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Hello, everyone. Let us get started. So, welcome to another lecture as part of our ME6151 

Computational heat and Fluid Flow course. So, in the last lecture we looked at boundary 

conditions for convection that is essentially we looked at distinguish the in-flow, out flow 

boundaries and geometric boundary such as walls.  

And, we also started looking at the final chapter that is basically the discretization or 

solution of a fluid flow equations, right and we looked at couple of difficulties that we 

kind of encounter in the solution of fluid flow equations which are basically there is no 

equation for pressure right in the solution of the fluid flow equations. 

Because we have one equation for u, one equation for v whereas when we turn down to 

the other equation that is continuity equation then we realize that the continuity equation 

is also an equation for velocities, but not for pressure ok. So, that is one difficulty. The 

other difficulty is that we get the checker boarded pattern that can be supported by the 



velocity and pressure fields because in the equation for cell P we never got a term that kind 

of corresponds to the cell P, right.  

For example, there was no 𝑢𝑃 or 𝑣𝑃 in the equations for momentum in the equations for 

continuity equation and similarly there is no piece of p in the equation for the pressure 

gradient in the momentum equations right. So, these are the couple of difficulties that we 

face and that is where we kind of stopped our previous lecture. 
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So, in today’s lecture we are going to look at a remedy for the pressure checker boarding 

or velocity checker boarding, essentially how do we decouple this kind of checker 

boarding such that they do not together contribute to divergence and sustenance of the 

oscillations in the solution. 

So, we are going to look at a famous remedy that is known as the staggered grid approach 

and after that we are going to look at the simple algorithm, which is again a very famous 

algorithm for the solution of in compressible fluid flow equations, alright.  

So, essentially in the last lecture we identified two difficulties in solving or in the solution 

of fluid flow equations those are namely the checker boarding of pressure and velocity 

because both of them are 2Δ𝑥 apart right, we got terms like 𝑃𝐸 and 𝑃𝑊, right. We never had 

a 𝑃𝑃 term in there; similarly, the velocities also always had 𝑣𝑒 and 𝑢𝑒 and 𝑢𝑤 right and 

things like that ok.  



So, checker boarding of pressure is one issue and velocity is one issue and then the other 

thing was there is no equation for pressure right because the continuity equation is kind of 

a compatibility condition, right rather than an equation right rather than equation for 

pressure right.  

It is not the equation for pressure rather it is kind of a more of a compatibility condition 

because you have this thing like where ∇ ⋅ ρ𝑢⃗ = 0which is more of a consistency check that 

the velocity field is divergence free or not alright. So, these are the two difficulties. So, 

one of the difficulties is basically the checker boarding of pressure and velocity this can 

be remedied by switching to something known as a staggered grid approach ok. 
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So, this is a very good remedy for avoiding checker boarding of pressure and velocity 

fields in the solution. So, we realized that we were actually getting checker boarding in the 

first place because of the way we have stored the velocities and pressures, right.  

We have stored all the both the components of velocity that is u and v as well as the 

pressure. We have stored all of these at the cell centroids only, right. So, the cell centroid 

that is p capital E capital W and so on. We stored all the physical quantities that we wanted 

to solve. 

So, u, v, p and any other scalar ϕ we have stored all of these at the cell centroid P. In fact 

that is a reason because when we wanted to have the face values of these quantities we 



never have a face value stored. So, for the face values we used linear arithmetic average 

and then that is where this checker boarding was coming into play right because it was 

supported by things that are parameters that are 2Δ𝑥, apart right. They are away by between 

east to west right ok. 

So, this approach in the literature is known as co-located or collocated approach which is 

basically storing everything or all the solution variables at one location right that is one 

location P or something like that ok, but rather we would not use this approach as of now. 

We will switch to a staggered grid approach because this will avoid the pressure checker 

boarding and velocity checker boarding ok. 

So, here is a schematic of how should we store the different solution variables that is u, v, 

P ok. So, here we show a particular grid. Now, this may look very combustion, but there 

is pattern in this thing. So, essentially you have the these are the main cells that are shown 

with squares here. Now, the circles here the dots here indicate the cell centroids of these 

primary cells. 

So, let us say we have one cell at the cell centroid that is denoted with this filled circle that 

is where we store the pressure ok. So, pressure or any other scalar such as density or any 

other scalar ϕ and the deficient coefficient gamma all these things are all stored at P, capital 

E, capital W, capital N and South S at the cell centroid. This is the primary cell, ok. This 

is the same as what we had or why have been working with till now. 

Now, what we do is instead of storing the velocities also at the cell centroid both u and v, 

we kind of shift them by half cell. So, we go we store the horizontal arrows here denote 

the 𝑢𝑒 and the vertical arrows here denote the 𝑣𝑛 or 𝑣𝑠 ok. So, essentially the horizontal 

vectors here denote the u component of velocity and the vertical ones denote the v 

component or y component of velocity that is v ok. So, now, these are shifted. 

So, u v shifted from this cell centroid by half Δ𝑥 and v is shifted by from the cell centroid 

by half Δ𝑦 ok. So, that is where we store we want to store the velocities which are basically 

staggered from the cell centroids ok. So, now, this is where all the 𝑢𝑒 will be stored or 𝑢𝑤 

and the vertical arrows is where all the 𝑣𝑛 and 𝑣𝑠 will be stored. 

Now, of course, because we are using finite volume approach we need to have a volume 

associated with every variable. We do not have any issue with the storage of P because the 



P is at the primary cell centroid as a result this is this serves as a control volume for the 

integration or for applying the Gauss-divergence theorem for as far as pressure or any other 

scalar ϕ is concerned ok, whereas we need to now identify a control volume for 𝑢𝑒. 

