A and B, write the momentum equations; then derive 

the prime equations a star equations and prime equations for A and B.  

Then write the continuity equation discretization for cell 2 and relate the velocity 

corrections that you got from A and B in terms of pressure corrections and substitute for 

pressure corrections, essentially get a pressure correction equation, right. So, that is the 

idea.  

So, we start off with momentum equation that is this equation discretize for A; then 

discretize for B, followed by discretize this for cell 2, ok. So, for cell A we have 1 and 2 

as the faces, for cell B we have 2 and 3 as the faces, and for cell 2 the pressure cell we 

have A and B as the faces that is kind of good to remember, alright.  
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So, cell A is basically going from 1 to 2. So, what we have is integral 1 to 2 
𝑑(ρuA 𝑢)

𝑑𝑥
 𝑑𝑥 

equals integral 1 to 2 on the right hand side we have −𝐴
𝑑𝑃

𝑑𝑥
 𝑑𝑥, ok. This being the 

convection term, we can write this as the flow rate that is basically ρuA equals F times u. 

So, if you apply gauss divergence theorem and so on what you basically get is, you get Fe 

east, right. Or you can even integrate it here, because this is 1 D, you do not need to involve 

gauss divergence theorem.  

So, this basically gives you ρuAu that is F times u; you calculate at both the limits that is 

𝐹2𝑢2 − 𝐹1𝑢1, right. And on the right hand side, we have minus A; because this is a 



coefficient this, this is taken to be at the cell centroid value. So, for cell A, this is basically 

𝐴𝐴, this is −𝐴𝐴 times integral 
𝑑𝑃

𝑑𝑥
 𝑑𝑥 would give you integral dP which will give you 

pressure; that means if you apply the limits this is basically 𝑃2 − 𝑃1.  

Now, of course, because we are given the convection term ok; we will make an 

approximation, we will use the upwind difference scheme. Although it is not specified in 

the problem, we will apply upwind difference scheme; we will use upwind difference 

scheme essentially. What that means is that, if 𝐹𝑒 is greater than or equal to 0, then 𝑢𝑒 

equals 𝑢𝑃 or if 𝐹𝑒 is less than 0, then 𝑢𝑒 equals 𝑢𝐸 .  

But fortunately in this case, you do not have to look for less than 0 cases; because all the 

flow rates are positive right, because the flow is going from in the essentially flow is in 

the positive x direction. As a result all F values are greater than or equal to 0. In fact, all 

are greater than 0; because there is some flow that is happening.  

That means, 𝐹2 is, because 𝐹2 is greater than or equal to 0; what will be the value of 𝑢2? 𝑢2 

is basically, if you go here 𝐹2 is positive. So, 𝑢2 can be taken to be it is up steam value that 

is 𝑢𝐴, right. 

Similarly, if 𝐹1 is positive, what will be the value of here? The value here would be 𝐹1 is 

positive, 𝑢1 can be taken whatever u upstream of 1 right; that means 𝐹2 is because it is 

positive, 𝑢2 can be taken as the upstream value and 𝑢1 can be taken as u upstream of 1, ok.  

But it is given that the momentum up stream of 1 can be can be neglected; that means 𝐹1 

can be taken to be 0, as a result this term is 0; that means what we are left with is we are 

left with 𝐹2𝑢𝐴 equals −𝐴𝐴. Or I, if I observe the minus inside, we can write this as 𝐴𝐴 times 

𝑃1 − 𝑃2, alright. 
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So, we have 𝐹2𝑢𝐴 equals 𝐴𝐴 times 𝑃1 − 𝑃2. And if we do the same exercise for cell B; what 

we get is integral 2 to 3, because for cell B we have the faces is 2, 3, right. So, that means, 

we can write this as integral 2 to 3 
𝑑(ρuA 𝑢)

𝑑𝑥
 𝑑𝑥 equals 2 to 3 −𝐴

𝑑𝑃

𝑑𝑥
 𝑑𝑥 alright; that means 

again this is F times u.  

So, is the integration value apply that at the both the limits, you get 𝐹3𝑢3 − 𝐹2𝑢2 equals 

cross sectional area for cell B is 𝐴𝐵, that is evaluate the cell centroid times integral 
𝑑𝑃

𝑑𝑥
 𝑑𝑥 

would give you dP.  

So, this is basically pressure, integral dP would be pressure; that means 𝑃3 − 𝑃2. Or if you 

observe the minus inside, you get 𝐴𝐵 times 𝑃2 − 𝑃3, that is understood. Now, of course, 

you have to apply again upwind difference scheme for the convection terms right; that 

means 𝐹3 because 𝐹2 is positive, so 𝑢2 equals 𝑢𝐴 and 𝑢3 equals 𝑢𝐵, right.  

So, because 𝐹3 is positive, 𝑢3 equals 𝑢𝐵, 𝑢2 equals 𝑢𝐴 right; this is the upstream values for 

these flow rates, alright. That means, what we get is, for cell B, we get 𝐹3 can be written 

𝑢3 can be written as u B, 𝐹2𝑢2 can be written as u A. Now, remember that, we are not 

replacing the 𝐹3 with 𝐹𝐵 here or 𝐹2 with 𝐹𝐴; you are only replacing, because upwind 

difference scheme only tells you to replace phi sub e with the upstream values, not the 

flow rates, right. 



So, these F’s will remain the same; that means 𝐹3 𝑢𝐵 minus 𝐹2 𝑢𝐴 equals 𝐴𝐵 times 𝑃2 − 𝑃3, 

right. Similar to what we had here; but here we did not, we did not have the other term, 

because the upstream value of the mass flow rate was given that you can take it as 

negligible.  

Now, one question that might pop in your head is, basically we do not have storage for 

velocities at the points 2 and 3; what do I do for the flow rates? That is where we are 

coming down; essentially we will go and see if we can go something for these flow rates 

from the continuity equation. 
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So, we are now done with deriving the, discretizing the momentum equations for cells A 

and B, right. Now, we look at the continuity equation for cell 2; that means cell 2 has got 

essentially limits as A and B as it is faces. So, that means, integral A to B 
𝑑(ρ𝑢𝐴)

𝑑𝑥
𝑑𝑥 equals 

0 right, this is basically integration would be rho u A applied at B minus A.  

So, basically what we have is (ρ𝑢𝐴)𝐵 − (ρ𝑢𝐴)𝐴 = 0; this is nothing, but your flow rate at 

B minus flow rate at A equals 0, that means 𝐹𝐴 = 𝐹𝐵. So, 𝐹𝐴 = 𝐹𝐵; what is that mean? That 

means, the flow rate of course, going through mass flow rate going through here is same 

as the mass flow rate going through here. 

In fact, that means, that the mass flow rate going through 2 and 3 and 1 should also be the 

same; because of the from the principle of conservation of mass, right. That means, not 



only is your 𝐹𝐴 = 𝐹𝐵; you can also take 𝐹2 = 𝐹𝐴 = 𝐹𝐵 = 𝐹1 = 𝐹3 right, because this is 

conservation of mass. Or even if you take 𝐹2 as linear average of 𝐹𝐴 and 𝐹𝐵; you will still 

get both of them equal being you get a 𝐹2 = 𝐹𝐴 = 𝐹𝐵, right. 

Now, this is where we can replace the 𝐹2, 𝐹3 that we have here with either 𝐹𝐴 or 𝐹𝐵, right. 

So, I can now write this as 𝐹𝐵𝑢𝐵 − 𝐹𝐴𝑢𝐴 = 𝐴𝐵(𝑃2 − 𝑃3), right.  
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That can be written; that means our momentum equations. So, these are the discrete 

momentum equations for cells A and B, ok. What we have is 𝐹𝐴𝑢𝐴 = 𝐴𝐴(𝑃1 − 𝑃2) and for 

cell B, we have 𝐹𝐵𝑢𝐵 − 𝐹𝐴𝑢𝐴 = 𝐴𝐵(𝑃2 − 𝑃3), ok. So, how do we construct the star equations 

here? Starred equations are basically use a guess value for pressure; then the velocity value 

should be the star values that these equations have to be converge too, alright.  