So, 𝑢𝑒 is basically staggered so such that the control volume which has to be centered 

around this 𝑢𝑒. So, 𝑢𝑒 has to be at the cell centroid of the particular cell. So, the control 

volume is now shown here with by hatching here. So, here we see that cv is basically for 

𝑢𝑒 is shown here and similarly the control volume for 𝑣𝑛 is also shown here with red color 

and strips ok. 

So, we have these checks is for u, u e bar inclined lines is for pressure and the vertical lines 

in red color is for the control volume for the 𝑣𝑛 ok. So, that means, u is stored on the faces 

east west and so on; v, the y component of the velocity is stored on the north and south 

faces and so on and pressure and any other scalar that you want to solve ϕ or gamma or 

the density all these things are all as usual stored at the original centroids that is P, E, 

capital E, capital W, N and S ok.  

So, that is the staggered grid storage or staggered grid approach. Now, this is not unique, 

but we are going to use this particular way of storing as far as the course is concerned. But, 

if you look in the literature there are many other ways of staggering.  

For example, instead of storing u on the east face people might store u parallel to the x-

axis; that means, they may show u here and v here that is also possible that is also a 

particular way of staggering and there are also few other half staggering approaches where 

u and v are stored at one location and pressure is another location ok. 
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So, there are few other ways of other ways of staggered grid approaches available but, we 

will not be looking at all of them available in the literature. But, we will not look at all of 

them we will only concentrate on this particular way of staggering ok, alright.  

Now, again one more question that pops up in mind is that so, shall I create three different 

meshes for solving one problem? No, you will not create three different meshes, you will 

create only one mesh, that is basically your primary mesh for the primary cells. And, 

everything else will be kind of only while you write the algorithm or while you write the 

code you will know that it is basically stored at half way through these cell centroids ok. 

So, that is what you would use.  

Only in the process of coding you will have this, but not physically you will not create 

three different grids ok, alright. But, of course, when you store it you would have to count 

how many east and west faces are there, accordingly you have to allocate the storage for 

u, v and the P ok. So, that needs to be done, alright. So, let us move on. So, we have now 

introduced staggered grid approach let us look at a particular cell p and see how does this 

look, ok. 
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So, essentially the p if we if I plot only the cell p ok, this is what we have. Essentially we 

have P the pressure stored in the cell centroid and the horizontal x component of velocity 

that is 𝑢𝑒 and 𝑢𝑤 on the faces of the cell centroid, and on the north and south faces we have 

𝑣𝑛 and 𝑣𝑠 stored ok, alright.  

Of course, if I again draw all the three control volumes together this is what we get 

essentially we have the p cell that is shown here in black then we have 𝑢𝑒 stored on the 

face which has this control volume for 𝑢𝑒 that is kind of shown here and 𝑣𝑛 is on the north 

face of the p cell and this is where you have the control volume for the north face, ok. 

Now, of course, we know that the if you show me uniform mesh, then essentially your P 

or even if it is not uniform mesh, but as long as it is Cartesian essentially what you have is 

your 𝑃𝐸 will coincide with the with your east face of the 𝑢𝑒 cell, right because this is where 

you will have 𝑃𝐸, similarly 𝑃𝑁 would be coinciding with the north face of the 𝑣𝑛 cell, ok. I 

hope you see that. 

Essentially, what I mean is that when you write any equation for 𝑢𝑒⃗⃗⃗⃗ , the east and west faces 

would be capital E and capital P. They will be aligned with that. Similarly, the north and 

south faces for 𝑣𝑛⃗⃗⃗⃗  bar equation would be capital north and capital south whereas the east 

and west faces for the p cell are the same as before.  



These are little e and little w right, these are essentially your little e and this is your little 

w whereas, when we write it for the other quantities that is for 𝑢𝑒 and 𝑣𝑛, the faces are 

actually now capital E and capital P, capital north and capital P ok. 

Now, of course, we are not talking about west and then south because essentially once you 

write it here you can of course, write the same thing for this guy and write the same thing 

for here and so on. So, we do not have to write equations for 𝑢𝑤 and 𝑣𝑠 ok.  

They will come out to be the same as 𝑢𝑒 and 𝑣𝑛; essentially, they are shifted by one cell in 

x and y directions. Or you can think of it like essentially for every p cell you will have one 

𝑢𝑒 and one 𝑣𝑛 cell as well ok, that way everything kind of balances out, alright. 

Then so, the idea is now we have to again discretize the continuity equation and again of 

course, discretize the momentum equations on this staggered grid kind of approach and 

see if the velocity and pressure in this particular pattern would they support the pressure 

and velocity checker boarding or not, ok? So, that is the question. 

So, if we look at the continuity equation for cell p ok, now remember that continuity will 

always be written for the primary cell for the cell P only it will always written no matter 

whether it is a staggered grid or a regular grid ok. The continuity will be written only for 

the cell P ok, the primary cell, alright. Now, if we write the continuity equation then we 

have ∇ ⋅ ρ𝑢⃗ = 0. 

So, that means we are going to if you apply Gauss divergence theorem then you will get 

ρ𝑢⃗ ⋅ 𝐴𝑓
⃗⃗⃗⃗ = 0, right? Now, what about the faces? The faces for this cell are again same as 

before this is east, west and north and south. So, we have (ρ𝑢)𝑒Δ𝑦 minus (ρ𝑢)𝑤Δ𝑦 plus 

(ρ𝑣)𝑛Δ𝑥 minus (ρ𝑣)𝑠Δ𝑥. 
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But, now what about 𝑢𝑒? So, 𝑢𝑒 do we have a value stored on the east face or do we need 

to interpolate? Because we have already staggered it, we do not have to interpolate any 

more right, because 𝑢𝑒 is already stored and solved at the east face and the west face. 

Similarly, 𝑣𝑛 and 𝑣𝑠 are essentially they are stored and they solved where they are required 

by the continuity equation, right. 