That means, the starred equations for cell A is 𝐹𝐴𝑢𝐴
∗ = 𝐴𝐴(𝑃1

∗ − 𝑃2
∗) and 𝐹𝐵𝑢𝐵

∗ = 𝐹𝐴𝑢𝐴
∗ +

𝐴𝐵(𝑃2
∗ − 𝑃3

∗), alright that is given. Then how do we consider the prime equations? Prime 

equations is basically subtract the star equations from the original equation.  

That means you get 𝐹𝐴𝑢𝐴
′  prime, because 𝑢𝐴 minus 𝑢𝐴

∗  gives 𝑢𝐴
′  equals 𝐴𝐴(𝑃1

′ − 𝑃2
′) that is 

the prime equation for cell A. Prime equation for cell B would be 𝐹𝐵𝑢𝐵
′ = 𝐹𝐴𝑢𝐴

′ +

𝐴𝐵(𝑃2
′ − 𝑃3

′), right. 

But in this we make the, because of the simple algorithm; the contribution coming from 

the ∑ anb prime, that is this term would be taken to be 0, ok. So, essentially this 



approximation is coming from simple algorithm, right. This is basically coming from 

simple algorithm that your 𝐹𝐴𝑢𝐴
′  equal 0, ok. 

So, basically this is equal 0 and we also know that 𝑃1 and 𝑃3 are given 𝑃1 is given as 200, 

𝑃3 is given as 38 I suppose, right; sorry 𝑃1 is given as 28 and 𝑃3 is given as 0, that means 

𝑃1 the pressures are given. So, the pressure corrections are 0. So, 𝑃1 prime equal 0 and 𝑃3 

prime equal 0, right. That means, this is 0 and this is 0 and this is taken to be 0, because of 

the simple approximation, alright. 
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So, this is 0 as such; that means we have these things, then we can write this as 𝑢𝐴
′  as 𝐴𝐴/𝐹𝐴, 

right. This is what we are calling it as some d right; remember we had Δ𝑦 upon the central 

coefficient a east that we are written as d, 𝑑𝑒. Similarly, we have a prime equals capital 

𝐴𝐴/𝐹𝐴 times −𝑃2
′.  

So, we can write this as −𝑑𝐴𝑃2
′, where 𝑑𝐴 is your 𝐴𝐴/𝐹𝐴 this. Similarly, 𝑢𝐵

′  equals 𝐴𝐵/𝐹𝐵 

that is 𝐴𝐵/𝐹𝐵 times 𝑃2
′. So, this can be written as 𝑑𝐵𝑃2

′, where 𝑑𝐵 equals 𝐴𝐵/𝐹𝐵, ok. That 

means, we go now velocity corrections for cells A and B in terms of the pressure 

corrections that is 𝑃2
′.  

So, this is your velocity corrections in terms of pressure corrections. Now, these are 

important, because this is what we need to substitute in the continuity equation. So, but 

from the continuity equation what we have is, we have 𝐹𝐵 − 𝐹𝐴 = 0. So, which of course, 



can be decomposed into star and prime values and the if the star values are sent to the right 

hand side; what we get is, we get 𝐹𝐵
′ − 𝐹𝐴

′ = 𝐹𝐴
∗ − 𝐹𝐵

∗ right, this is basically sent to the right 

hand side.  

Then a densities given as 1. So, we can write 𝐹𝐵 as ρ𝑢𝐵 right ρ u A; that means rho is 1. 