Essentially then we do not have to interpolate anymore right unlike before because earlier 

when we got 𝑢𝑒 we had to interpolate as their arithmetic average as 𝑢𝐸  and 𝑢𝑃 by 2 and 

that landed us into trouble right because then we ended up with essentially velocity field 

supporting our checker boarded pattern right. 

So, therefore, a by staggering the velocities what we see is the velocities are readily 

available and stored and solved where they are required on the cell faces for the primary 

cell and this kind of now staggering eliminates velocity checker boarding right because 

you do not have to interpolate anymore. And, we are essentially talking about east minus 

west and north minus south, basically these are know the primary these are now adjacent 

values right. 

So, if 𝑢𝑒 is here 𝑢𝑤 will be here. So, essentially the neighbor is basically 𝑢𝑒 and 𝑢𝑤 as a 

result you cannot have checker boarding, right. Earlier 𝑢𝑒 and 𝑢𝑤 are 2Δ𝑥 apart now they 

are only Δ𝑥 apart right ok, alright. 
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Then, let us look at what happens to the momentum equation. So, let us look at the discrete 

x momentum equation. Now, where do we will solve the momentum equation we are 

writing an equation for x component of velocity that is 𝑢𝑒. So, we need to solve momentum 

equation on the 𝑢𝑒 control volume right; that means, we solve momentum equation x 

momentum equation on this control volume and y momentum equation on this control 

volume ok. 

That means, x momentum equation will be solved on essentially on this control volume 

and y momentum will be solved on this control volume ok. So, essentially it is slightly 

bigger. So, this is where we will solve the y momentum equation and this is where we will 

solve the x momentum equation ok, right and on the primary cell we have solved for the 

continuity equation, right, ok. 

Then let us go and see right the x momentum equation. Now, again we are not writing the 

entire equation which we will write little later. As of now we will look at only the pressure 

gradient term because we want to see if this staggering supports the pressure checker 

boarding or not, ok.  

So, if you look at the equation essentially what we have is the pressure gradient is −
∂𝑃

∂𝑥
 in 

the x momentum equation and we can write this as (−i ̂ ⋅ ∇𝑃) 𝑑𝑉, right. Again, if you apply 

gradient theorem then we can convert this as −𝑖̂ ⋅ ∑PfAf
⃗⃗  ⃗. 



Now, what about the faces here? The phases are not little e little w little north little south; 

rather the faces are now actually capital E and capital P. Do you see that because we are 

now writing an equation for the blue cell for the 𝑢𝑒 cell and what will what are the faces 

for the cell?  

If this face is capital E, this face is capital P; this face of course, is still the little north and 

little south, but because we do not we have our 𝐴𝑓 because we are taking a dot product 

with −𝑖̂ the only term that survive are the Af
⃗⃗  ⃗ bar that are aligned in the x direction. As a 

result only E and P will survive. So, we do not have to worry about the little north and the 

little south for this particular case. 

So, and this would basically be your evaluate to because A capital E would become  

Δ𝑦𝑖̂ right because there is a minus it gets pushed to the negative value and A capital P 

would evaluate to −Δ𝑦𝑖̂and that would make it plus. So, as a result what we get? Out of 

this summation is basically (𝑃𝑃 − 𝑃𝐸) times Δ𝑦 ok.  

So, now, you already see that the pressures are now the pressure gradient uses adjacent 

pressure values, right. We do not have (𝑃𝑊 − 𝑃𝑃). (𝑃𝑤 − 𝑃𝑒) right which eventually lead to 

(𝑃𝑊 − 𝑃𝐸) like what we had before in the collocated approach. So, right now here we have 

(𝑃𝑃 − 𝑃𝐸). 

So, as a result if you have checker boarding, then it will automatically be seen by the 

momentum equation as a nonzero pressure gradient and it will not it will be felt right unlike 

before where such a pressure checker boarding was not felt with the momentum equations 

as a pressure gradient right it was felt by the momentum equation as 0 pressure gradient 

ok, alright. 

Now, if you look at the y-momentum equation, this has now of course, all other 

components are there, but then what we have is −ĵ ⋅ ∇𝑃 𝑑𝑉. So, this basically gives you 

again applying gradient theorem we get PfAf
⃗⃗  ⃗ dotted with −ĵ now what are the faces for the 

y-momentum equation? Essentially, we are talking about V n control volume ok. 

So, 𝑣𝑛 control volume what are the faces? So, this is the control volume, what is this face? 

This face is basically capital N, this face is capital P; of course, these faces are again little 

e and little w, but they will not survive in the equation because we are taking a dot product 

with −ĵ, ok. So, capital N and capital P are the faces for the 𝑣𝑛 controlled volume. So, that 



means, what we have is basically this term −𝑗̂ ⋅ ∑ PfAf
⃗⃗  ⃗ will evaluate to (𝑃𝑃 − 𝑃𝑁) times Δ𝑥 

ok, alright. 

Now, again we see that we already have 𝑃𝑃 and 𝑃𝑁 available and there also adjacent values, 

as a result we do not have to interpolate p and this also eliminates pressure checker 

boarding ok. 
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As a result what we can say is the use of staggered mesh or grid results in avoidance of 

pressure and velocity checker boarding ok, that is what we see from the equations, alright. 

So, this is only one fix for our problem, we have another issue also to look at that is 

basically the actions of an equation for pressure, ok. Before we do that let us look at the 

full equation essentially the complete set of x and y momentum equations discretized on 

these staggered cells ok. 
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That means, discrete momentum equations are we can of course, write the full discrete 

equation, but one thing one difference is that up till now we were writing 𝑎𝑃𝑢𝑃 equals 

∑  anbu𝑛𝑏  plus b, but now because we are writing for 𝑢𝑒 we will like to call our p cell as 

now our east face. So, the coefficient also will changed to 𝑎𝑒𝑢𝑒 is our essentially similar 

to our 𝑎𝑃 similar to 𝑎𝑃𝑢𝑃 ok, but it is not the same because now, because 𝑢𝑒 is not stored 

at the cell centroid for primary cell ok. 