So, we can write this as 𝑢𝐵
′ 𝐴𝐵 − 𝑢𝐴

′ 𝐴𝐴 = 𝐹𝐴
∗ − 𝐹𝐵

∗, right. So, the right hand side, this term is 

already known; this is the mass imbalance for cell 2, right. The amount by which the 

velocities do not satisfy the conservation of mass for cell 2 is the 𝐹𝐴
∗ − 𝐹𝐵

∗ star.  

Now, this is not equal to 0; if this is equal to 0, then we have reached convergence, right 

for momentum equations also right, that is why this is not equal to 0 at the moment. This 

we have could have computed ok, before coming to this step. Now, we substitute for A B 

prime u A, 𝑢𝐴
′  and 𝑢𝐵

′  from these equations. So, substitute for 𝑢𝐵
′  as 𝑑𝐵𝑃2

′, and 𝑢𝐴
′  as −𝑑𝐴𝑃2

′.  
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And then write an equation for 𝑃2
′. So, if I substitute that, then what we get is 𝑢𝐵

′  equals 

𝑑𝐵𝑃2
′. So, this is basically 𝑑𝐵𝐴𝐵 and we have this is basically−𝑑𝐴𝑃2

′, that becomes a plus 

𝑑𝐴𝐴𝐴 times 𝑃2
′, right that is 𝑃2

′ equals on the right hand side we have 𝐹𝐴
∗ is rho equals 1. So, 

this is 𝑢𝐴
∗ 𝐴𝐴 minus 𝑢𝐵

∗ 𝐴𝐵 right; because we only know the star values and the cross sectional 

areas.  



That means, we can we know everything on the right hand side; we know the coefficients 

here, the cross sectional areas are known and the d values are known, that means we can 

write an equation for pressure correction for cell 2.  

So, this is basically the pressure correction equation for cell 2, again we have only, we 

have only one cell. So, we do not need to solve for Gauss Seidel, rather using the starred 

values for velocities right; we can calculate 𝑃2
′ that can be calculated, fine. So, this is the 

pressure correction equation.  

Now, once you know, once you obtain the pressure correction; you can now correct the 

velocities using 𝑢𝐴 = 𝑢𝐴
∗ + 𝑢𝐴

′ , 𝑢𝐴
′  equals−𝑑𝐴𝑃2

′. So, this is 𝑢𝐴
∗ − 𝑑𝐴𝑃2

′. Similarly, 𝑢𝐵 = 𝑢𝐵
∗ +

𝑢𝐵
′ ; that means, 𝑢𝐵

∗ + 𝑢𝐵
′  is your 𝑑𝐵𝑃2

′ and 𝑃2 equals 𝑃2
∗ plus again I use some under 

relaxation because of the non-linearity of the convection term this time, right.  

So, this is basically 𝑃2 = 𝑃2
∗ + α𝑃𝑃2

′. So, owing to the non-linear convection term, we need 

to also under relax the momentum equations and under relax the pressure while we are 

correcting it. 
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So, now how do we under relax the momentum equations? The original momentum 

equation, the star equation is 𝐹𝐴𝑢𝐴
∗ = 𝐴𝐴(𝑃1

∗ − 𝑃2
∗). So, if have to under relax them, you 

divide this by alpha and the extra term on the right hand side; thus this becomes 𝐹𝐴/α𝑢 



times 𝑢𝐴
∗  equals 𝐴𝐴(𝑃1

∗ − 𝑃2
∗) you get (1 − α𝑢)/α𝑢 times this quantity that is 𝐹𝐴𝑢𝐴

∗  star ok, 

basically indicating these terms are already known.  

So, that is your under relaxed, under relaxed momentum equation for cell A ok, which you 

will use when you solve for the guess velocities and guess pressures to calculate the 

converged velocities at the cells, ok. This is what you will use. Again the momentum 

equation for cell B was given as 𝐹𝐵𝑢𝐵
∗  star equals 𝐹𝐴𝑢𝐴

∗  plus 𝐴𝐵(𝑃2
∗ − 𝑃3

∗) right; remember 

this is what the original equations we had written, right. 