So, as a result our discrete equation will read 𝑎𝑒𝑢𝑒 = ∑anbu𝑛𝑏 + be plus Δ𝑦(𝑃𝑃 − 𝑃𝐸). This 

is what we just saw before, right. This term is what we just saw before right, because of 

the integration, ok. Similarly, the other term is basically the y-momentum equation which 

will read as 𝑎𝑃𝑣𝑃, but instead we are storing the velocities on the north face. 

So, this will read as 𝑎𝑛𝑣𝑛 = ∑anbv𝑛𝑏 + bn and we have our Δ𝑥(𝑃𝑃 − 𝑃𝑁) ok. So, this is the 

pressure gradient term that evaluates alright. So, far so good, now we have the discrete 

momentum equations and also the discrete continuity equation, but of course, we still do 

not have any equation for pressure ok. Now, what about the neighboring values here 

anbu𝑛𝑏 here see in the context of collocated approach these u𝑛𝑏  where east, west, north, 

south and so on. 

So, we have done that all the way through, but now because we have shifted these things 

the u𝑛𝑏  are also now different they are not E capital E capital W capital N and south right. 

For example, if you look at 𝑎𝑒𝑢𝑒 essentially we are talking about this guy, so, what will be 



the neighbors for this guy? This guy will be neighbors will be if you were to call the face 

here as between capital E and capital east east as little e e, then the neighbors are little e e 

little w little north north east and little south south east. 

So, these are the u and v’s that we have to use while writing this equation ok. Similarly 

the anbv𝑛𝑏  we have to use while writing the equation for north that is 𝑣𝑛 is basically is 

north north and south and north east and north north west, ok. So, essentially these four 

guys is what we have to use, fine. So, that is what we have.  

So, essentially the neighbors a and b for v equation are this guy. This guy, this guy and 

this guy and for u equation the neighbors are this is the east east, west north north east and 

south south east ok. So, those are the neighbors. Of course, on the p cell again the neighbors 

are east west north south that is same as before there is no change in that, alright. So, that 

is where, but what about now a nb? These a nb values are they same between this and this? 
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They are not the same because now because of the staggering these values anb’s are not 

the same right, essentially they are different ok. They are not the same; they are different 

ok. So, essentially between the two equations 𝑢𝑒 and 𝑣𝑛 equations in the anb’s are different 

because the way the discretization are there written for different cells ok, alright. 



So, that kind of makes us with a fix for the pressure and velocity checker boarding ok this 

is basically use staggered grid approach that is basically helps us fix the first difficulty that 

we have in solving the incompressible fluid flow equations, alright.  

Now, in order to look at the other difficulty, we look at this famous algorithm which is 

known as the simple algorithm which of course, does not indicate the level of difficulty 

ok; the simple that does not mean the level of difficulty simple basically stands for semi 

implicit method for pressure linked equations, ok. We will see what is semi implicit in this 

method little later. 

So, essentially this is a very famous algorithm that is used in order to solve for 

incompressible fluid flow equations, ok. So, this will also help us with fixing basically the 

second difficulty that we have that is basically the absence of any equation for pressure 

ok. So, what simple method does is, it addresses the both the difficulties. 

So, it uses a staggered grid approach, thereby it allows us to work with pressure and 

velocity fields without them becoming checker boarded and it also creates a discrete 

equation for pressure from the discrete continuity equation and the discrete momentum 

equations that we have ok. So, essentially it creates an equations of pressure and the way 

it basically does is what we are going to see next, alright. 
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So, it is a good idea to recall that we have three control volumes – the primary control 

volume is basically control volume for pressure, storing the pressure and the cell centroids 

of the main control volumes and this is where we discretize our continuity equation always. 

Now, we have a staggered control volume that is staggered by half Δ𝑥 that is basically for 

storing the x-component of velocity that is 𝑢𝑒 and this is used to discretize the x-

momentum equation.  

Similarly, the 𝑣𝑛 the y-component of velocity is also staggered from p by half Δ𝑦 and this 

will be used to right the discrete y-momentum equation ok. So, that is basically just to 

recall the existence of the three different control volumes, alright. 
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Now, let us get started with the simple algorithm. So, basically what we have is we start 

with a guess field for pressure ok. So, essentially you guess what is the pressure field if I 

had to denote the guess of the pressure as 𝑃∗ and then I would we would like to solve 

discrete x and y-momentum equations on the staggered grid using this guessed pressure 

ok. 

That means, we will write 𝑎𝑒𝑢𝑒 = ∑anbu𝑛𝑏 + Δ𝑦(𝑃𝑃
∗ − 𝑃𝐸

∗) + be ok. Similarly, 𝑎𝑛𝑣𝑛 =

∑anbv𝑛𝑏 + Δ𝑥(𝑃𝑃
∗ − 𝑃𝑁

∗ ) + bn ok. So, what we have done is we have just made a guess for 

our pressure values and using these pressure values, now we are solving for this x and y 

momentum equations, and the solution thus obtain by solving this system are now denoted 

with star values here ok. 



So, 𝑢𝑒
∗ , 𝑣𝑛

∗ are basically the velocities they are not simply the guessed velocities they are 

the velocities that are obtained by solving this system of equations using guessed pressure 

𝑃∗, ok. How do you solve for these two equations? How do you solve for the first equation 

at least? Do you need to you make a guess for 𝑢∗, right if you use Gauss – Seidel you have 

to iterate basically is not it? Because this is kind of a implicit equation, right. 

You have a system of linear equations where b is known and 𝑃∗ is guess is known, but 

although you made a guess for 𝑢∗ you need to converge this equations right you need to 

convert using Gauss-Seidel and you need to converge the 𝑣𝑛 also using Gauss-Seidel, ok.  