So, we had these two equations right and we wrote the star equations here. Now, we are 

trying to under relax them and if you were to under relax the cell B; then what you get is 

basically this is 𝐹𝐵𝑢𝐵
∗ . So, you will get 1/α𝑢 times 𝐹𝐵𝑢𝐵

∗  star equals 𝐹𝐴𝑢𝐴
∗  star plus 

𝐴𝐵(𝑃2
∗ − 𝑃3

∗) plus you get (1 − α𝑢)/α𝑢 times , ok. 

So, this is basically your under relaxed equation for cell B, fine. So, again because of the 

non-linearity of the convection term, we have to do multiple iterations here, so that we 

converge to a final solution that is driven through continuity satisfying velocity fields by 

the simple algorithm, alright. 
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Let us look at the final problem from the book that is basically problem 6.7, which is a 

pipe network; that is let say it distributes water to a residential area, ok. Essentially we 

have different locations here and the flow through the pipe, the flow rate Q is given as 



some hydraulic conductance C times the Δ𝑃, where Δ𝑃 is the pressure drop over the length 

of the pipe, ok. 

This is basically the P upstream minus P downstream, that is the pressure drop over the 

length the L and C is the hydraulic conductance and Q is the flow rate ok. And the pipe 

network is shown here; so the locations dark circles here 1, 2, 3 all the way to 7 are the 

locations where the pressure is stored. And the arrows here denote the direction of the flow 

and there also the locations where the velocities are stored. So, for example, the velocities 

stored as at A, B all the way to F.  

Now, few pressure values are given that is 𝑃1, 𝑃2, 𝑃4, 𝑃5 is given. So, all these things are 

given; 3, 6 and 7 are not given, and the flow rate also through F is given. So, 𝑄𝐹 is given 

this is 40 and the hydraulic conduction is given for all of them; that is 𝐶𝐴 is given as 0.4, 

𝐶𝐵 D F that is B D F all these three are 0.2, 𝐶𝐶  and 𝐶𝐸  are given as 0.1 all the hydraulic 

conductance given. 

So, we were asked to calculate what is the pressure p 3, p 6 and what is the value for 𝑄𝐴, 

𝑄𝐵, Q C, 𝑄𝐷 and 𝑄𝐸. We need to calculate what is A, B, C, D and E these flow rates is 

what you need to calculate. And the given equation is only the Q equals C times the delta 

p. Now, what equation is this?  

This is momentum equation or this is now what kind of an equation this is the? What do 

we take this as? We should take this as basically momentum equation is not it; because 

you have kind of an integrated momentum equation ok, where the flow rate equals C times 

Δ𝑃.  

So, 
𝑑𝑃

𝑑𝑥
 is not given similarly the 

𝑑𝑃

𝑑𝑥
 of this guy is not given. So, this is the momentum 

equation; that means we have to solve for this equation at locations A, B, C all the way to 

F right that is what we have to do, alright. So, we have to calculate these two pressures 

and the flow rates for A to E alright; that means we know that this is momentum equation. 
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So, if you were to write for cell A, cell A the limits are 1 and 3. So, you have to integrate 

1 to 3, Q dx equals 1 to 3, C Δ𝑃 dx, right. Now, what is Q? Q is the flow rate what in; 

under what term do you want to call this as, what type of term is this? This is basically like 

a source term right; because Q is kind of constant for the entire cell and the cell centroid 

value is what you want to take it as a representative, right. 

So, Q would be 𝑄𝐴 and will be constant, so integral d x will be delta x. So, this will be 

delta x equals C you can evaluate the cell centroid that is 𝐶𝐴. What about Δ𝑃? Δ𝑃 is also 

you know constant. So, 𝐶𝐴 Δ𝑃 times integral dx would be Δ𝑥 right, basically 𝑥3 minus 𝑥1, 

𝑥3 minus 𝑥1. So, these two Δ𝑥 get cancel. So, what you get is 𝑄𝐴 equals 𝐶𝐴 times delta p. 

And what is Δ𝑃? Δ𝑃 is the pressure drop across the length and the length is for 1, 2, 3, 

right. 

So, along this much length right; that means 𝑃1 minus 𝑃3 would be Δ𝑃 for length a right 

for the vector A. So, that means, this is basically 𝑄𝐴 equals 𝐶𝐴 times 𝑃1 minus 𝑃3; similarly 

we can write the equations. So, what will be 𝑄𝐵? QB would be equal to 𝐶𝐵 times 𝑃3 minus 

𝑃2 right, because the flow is going in that way. 
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Similarly, what would be 𝑄𝐶? 𝑄𝐶 equal to 𝐶𝐶  times 𝑃4 minus 𝑃3. So, that is 𝑄𝐶 equals 𝐶𝐶  

times 𝑃4 minus 𝑃3. And what would be 𝑄5, sorry 𝑄𝐷? 𝑄𝐷 would be 𝐶𝐷 times 𝑃3 minus 𝑃6. 

So, that is your 𝑄𝐷 right; 𝑄𝐷 equal 𝐶𝐷 times 𝑃3 minus 𝑃6. And 𝑄𝐸 would be 𝐶𝐸  times 𝑃5 

minus 𝑃6. So, that is 𝑄𝐸 is 𝐶𝐸  times 𝑃5 minus 𝑃6. And similarly you can write what is 𝑄𝐹 

equals 𝐶𝐹  time 𝑃6 minus 𝑃7. 

So, these are the now the discrete momentum equations for cells A through F, right ok. 

Now, once you know these basically these are the starred equations right, these are the 

starred equation; if I have to put star here for 𝑃1
∗ and 𝑃3

∗ and then what I obtain here is your 

𝑄𝐴
∗  right, this is your 𝑄𝐴

∗ . 

Now, if you subtract of the starred equations from the non-starred equations; what is get 

is the prime equation. So, we can write the prime equations on the right hand side; those 

are nothing, but 𝑄𝐴
′  equals 𝐶𝐴 times 𝑃1

′ minus 𝑃3
′. So, it is kind of easy to see from these 

equations how to write them and 𝑄𝐵
′  equals 𝐶𝐵 times 𝑃3

′ minus 𝑃2
′.  

Similarly, 𝑄𝐶
′  equals 𝐶𝐶  times 𝑃4

′ minus 𝑃3
′, and 𝑄𝐷

′  equals 𝐶𝐷 times 𝑃3
′ minus 𝑃6

′, and 𝑄𝐸
′  

equals 𝐶𝐸  times 𝑃5
′ minus 𝑃6

′, and 𝑄𝐹
′  equals 𝐶𝐹  times 𝑃6

′ minus 𝑃7
′, ok. So, we got all the 

pressure correction essentially prime equations in terms of; we do not have velocities now, 

but we have flow rates right, essentially Q is like our velocity. So, we kind of related the 

velocity corrections or flow rate corrections in terms of pressure corrections, alright. 



So, now what is the step that follows? Basically you have to look with the continuity 

equation; but we were not given continuity equation right, because the only equation we 

are given is Q equals C times Δ𝑃. But what are the locations where do we have to apply 

continuity equations?  

We have to apply continuity equation at the pressure cells or the primary cell. That means, 

we have to apply this at 1, 2, 4, 3, 6, 5, 7, right; but again we do not have to apply at 1, 2, 

4, 5, because 1, 2, 4, 5 the values are already given. So, we need to apply only at 3 and 6 

right and at 7. 

So, but at 7 we do not have to apply; because the flow rate is already given, so that is 

flowing in. So, we need to apply continuity equation at 3 and 6. What would be the 

continuity equation at 3? I mean continuity equation is basically at 3 is whatever that is 

flowing in minus whatever that is flowing out should be equal to 0.  