Again, if you kind of read through whatever we have discussed what does anb contain? 

anb contains u guess values of u s as well, is not it? Because this contains D and F the 

diffusion and the convection and the convection uses the existing values of u, alright and 

v. 

So, essentially these equations are coupled you can see this a v contain u and v and this a 

v contains u and v right coming from the D and F that we have discussed before in the 

context of convection diffusion equations, ok. So, that means, these two equations are 

actually coupled and they are also now linearized, right. So, we have made them linearized 

from the non-linear v that we have ok, ok. So, you may have two kind of counter up on 

this two equations and see how what will be the values of anb here, alright. 
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Now, so, we need to solve for these two equations using Gauss-Seidel or line by line 

TDMA and eventually we get the converged solution of the equations one ok. So, the 

converged solution is basically 𝑢𝑒
∗ , 𝑣𝑛

∗ ok. This is obtained using 𝑃∗ values using the 

guessed pressure, alright.  

Now, because 𝑃∗ is only a guess value this is only a guess value 𝑢𝑒
∗ and 𝑣𝑛

∗ will of course, 

satisfy the momentum linearized momentum equations 1, because they are solved for 

convergence. However, they will not satisfy continuity equation unless we are extremely 

lucky right that we guessed the correct pressure in the first place itself which we are not.  

So, the 𝑢𝑒
∗ , 𝑣𝑛

∗ obtained using the guessed pressure will not satisfy continuity equations ok; 

that means, if we were to go back and discretize the continuity equation on the primary 

cell right on the p cell, then the continuity equation will read as  

(ρue
∗)Δ𝑦 − (ρuw

∗ )Δ𝑦 + (ρvn
∗)Δ𝑥 − (ρvs

∗)Δ𝑥 = 0, right. 

This is not equal to 0 because the ue
∗  and  vn

∗  only satisfy the momentum equation for a 

guessed pressure linearized momentum equations for a guessed pressure, but they will not 

satisfy the continuity equations. So, as a result there will be some mass imbalance. So, 

mass conservation will not be satisfied by the stared values that come out of the solutions 

of the 1 equations at 1 ok, is that clear, alright. 

So, now, what we look for is basically we know that these velocities the ue
∗  and vn

∗  and the 

𝑃∗, they are not correct, right and they will not satisfy momentum continuity equation. As 

a result we propose corrections for these guessed values, ok; that means we want to correct 

the ue
∗  vn

∗  and 𝑃∗ such that they satisfy both the momentum and the continuity equations. 
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That means, we want to introduce some correction for 𝑢∗. So, this is 𝑃∗; 𝑃∗ is the guessed 

value. We want to correct it using 𝑃′ which we do not know what is this value or how to 

obtain. We only know we guessed something, but now we hope to correct this with some 

pressure 𝑃′ such that we get a pressure p. This hopefully will be the correct pressure. 

And, similarly we want to correct the ue
∗  and vn

∗  these are obtained from the solution of 

momentum equations with a guessed 𝑃∗, ok. These also we want to correct them such that 

these corrected velocities here u and v satisfy continuity equation, ok. So, we want to add 

these corrections 𝑢′ 𝑣′ such that the 𝑢𝑒 = 𝑢𝑒
∗ + 𝑢𝑒

′  and 𝑣𝑛 = 𝑣𝑛
∗ + 𝑣𝑛

′  satisfy the conx`tinuity 

equation, ok. 

Because the star value do not themselves satisfy right, but we hope u and v if you plug it 

in here will satisfy the continuity equation and we want to find such corrections here ok, 

alright. Now, of course, we also hope that u and v for the correct pressure will also satisfy 

the momentum equation. 

So, I can write the original momentum equations that is basically the discrete momentum 

equation for x and y components of velocity as 𝑎𝑒𝑢𝑒 = ∑anbu𝑛𝑏 + Δ𝑦(𝑃𝑃 − 𝑃𝐸) + be and 

then we have 𝑎𝑛𝑣𝑛 = ∑anbv𝑛𝑏 + Δ𝑥(𝑃𝑃 − 𝑃𝑁) + bn where this pressure is the corrected 

pressure and the velocities are the corrected velocities. And, if you solve for this u will 

kind of converge to some value, ok. 



Now, this is basically the same equation set we had before only thing is that we removed 

the stars everywhere, ok. Now, if I were to subtract the star equations from the non starred 

equations; that means, if you want to do 2 minus 1 for each of these x and y momentum 

equations separately, then what we get is the equation set 3 which is basically your, 𝑎𝑒𝑢𝑒 

minus 𝑎𝑒𝑢𝑒
∗ .  

If you take 𝑎𝑒 common then you get 𝑎𝑒𝑢𝑒
′  equals similarly on the right hand side what you 

get is ∑ anbu𝑛𝑏
′ + Δ𝑦(𝑃𝑃

′ − 𝑃𝐸
′ ) + be the body forced term gets cancelled, ok. So, as a result 

now we have an equation set 3 which is 𝑎𝑛𝑣𝑛
′ = ∑ anbv𝑛𝑏

′ + Δ𝑥(𝑃𝑃
′ − 𝑃𝑁

′ ) + bn ok. 
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So, you need to verify how we got these equations. Basically subtract the equation set 1 

from equation set 2, ok. Now, we got a very nice equation very important equation this is 

basically an equation that is relating the velocity corrections that we proposed with the 

pressure corrections, is not it? With the pressure corrections, with the pressure corrections 

ok. So, that is a very important equation. 

Now, how do we solve for this equation? Let us say if 𝑃′ is guessed, how do we solve for 

this equation? Do we need to solve for a system or can we directly get the answer? We 

need to solve for a system right even for this so, we need to solve for again 2 systems right 

of a linear equations that is a lot of work and also as a result we do not want to solve for 

this. 



So, what the simple method proposes is, this is the biggest or the most important 

approximation that simple proposes ok. So, what it says is neglect the contribution of the 

neglect the contribution of the anbu𝑛𝑏
′ , make this 0 and anbv𝑛𝑏

′  in these equations, ok. That 

means, we are writing approximating 𝑎𝑒𝑢𝑒
′ , the velocity correction purely in terms of the 

pressure correction ok. 

Similarly, 𝑎𝑛𝑣𝑛
′  equals approximated to Δ𝑥(𝑃𝑃

′ − 𝑃𝑁
′ ); that means, essentially if we want to 

write these two equations by making these two to go 0 as 𝑎𝑒𝑢𝑒
′  prime approximates 

Δ𝑦(𝑃𝑃
′ − 𝑃𝐸

′ ) and 𝑎𝑛𝑣𝑛
′  approximates Δ𝑥(𝑃𝑃

′ − 𝑃𝑁
′ ), ok. This is an approximation we will see 

the consequence of this approximation little later ok. 

That means, what does this step has implied? This basically has what it has implied is that 

the burden of correcting the velocities is completely placed on pressures right because now 

the velocity corrections are gone. So, the neighboring velocities do not correct the 

velocities for the primary cell, rather the velocity correction is completely has to be 

corrected using the pressure corrections, right. 
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Because their contribution is now nullified ok; that means, from equation 3 essentially the 

contribution of ∑anbu𝑛𝑏
′  and ∑anbv𝑛𝑏

′  is dropped. 
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That means, the consequence of this is the 𝑃′ takes the entire burden of correcting the face 

velocity corrections that is 𝑢𝑒
′  and 𝑣𝑛

′ . Of course, we also have a good news basically, 

because we have removed these terms we do not have to solve for a system because if we 

know the pressure corrections you can directly plug it in because 𝑎𝑒 is known we can 

directly calculate what is 𝑢𝑒
′  and 𝑣𝑛

′  ok. So, that is a good news. We do not have to solve 

for a system anymore. 

Then of course, I can write now what is u e prime. u e prime would be Δ𝑦/𝑎𝑒 times 

(𝑃𝑃
′ − 𝑃𝐸

′ ) ok. So, that is Δ𝑦/𝑎𝑒(𝑃𝑃
′ − 𝑃𝐸

′ ). So, if you want to denote Δ𝑦/𝑎𝑒 with another 

constant which we will like to call it as 𝑑𝑒 we will call it as d east. So, 𝑑𝑒(𝑃𝑃
′ − 𝑃𝐸

′ ). 

Similarly, 𝑣𝑛
′  equals what we have here is that 𝑣𝑛

′  equals Δ𝑥/𝑎𝑛(𝑃𝑃
′ − 𝑃𝑁

′ ) that is what we 

have 𝑣𝑛
′ = Δ𝑥/𝑎𝑛(𝑃𝑃

′ − 𝑃𝑁
′ ) which you would like to call it as a 𝑑𝑛, ok. So, then we have 2 

constants 𝑑𝑒 and 𝑑𝑛 and we have essentially got an equation for velocity corrections on the 

faces in terms of adjacent pressure corrections on the cell centroids ok. So, this these are 

our what equations? These are velocity correction pressure correction relations, ok. 

Now, of course, we know that our total velocity the corrected velocity we denote it with 

using 𝑢𝑒 = 𝑢𝑒
∗ + 𝑢𝑒

′  right because this correction is what we want to add to the ue
∗  values 

eventually, such that this 𝑢𝑒 satisfies continuity. Similarly, vn
∗  we want to add 𝑣𝑛

′  such that 

it satisfies continuity we get the corrected velocity 𝑣𝑛 ok; that means,  ue
∗  is coming out of 

the equation set 1 after the solution of equation set 1. 



And, then if we add 𝑢𝑒
′  to this 𝑢𝑒

∗ plus 𝑢𝑒
′  is basically 𝑑𝑒(𝑃𝑃

′ − 𝑃𝐸
′ ); similarly, 𝑣𝑛 equals vn

∗  

plus 𝑑𝑛(𝑃𝑃
′ − 𝑃𝑁

′ ), ok. These are the corrected velocities. 
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Now, what about the flow rates the flow rates are basically 𝐹𝑒 is basically the flow rate 

through the east face using the corrected velocity. This can be written as also 𝐹𝑒 = 𝐹𝑒
∗ + 𝐹𝑒

′ 

is (ρue
∗)Δ𝑦 plus F e prime would be rho u e prime delta y. So, I have written instead of u e 

prime we have written rho delta y u e prime, but u e prime we can substitute as d e times 

P P prime minus P east prime, right from here. 

Similarly, 𝐹𝑛 would be the flow rate on the north face this can be written as the star value 

plus the correction where the star value of the flow rate is rho v n star delta y plus the 

correction is rho delta x times. v n prime, where for v n prime we can substitute d n times 

P P prime minus P north prime just like we have substituted for d east times P P prime 

minus P north prime for u e prime ok, alright. 
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So, these are now known. We know that if we go back to the continuity equation the 

guessed values that came out of the guessed pressure values by solution of the momentum 

equations do not satisfy continuity right because we know that ue
∗  and vn

∗  do not satisfy 

continuity; that means, rho u e star delta y minus rho u w star delta y plus rho v n star delta 

x minus rho v s star delta x. 

This is basically is not equal to 0, right. This is not equal to 0 because the ue
∗  un star came 

out of momentum equations, but not out of continuity equation right out of a guessed 

pressure. If this pressure was correct then these would satisfy both momentum and 

continuity right ok; that means, if you were write in terms of flow rate these are F e star 

minus F w star plus F north star minus F south star is not equal to 0. 