That means, for cell 3, the conservation of mass is 𝑄𝐴 plus 𝑄𝐶 minus 𝑄𝐵 minus 𝑄𝐷 equal 

to 0 that is conservation of mass for cell 3; that is 𝑄𝐴 plus 𝑄𝐶 minus 𝑄𝐵 minus 𝑄𝐷 equal to 

0. And the continuity equation for 6 would be 𝑄𝐷 plus 𝑄𝐸 minus 𝑄𝐹 equal to 0, right. So, 

those are the continuity equations. 
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Now, that means, we can write the continuity equations for pressure cells, that is for cell 3 

is 𝑄𝐴 plus 𝑄𝐶 minus 𝑄𝐵 minus 𝑄𝐷 equal to 0. Now, this can be decomposed into star and 

prime quantities and the star values can be sent to the right hand side.  

So, what you get is 𝑄𝐵
∗  plus 𝑄𝐷

∗  minus 𝑄𝐴
∗  minus 𝑄𝐶

∗  on the right hand side, which is basically 

known right from the converged star values. And on the left hand side, we are left with 𝑄𝐴
′  

plus 𝑄𝐶
′  minus 𝑄𝐵

′  minus 𝑄𝐷
′ , right alright. So, we are left with this. 

Now, we can substitute for 𝑄𝐴
′  𝑄𝐶

′  𝑄𝐵
′  and 𝑄𝐷

′  from the equations we have derived here, 

right. So, we will substitute for them; that means we substitute 𝑄𝐴
′  equals 𝐶𝐴 times 𝑃1

′ minus 

𝑃3
′, 𝑄𝐶

′  as 𝐶𝐶  times 𝑃4
′ minus 𝑃3

′ minus 𝑄𝐵
′  as 𝐶𝐵 times 𝑃3

′ minus 𝑃2
′, and 𝑄𝐷

′  as 𝐶𝐷 times 𝑃3
′ 

minus 𝑃6
′ equals everything on the right hand side.  

Now, we also realize that, because the pressure values are given at locations 1, 2, 4 and 5; 

the p primes at these locations are 0 right, we do not need to do any pressure correction 

there. So, the pressure correction is 0. So, as a result 𝑃1
′ is 0; 𝑃4

′ is also 0, 𝑃2
′ is also 0 and 

these two are not 0, ok. 

That means, we can write collect 𝑃3
′ terms. So, 𝑃3

′ equals minus 𝐶𝐴 minus 𝐶𝐵 minus 𝐶𝐶  and 

minus 𝐶𝐷 that is what we get. And we have plus p 6 prime that is coming from here, which 

is 𝑃6
′ 𝐶𝐷 equals something on the right hand side that is basically 𝑄𝐵

∗  plus 𝑄𝐷
∗  minus 𝑄𝐴

∗  

minus 𝑄𝐶
∗ , ok 
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So, this is now your pressure correction equation right; this is very different from what we 

had till now, till now we had only one pressure cell, now we have two pressure cells that 

is C 3 and 6. So, this is pressure correction equation for cell 3 that also contains 

contribution from cell 6 right, that is 𝑃6
′ is also there, ok.  

So, we have two unknowns here, but this is one of the equations; the other equation will 

come from cell 6. So, for cell 6 what we have is, we have 𝑄𝐷 plus 𝑄𝐸 minus 𝑄𝐹 equal to 0 

that is the continuity equation for cell 6, 𝑄𝐷 plus 𝑄𝐸 minus 𝑄𝐹 equal to 0, right. So, if you 

were to again write that equation, then we have decompose this into star and primes.  

The equation we get is 𝑄𝐷
′  plus 𝑄𝐸

′  minus 𝑄𝐹
′  equal to 𝑄𝐹

′  star minus 𝑄𝐷
∗  sorry 𝑄𝐹

∗  minus 𝑄𝐷
∗  

minus 𝑄𝐸
∗ . So, the right hand side thing here is already known. And because 𝑄𝐹

′  is basically 

given; 𝑄𝐹 is given as 40, 𝑄𝐹
′  would be equal to 0 right, because this is given this is equal 

to 0.  

And we can substitute for 𝑄𝐷
′  in terms of pressure corrections that is 𝐶𝐷 times 𝑃3

′ minus 𝑃6
′ 

plus 𝐶𝐸  times 𝑃5
′ minus 𝑃6

′ minus this is 0 equals; 𝑄𝐹
∗  is nothing, but 𝑄𝐹, right. So, this is 𝑄𝐹 

minus 𝑄𝐷
∗  minus 𝑄𝐸

∗  which is already known and 𝑃5 is given. So, as a result if p 5s prime 

is this is 0, ok.  

So, this is 0; that means we again have equation in terms of 𝑃3
′ and 𝑃6

′. So, 𝑃3
′ times 𝐶𝐷 plus 

𝑃6
′ times minus 𝐶𝐷 minus 𝐶𝐸  equals 𝑄𝐹 minus 𝑄𝐷

∗  minus 𝑄𝐸
∗ . So, this is our other pressure 

correction equation for 𝑃3
′ and 𝑃6

′. So, we have this is a second equation and the unknowns 

are 𝑃3
′ and 𝑃6

′. 
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So, we have two equations and two unknowns. Of course, in a traditional sense, we would 

have solved for Gauss Seidel here right for solving the pressure correction equation; but 

here we have 2 equations and 2 unknowns, right. So, we do not, we do not have to solve 

for Gauss Seidel; we can directly solve for 2 equations 2 unknowns.  

So, solve for 𝑃3
′ and 𝑃6

′, ok. Then once you know the pressure corrections, you can update 

the pressures using 𝑃3 = 𝑃3
∗ + 𝑃3

′. And 𝑃6 = 𝑃6
∗ + 𝑃6

′ and then we correct the flow rates right; 

essentially 𝑄𝐴 equals 𝑄𝐴
∗  plus 𝑄𝐴

′ , where 𝑄𝐴
′  equals minus 𝐶𝐴 times 𝑃3

′, because the other 

contribution of 𝑃1
′ is 0.  

Similarly, 𝑄𝐵 equals 𝑄𝐵
∗  plus 𝐶𝐵 times 𝑃3

′, 𝑄𝐶 equals 𝑄𝐶
∗  minus 𝐶𝐶  times 𝑃3

′, and 𝑄𝐷 equals 

𝑄𝐷
∗  plus 𝐶𝐷 times 𝑃3

′ minus 𝑃6
′. And finally, 𝑄𝐸 equals 𝑄𝐸

∗  plus 𝑄𝐸
′ , for which we can write 

minus 𝐶𝐸  times 𝑃6
′; these are basically the same equations we have derived before.  

Only thing is that we have now set these underlined quantities to 0; because those are, 

those corrections are all 0, because their boundary conditions for pressure are given. Now, 

what you see; you got one, you got a you corrected your flow rates using the flow rate 

corrections.  

Now, what about how many times? So, do we need to iterate here? Do we need to iterate? 

Because at this point our solution satisfies the flow rates are satisfied; but what about the 

momentum equation, is momentum equation linear or not linear? Momentum equation is 



linear; that means we do not have to iterate, because whatever in one iteration; it will 

basically converge, right. 

Because, the momentum equation is linear right, the pressure corrections only will affect 

the flow rate. So, because this is linear, we do not need to iterate right even; it will just 

converge in one iteration, ok, so, that we will see when we try to solve these problems 

using a code, ok. So, basically that is all for today. So, in the next lecture, so we will look 

at, basically we will look at the corresponding programs. And we will try to run the 

programs for these three problems.  

So, it is, it will be good if you can keep these notes handy, ok, so that we can refer to these 

equations and then look at the program, try to run the program and see and obtain the 

results for each of these problems, alright. So, I am going to stop here; if you have any 

questions, send them to me through email ok, alright. 

Thank you, talk to you in the next lecture. 