But, we miss to; we we wish to convert this not equal to 0 into an equal to 0 by adding the 

contribution of the corrected flow rates ok; that means, the corrected velocities or the 

corrected flow rate right the corrected flow rates would satisfy continuity equations. What 

are the corrected flow rates? Those are F e minus F w plus F north minus F south this will 

definitely satisfy continuity equation right. 

In fact, we want to make the corrections for velocities and pressures such that the corrected 

velocity satisfy continuity equation ok. So, that is our objective. Essentially, find the 

corrections such that the corrected velocities satisfy continuity equations ok. Then we can 



split this 𝐹𝑒 into 𝐹𝑒
∗ plus 𝐹𝑒

′ similarly 𝐹𝑤 into 𝐹𝑤
∗ plus 𝐹𝑤

′ , 𝐹𝑛 into 𝐹𝑛
∗ plus 𝐹𝑛

′ and 𝐹𝑠 into 𝐹𝑠
∗ 

plus 𝐹𝑠
′ ok. 

Out of these, the star values are they known or unknown the star values are known or 

unknown? Are known, right; essentially we already solved ue
∗  vn

∗ . So, these are known 

these can go to which term this can go to the b term, right essentially the right hand side 

ok. 
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That means, we can send this star values to the right hand side. So, what we left on the left 

hand side is basically F e prime minus F w prime plus F north prime minus F south prime 

equals look at the change in sign here because now these are send to the right hand side. 

So, minus F w star becomes positive. So, what we get is (𝐹𝑤
∗ − 𝐹𝑒

∗ + 𝐹𝑠
∗ − 𝐹𝑛

∗) ok. So, this 

is our now b e term which is known that is send to the right hand side. 

But, what we are left with on the left hand side is basically the prime flow rates which of 

course, we can substitute in terms of our pressure corrections right because we can write 

𝐹𝑒
′ as ρ𝑑𝑒𝑢𝑒

′  right, but 𝑢𝑒
′  is Δ𝑦(𝑃𝑃

′ − 𝑃𝐸
′ ).  

Similarly, we can write for 𝐹𝑤
′  as ρ𝑑𝑒𝑢𝑤

′  which is nothing, but Δ𝑦(𝑃𝑊
′ − 𝑃𝑃

′ ); similarly for 

𝐹𝑛
′ as ρ𝑑𝑛𝑣𝑛

′  which we can write as ρ𝑑𝑛Δ𝑥(𝑃𝑃
′ − 𝑃𝑁

′ ) and similarly, for 𝐹𝑠
′ as ρ𝑑𝑠Δ𝑥(𝑃𝑆

′ − 𝑃𝑃
′ ) 

ok. 



So, essentially we have used the velocity correction pressure correction equations right, 

which we have derived here right in substituting for 𝑢𝑒
′  in terms of pressure primes and 𝑣𝑛

′  

in terms of the pressure primes and 𝑢𝑤 and 𝑣𝑠 ok. 
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So, essentially we substitute for all these things then if you put these things back into 

equation 4 here, what you get is on the left hand side you get ρ𝑑𝑒Δ𝑦(𝑃𝑃
′ − 𝑃𝐸

′ ) minus 

ρ𝑑𝑤Δ𝑦(𝑃𝑊
′ − 𝑃𝑃

′ ) plus ρ𝑑𝑛Δ𝑥(𝑃𝑃
′ − 𝑃𝑁

′ ) minus ρ𝑑𝑠Δ𝑥(𝑃𝑆
′ − 𝑃𝑃

′ ) equals (𝐹𝑤
∗ − 𝐹𝑒

∗ + 𝐹𝑠
∗ − 𝐹𝑛

∗) 

ok. 

So far so good, now does it remind you of some equation that we have seen before? Yes, 

it does. It kind of looks like the diffusion equation we have looked before right. So, we can 

certainly write in the standard form where in we can write this as 𝑎𝑃𝑃𝑃
′  equals sigma a nb 

P nb prime plus b where a east. Now, only difference compared to the previous equations 

here is that in the previous equation we use to send the 𝑃𝑃
′  to the right hand side right all 

the 𝑎𝑃 to the right hand side. 

Here we will send all the neighbors to the right hand side because the b term is already 

here and 𝑃𝑃
′  will get positive coefficient. So, E prime, W prime, north prime and south 

prime would be sent to the right hand side such that all of them would become positive 

and the positive 𝑃𝑃
′  coefficients will retain or remain on the left hand side ok. 



Then if we rearrange in our standard form that is 𝑎𝑃𝑃𝑃
′  equals ∑anbP𝑛𝑏

′  plus b our 

neighboring coefficients 𝑎𝐸 would be would be what? Would be ρ𝑑𝑒Δ𝑦. This minus is 

there, but it is gone to the right hand side. So, this will become ρ𝑑𝑒Δ𝑦 similarly 𝑎𝑊 would 

be ρ𝑑𝑤Δ𝑦 and 𝑎𝑁 would be ρ𝑑𝑛Δ𝑥 and 𝑎𝑆 would be ρ𝑑𝑠Δ𝑥 ok. So, we got all these things. 

What will be 𝑎𝑃? 𝑎𝑃 would be again summation of a ∑anb. So, 𝑎𝑃 equal to ∑anb and what 

would be b? b is your (𝐹𝑤
∗ − 𝐹𝑒

∗ + 𝐹𝑠
∗ − 𝐹𝑛

∗) star, ok. Now, essentially what is this quantity? 

This quantity is this equal to 0. This not equal to 0, right. If this were equal to 0, then our 

problem is solved our guess value satisfy continuity. They are out of momentum equation. 

So, everything is solved, this is not equal to 0 and this also indicates the mass imbalance 

that is there in the problem right essentially in the domain this is the mass imbalance for 

the cell. So, for every cell this is the mass imbalance that we have; that means, at any 

moment if this b term goes to 0; that means, the mass imbalance for every cell is 0; that 

means, if we satisfy continuity equation by every cell. 

Then this equation would become b equal to 0 for every cell right this would equation will 

transform into 𝑎𝑃𝑃𝑃
′ = ∑anbP𝑛𝑏

′  with b equal to 0 everywhere, right. 
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Now, what about Scarborough criteria for this? Scarborough criteria is it satisfied? 

Because we have to solve for a system here, is it not? This is an equation for a system of 

linear equation we have to solve for a pressure correction equation. So, we need to know 



whether Scarborough satisfied in equality or inequality? Equality right because equality 

condition right basically because 𝑎𝑃 equal ∑anb and all the coefficients are positive. So, 

this will basically satisfies Scarborough inequality, but what about.  

So, essentially let us make some comments in terms of what will happen or how do we 

solve this equation. Now, you see we have arrived at this equation, this is an equation for 

what? For pressure correction which is basically an equation for pressure itself, is not it? 

Instead of calling it a pressure correction is then equation for pressure, how did we get? 

This we got this from invoking continuity equation. 

Now, see that is the idea of the simple method. You start off with continuity equation and 

by enforcing the guessed velocities to satisfy the continuity equation in terms of 

corrections we have arrived at a an equation for pressure ok. So, the continuity equation is 

transformed into an equation for pressure correction with the help of momentum equations 

ok. So, that is where the second difficulty that we have in the solution of incompressible 

flow problems is now addressed using this simple algorithm ok. 

Of course, this is the right hand side is basically the mass denotes the mass imbalance, this 

term denotes the mass imbalance this is basically your b term. Now, the moment if your 

pressure guess were correct then it would yield 𝑢∗ and 𝑣∗ that satisfy both momentum and 

continuity equations, because if 𝑢∗ and 𝑣∗ satisfy if 𝑃∗ was correct then 𝑢∗ 𝑣∗ would be 

also correct in the momentum equations and they will also give you a 0 here which would 

essentially give you a 0 here. 

That means, that 𝑎𝑃𝑃𝑃
′  equal ∑anbP𝑛𝑏

′  prime, what is the solution for this equation? What 

would be the solution for 𝑎𝑃𝑃𝑃
′  prime ∑anbP𝑛𝑏

′  with b equal to 0? If b were 0, let us say 

you end up with a continuity satisfying flow field, what is the solution for 𝑎𝑃𝑃𝑃
′  prime 

equals ∑anbP𝑛𝑏
′ ?  

Everywhere in the domain a solution would be basically of this equation if you solve using 

Gauss-Seidel you will get basically 𝑃′ equals constant right that will be your solution. That 

satisfy this equation right because 𝑎𝑃 equal sigma anb then 𝑃𝑃
′  everywhere will come out 

to be constant that is solution for this equation. 
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That means, if pressure correction is constant, then what will happen to velocity 

corrections? Velocity corrections would p prime is constant then velocity correction would 

go to this will go to 0; that means, we do not have to iterate any more right both the velocity 

corrections will go to 0 that means, we can say that if 𝑃′ equal to constant we have arrived 

at a converged solution because velocity corrections also will go to 0. 

Of course, this constant might keep changing because every times the prime iteration this 

might be changing, but 𝑃′ equal to constant would tell you that for that particular iteration 

this is basically satisfies you have obtained a velocity field that satisfies continuity ok, but 

we can consider 𝑃′ equal to constant everywhere as a converged pressure solution and that 

will give you also a converged velocity solution because u e prime and v n prime are also 

0. 

The velocity corrections are 0; that means, we can say that the we have obtained a 

converged 𝑢𝑒
′ , 𝑣𝑛

′  and 𝑃′ is basically becomes a constant. Now, we see that even if this 

constant value keeps changing that does not matter as long it is a constant because your 

∇𝑃 is actually what matters in the incompressible flow equations right. 

It is not the absolute pressure, it is not the absolute pressure that matters it is only the 

pressure gradient or the pressure difference that we have between two points that is what 

matters because in the equation you have −∇𝑃 or −
∂𝑃

∂𝑥
 and −

∂𝑃

∂𝑦
, right and we do not have 



any equation like an ideal gas equation or an equation of state where the absolute value of 

pressure is related to the density ok. 

So, as a result, the in the incompressible flow equations only the gradient of pressure that 

matters; so, as a result your p prime even if it keeps changing its as long as it is a constant 

that constant value might be anything, but your it will not affect your solution your 

essentially velocity corrections will go to 0 ok.  

So, that is in a sense. But, now after these velocity corrections essentially your velocities 

the corrected velocities u and v would satisfy continuity equation, but they will not satisfy 

momentum equations right because now we have obtained a different pressure field and 

obtained a velocity field from these other equations. 

So, essentially you have to go back and solve your momentum equations again with the 

updated pressure from there you have to obtain the velocity fields and keep doing that until 

you satisfy both momentum and continuity equations at the same time for the pressure and 

the velocities ok. So, that is the overall algorithm. We will look at the algorithm in a 

different lecture in the next lecture so, but this is the idea of the simple method ok. 

(Refer Slide Time: 53:40) 

 

So, essentially we will look at the overall algorithm in the next class and also we will look 

at we will solve some simple problems both using hand calculations as well as using 

computer code. So, I am going to show you some small programs. These will be taken 



from the book by Patankar ok. So, I am going to hopefully upload the problems page from 

the book so that you can take a look and you can also go through this algorithm once.  

So, that we can get started with the overall algorithm and the hand calculations for some 

simple problems in the next class ok. I will also see if I can post may be one assignment 

or something like that so that we can you know kind of get used to these, alright ok. 

Thank you very much I am going to stop here. If you have any questions do let me know 

through e-mail and I will kind of try to get back to you as soon as possible ok. 

Thank you. 


